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Abstract
Purpose of Review Despite the rapid development of molecular techniques, cytogenetic analysis is still an indispensable tool in
understanding the pathology of leukemia. The significance of cytogenetics in leukemia is reviewed in terms of its classification,
diagnosis, prognosis, and risk stratification, which are all important to guide further treatments based on published clinical trials.
Recent Findings According to the 2016 revised World Health Organization (WHO) classification of leukemia, various well-
known clinical practice guidelines in the routine diagnostic workup of leukemias and many large worldwide cohort studies in the
leukemia patients’ risk stratification banding cytogenetic analysis continue to play essential roles in leukemia diagnostics.
Summary The thought that cytogenetics might be replaced by the advanced molecular techniques in today’s genomic world as a
phase-out method has not been substantiated. In fact, it remains as an integral part of the diagnostic framework in leukemia
evaluation. In the future, cytogenetics together with the molecular methods will form a golden partnership in unraveling leukemia
pathogenesis and predicting the outcome of leukemia patients.
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Introduction

Banding cytogenetics continues to be a fundamental com-
ponent for the diagnosis, classification, and subsequent
risk stratification of leukemia nowadays. Karyotyping of
blood cancer cells presents a global view of the acquired
abnormalities being present in the entire human genome
of a single cell. This advantage of a global picture on the
developments of abnormal clones or new clones thus pro-
vides evidence for clonal evolution, which mirrors disease
progression [1]. In addition, the ploidy status of malignant
cells has prognostic implications [2, 3], for example, be-
ing hypodiploid or hyperdiploid means dramatically dif-
ferent prognoses for clinical outcome in childhood acute

lymphoid leukemia (ALL) for the clinical outcome. It is
poor in the former but favorable in the latter case.
Endoreduplication of the near-haploid leukemic cells as
a mechanism for the associated hyperdiploidy has been
well illustrated by us in a previous report [3].

Besides well-known cytogenetic abnormalities associated
with specific leukemia subtypes, novel translocation partners
can also be easily revealed by cytogenetic analyses [4].
Recently, together with next-generation sequencing (NGS)
technology, a rare but clinically significant fusion transcript
was detected in a complex karyotype, which further expands
the spectrum of disease associations [5].

According to the clinical practice guidelines pub-
lished by the European Society for Medical Oncology
(ESMO), National Comprehensive Cancer Network
(NCCN), and the College of American Pathologists
(CAP)/American Society of Hematology (ASH), banding
cytogenetic analysis is mandatory for the initial diagnos-
tic workup of acute myeloid leukemia (AML) and ALL
to guide therapy and predict remission rate, relapse risk,
and overall survival outcomes [6, 7, 8••, 9, 10]. As
included in the World Health Organization (WHO) clas-
sification of myeloid neoplasms and acute leukemia, cy-
togenetics is a central component in the categories of
AML with recurrent genetic abnormalities [11••].
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WHO Classification of Leukemia

WHO classification of leukemia was first published in 2001,
revised in 2008 [12], and further updated in 2016 [11••]. Apart
from being based on morphological, cytochemical,
immunophenotypic, and clinical features, genetic information
was utilized to a great extent in categorization as compared to
French-American-British (FAB) system. In view of the fact
that WHO has categorized different unique AML subtypes
according to cytogenetics, a full karyotype is necessary for
all suspected AML cases to fulfill WHO classification at
presentation.

Here, we list the WHO classifications for myeloid
malignancies:

1. WHO category “AMLwith recurrent genetic abnormalities”
comprises nine recurrent chromosomal balanced transloca-
tions and inversions [11••]. Of note, acute promyelocytic
leukemia (APL) with translocation t(15;17)(q24.1;q21.2)
was renamed to APL with PML-RARA in 2016 version, in
order to emphasize the importance of this chimeric fusion
protein, since this translocation maybe cryptic or appears as
complex rearrangement [11••].

2. Patients with nine other recurrent balanced translocations,
seven unbalanced chromosomal abnormalities, or com-
plex karyotypes with > 3 abnormalities without WHO re-
curring translocation or inversions are adequate to be clas-
sified as “AML with myelodysplasia-related changes
(AML-MRC)” provided that ≥ 20% blasts are detected
in the bone marrow (BM) or peripheral blood (PB), and
in the absence of prior therapy.

3. Isolated deletion del(5q) with or without one additional
cytogenetic abnormality (except for monosomy 7/ dele-
tion del(7q)) can be classified as “Myelodysplastic syn-
drome (MDS) subtype.” This was updated in 2016 based
on the finding that there was no unfavorable effect ob-
served in recent data for these kind of aberrations [11••].

For lymphoid malignancies (see for more details below), B
cell lymphoblastic leukemia (B-ALL) is also associated with
several recurrent cytogenetic abnormalities. Five recurrent trans-
locations, hypodiploidy or hyperdipoidy, constituted the entity:
“B-lymphoblastic leukemia/lymphoma with recurrent genetic
abnormalities.” Two significant new provisional entities: BCR-
ABL1-like ALL and ALL with intrachromosomal amplification
of chromosome 21 (iAMP21) have been included in 2016WHO
classification due to their adverse prognosis [11••].

Significance of Cytogenetics in AML

AML risk stratification is classified into favorable, intermedi-
ate, and unfavorable groups according to the prognosis that is

associated with specific cytogenetic aberrations. However, it
may have slight variation in risk classification in different
reported cohorts, as especially valid for the intermediate
group. AML risk stratification systems have been defined by
the Southwest Oncology Group and Cooperative Oncology
Group (SWOG/ECOG) and Cancer and Leukemia Group B
(CALGB) in 2000 and 2002, respectively [13, 14]. The UK
Medical Research Council (MRC) established its own risk
stratification in 1998 and revised in 2010 based on large series
of 5876 young adult AML patients [15]. In 2010, the
European LeukemiaNet (ELN) also published its first edition
recommendations for diagnosis and management of AML
[16], which has been widely adopted within clinical trials.
ELN revised its recommendations in 2017 in order to align
with the current version of WHO classification, as well as
recent advances in the discovery of the genomic landscape
of AML [17••].

Cytogenetics Abnormalities with Favorable Risk
in AML

Core-binding factor (CBF) AML cases having a shortage
of all types of mature blood cells with translocation
t(8;21)(q22;q22) and/or inversion inv(16)(p13.1q22)/
translocation t(16;16)(p13.1;q22) are considered as hav-
ing a good prognosis; this suggestion is quite consistent
among all cooperative group and ELN [13–15, 17••]. Of
note, translocation t(15;17)(q24.1;q21.2); PML-RARA,
which identifies APL, is favorable as well due to the
available promising targeted therapy. Patients having one
of these three recurrent cytogenetic aberrations can be
diagnosed to suffer from AML, regardless of their blast
count in BM or PB [12].

Translocation t(8;21)(q22;q22)

It was the first cytogenetic abnormality found by Rowley
J.D. in 1973 to be characteristic for AML [18]. It is the most
common cytogenetic abnormality in childhood AML, as
well having a frequency of 5–10% in adult AML cases.
The translocation fuses RUNX1T1 gene on chromosome 8
with RUNX1 gene on chromosome 21 results in an in-frame
chimeric protein. Loss of sex chromosome and deletion
del(9q) are frequent in translocation t(8;21)-positive AML
[19]. Translocation t(8;21)(q22;q22) is associated with a
favorable outcome in adults; still the incidence decreases
with age, particularly for those cases with additional cyto-
genetic aberrations. In a retrospective cohort study of 916
pediatric patients with translocation t(8;21) conducted by
Berlin-Frankfurt-Munster (BFM) study group in 2015, ad-
ditional deletion del(9q) or gain of chromosome 4 may infer
a worse outcome [20].
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Inversion inv(16)(p13.1q22) or Translocation t(16;16)
(p13.1;q22)

Inversion inv(16)(p13.1q22)/ translocation t(16;16)(p13.1;q22)
is another typical aberration for CBF-AML which can secure
AML diagnoses irrespective of blast count. AML patients with
abnormal eosinophils usually carry such kind of aberrations
[21]. Both abnormalities fuse the CBFβ gene located in
16q22 to the MYH11 gene located in 16p13, resulting in a
chimeric product. However, inversion inv(16) is found more
often than translocation t(16;16). The most frequent secondary
chromosome aberration in such cases is trisomy 22, and has
predicted a remarkably better outcome in a German-Austrian
study [22].

Translocation t(15;17)(q24.1;q21.2)

Reciprocal balanced translocation between PML gene located
in 15q24.1 and RARA gene on 17q21.2 leading to the corre-
sponding fusion gene and the diagnostic hallmark of APL is
highly specific. As aforementioned, the significance of PML-
RARA fusion is the resulting protein rather than the transloca-
tion per se. The latter maybe cryptic or appears in complex
rearrangements. Patients with APL have a favorable long-term
prognosis owing to the development of treatment regimens
that combine all-trans-retinoic acid (ATRA) and arsenic triox-
ide (ATO) [23]. Several variant chromosome translocations
involving RARA but not PML have been recognized in APL:
translocation t(11;17)(q23;q21); ZBTB16-RARA, transloca-
t ion t(5;17)(q35;q21); NPM-RARA , t ranslocation
t(3;17)(q26;q21); FNDC3B-RARA or TBLR1-RARA, etc. [4,
24]. However, in these cases the prognosis may not be as
favorable as in patients with ‘original PML-RARA’ fusion.

Cytogenetics Abnormalities with Adverse Risk in AML

AML with adverse outcome mostly harbor inversion
inv(3)(q21.3q26.2) or translocation t(3;3)(q21.3;q26.2), mono-
somy 5 or deletion 5q, translocation t(6;9)(p23;q34.1), mono-
somy 7 or deletion 7q, translocation t(9;22)(q34.1;q11.2), re-
arrangements of 11q23.3/KMT2A [except for translocation
t(9;11)(p21.3;q23.3)], monosomy 17 or deletion 17p, complex,
and/or monosomal karyotypes [15, 25].

Inversion inv(3)(q21.3q26.2) or Translocation t(3;3)
(q21.3;q26.2)

Inversion inv(3)(q21.3q26.2) or translocation t(3;3)(q21.3;q26.2)
is one of the subtypes newly defined in 2016WHO classification
which are based on recurrent genetic abnormalities. Cytogenetic
abnormalities of 3q21.3 are now associated with thrombocytosis
and increased dysplastic megakaryocytes [26, 27]. This chromo-
somal translocation or inversion does not involve in the

formation of new chimeric fusion genes but reposition a distal
GATA2 enhancer to activate MECOM expression and confers
GATA2 functional haploinsufficiency at the same time [28, 29].

Monosomy 5 or Deletion del(5q)

Cytogenetic abnormalities involving chromosome 5, either
monosomy 5 or deletion del(5q), are common findings in de
novoMDS and AML, as well as therapy-related myeloid neo-
plasms (t-MNs). This is one of the unbalanced abnormalities
in AML-MRC but with adverse outcome [15, 25, 30]. It is also
associated with a high incidence of TP53 mutation especially
in therapy-related AML (t-AML) [31]. However, in MDS
with isolated deletion del(5q) (5q- syndrome), which is one
of the subtypes in MDS according to 2016 WHO classifica-
tion, this aberration indicates for a good prognosis, see also
revised international prognostic scoring system for MDS
(IPSS-R) [32].

Translocation t(6;9)(p23;q34.1)

Translocation t(6;9) involves the juxtaposition of the DEK
gene in 6p23 with NUP214 gene in 9q34.1 resulting in a
chimeric fusion gene that acts as a transcription factor and
alters nuclear transport. It is seen in 1% of patients in a cohort
of 5876 younger adults with a newly diagnosed AML [15]. It
appears mostly as the sole abnormality and with marrow ba-
sophilia and dysplasia [33]. A high incidence of FLT3 internal
tandem duplication (ITD) mutations is associated with trans-
location t(6;9)-AML [34, 35]. The outcome of translocation
t(6;9)-AML is generally poor, with small 5-year overall sur-
vival rate and increased risk for relapse [15, 25].

Monosomy 7 or Deletion del(7q)

Loss of chromosome 7 or deletion del(7q) are frequently de-
tected in MDS or t-AML following treatment with alkylating
agents. Monosomy 7 is found in juvenile myelomonocytic
leukemia (JMML), a subtype of myelodysplastic/
myeloproliferative neoplasms (MDS/MPN, acc. to WHO
classification) and a rare but aggressive myeloproliferative
disease of early childhood [11••]. Most cooperative groups
and IPSS-R consider monosomy 7 or deletion del(7q) to be
a poor prognostic cytogenetic finding in AML and MDS [15,
25, 32], albeit some data demonstrated that isolated deletion
del(7q) had a better survival than patients with monosomy 7
[36]. The three common deleted segments of deletion del(7q)
are 7q22, 7q32~33, and 7q36 [37].

Translocation t(9;22)(q34;q11.2)

The reciprocal translocation t(9;22) involves the juxtaposition
of ABL1 gene in 9q34 with BCR gene in 22q11.2 (fusion gene
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BCR-ABL1). The derivative chromosome 22 is known as
Philadelphia (Ph) chromosome and is the hallmark aberration
of chronic myeloid leukemia (CML), but can also be found in
ALL and rarely in AML. AML with BCR-ABL1 is now in-
cluded as provisional entity in the 2016 revised WHO classi-
fication [11••]. The differentiation between de novo Ph-
positive AML and CML in blastic crisis can be challenging
[38]. The prognosis of Ph-positive AML is adverse [15, 25],
even is tyrosine kinase inhibitors (TKIs) are applied [39, 40].

Rearrangements of 11q23.3/KMT2A [except for Translocation
t(9;11)(p21.3;q23.3)]

Most leukemia patients with 11q23/KMT2A gene rearrange-
ments (previously called MLL gene and renamed in 2016 re-
visedWHO classification) have a very dismal prognosis [11••,
15]. Translocations of KMT2A lead to the generation of in-
frame fusions with different partner genes. To date, 135 dif-
ferent KMT2A rearrangements and 94 translocation partner
genes have been identified [41••]. The six most common
translocation partner genes are AF4 [translocation
t(4;11)(q21;q23)], AF9 [translocation t(9;11)(p22;q23)], ENL
[translocation t(11;19)(q23;p13.3)], AF10 [translocation
t(10;11)(p12;q23)], ELL [translocation t(11;19) (q23;p13.1)],
and AF6 [translocation t(6;11)(q27;q23)] [42, 43]. KMT2A-
AF4 [translocation t(4;11)] is primarily associated with infant
ALL, whereas KMT2A-AF9 [translocation t(9;11)] is more
often seen in AML. Of note, translocation t(9;11)(p21;q23)
is now recognized as a distinct entity in 2016 revised WHO
classification, as having intermediate outcome, which has
comparable rates of complete remission and 10-year survival
as normal karyotype AML [11••, 15].

Monosomy 17 or Deletion del(17p)

A deletion of 17p or monosomy 17 involves loss of the tumor
suppressor gene TP53 in 17p13.1. The latter is associated with
adverse outcomes, even after allogeneic hematopoietic stem
cell transplantation (ASCT) [44]. (Partial) monosomy 17p is
often accompanied by complex or monosomal karyotypes
(see below) as well as by other chromosomal aberrations such
as monosomy 5/deletion del(5q) or monosomy 7/deletion
del(7q) [44–46].

Complex and/or Monosomal Karyotypes

Complex karyotypic abnormalities confer a poor prognosis.
However, definition of a complex karyotype (CK) varies
among different risk stratification groups, especially in terms
of the number of single aberrations. According to the UK
MRC recommendation, > 4 unrelated abnormalities lacking
the abovementioned adverse and favorable aberrations are des-
ignated as CK [15]. However, the 2017 ELN recommendations

classified CK as > 3 unrelated abnormalities as defined before
[17••]. In 2008, Breems et al. [47] defined a karyotype with at
least two autosomal monosomies or a single autosomal mono-
somy in the presence of one or more structural cytogenetic
abnormalities as monosomal karyotype (MK). AML patients
with MK have a particularly poor outcome with a low com-
plete remission and a high relapse rate, and MK has been
proposed as a better predictor of unfavorable risk than a CK
[48, 49].

Apart fromCK andMK, which are well-defined poor prog-
nostic risk factors in AML, several other adverse prognostic
indicators have been identified. In a large cohort study of 3526
AML patients by Stolzel et al. in 2016 [50•], patients with a
sole hyperdiploid karyotype (a range of 49–80 chromosomes)
and without monosomies or structural aberrations have a very
poor outcome, irrespective of the number of chromosomal
gains. According to Bochtler et al. (2013) [51], clonal hetero-
geneity at cytogenetic level is an independent adverse prog-
nostic indicator in AML. Interestingly, a recent study of 395
de novo or secondary AML patients reported by Fontana et al.
(2018) [52], chromothripsis-positive patients showed a poor
overall survival. Chromothripsis is a single event genomic
catastrophe that creates chromosomal fragmentation, which
may be visible as double minutes, marker chromosomes, de-
rivative, or ring chromosomes [53•, 54].

Cytogenetics Abnormalities with Intermediate Risk
in AML

Intermediate-risk cytogenetic indicators provide a great varia-
tion among different classification schemes. Cytogenetic ab-
normalities not classified as favorable or adverse and translo-
cation t(9;11)(p22;q23) are included as intermediate risk in
ELN recommendations, whereas only the former is included
as intermediate risk in the UK MRC [15, 17••]. Normal kar-
yotype, loss of Y chromosome, trisomy 8, trisomy 11, trisomy
13, and trisomy 21 are frequent cytogenetic abnormalities
with intermediate risk in SWOG/ECOG and CALGB [25,
55].

Significance of Cytogenetics in ALL

ALL is a heterogeneous disease which is more common in
children and can be further subtyped by immunophenotyping
into pre B-ALL, mature B-ALL, and T cell acute lymphoblas-
tic leukemia (T-ALL). Current treatment protocols for ALL
are found on risk-based therapy in order to have suitable reg-
imens for appropriate risk groups. The development of such
risk-based therapy dramatically improved the survival rates of
ALL. Prognostic factors of ALL typically include age, white
cell count at presentation, immunophenotype, cytogenetics,
molecular abnormalities, and response rate to treatment
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[56–58]. Cytogenetic investigation plays a vital role both in
the classification and prognostication of ALL. In SWOG 9400
study by Pullarkat et al. (2008) [59], cytogenetics turned out to
be the most important prognostic factor in adult ALL.
Interestingly, there are substantial differences in the frequen-
cies of various recurrent cytogenetic aberrations between
childhood ALL and adult ALL [60–62]. Hyperdiploidy and
translocation t(12;21)(p13;q22) (ETV6-RUNX1), which is cy-
togenetically cryptic and detectable only by fluorescence in
situ hybridization (FISH) or polymerase chain reaction (PCR),
is more prevalent in childhood ALL. On the contrary, translo-
cation t(9;22)(q34;q11.2) (BCR-ABL1) is more common in
adult ALL. Furthermore, translocation t(4;11)(q21;q23)
(KMT2A-AF4), which is found in majority of infant ALL
cases, is rare in adult ALL [63].

Pre B-ALL with Low-risk Prognostic Cytogenetic
Abnormalities

High Hyperdiploidy

High hyperdiploidy (51–65 chromosomes) is usually associ-
ated with clinically favorable outcomes and has a favorable
prognosis [60]. It is characterized by a non-random gain of
chromosomes, mostly X, 4, 6, 10, 14, 17, 18, and 21 [64].
Patients with trisomies of chromosomes 4, 10, and 17 have
been shown to have particularly favorable outcomes, as dem-
onstrated by the analyses from the Pediatric Oncology Group
(POG) and Children’s Cancer Group (CCG) [65].

Translocation t(12;21)(p13;q22)

In translocation t(12,21) fuses ETV6 gene in 12p13 with
RUNX1 gene in 21q22. As aforementioned, this translocation
is invisible for banding cytogenetic analysis and requires
FISH or PCR for accurate detection of the fusion gene. The
UKMRCALL97/99 study demonstrated for childhood B cell
ALL patients with translocation t(12;21) a very high event-
free survival and high percentage of overall survival rates at
5 years [60].

Pre B-ALL with High-risk Prognostic Cytogenetic
Abnormalities

Hypodiplody

Poor outcome in pre B-ALL rises with loss in chromosome
numbers in tumor cells. Hypodiploidy can be divided into
high hypodiploidy (40–44 chromosomes), low hypodiploidy
(32–39 chromosomes), and near haploidy (24–31 chromo-
somes) [66]. Thus, low-hypodiploid and near-haploid ALL
are associated with a very dismal prognosis [67, 68]. Of note,
endoreduplication of near-haploid or low-hypodiploid clones

is frequent in hypodiploid ALL, which leads to a second
hyperdiploid clone [3]. When hyperdiploidy is present as the
predominant clone, it may mask the presence of near-haploi-
dy, especially when near-haploid metaphases are ignored ow-
ing to poor morphology, or regarded as multiple random chro-
mosome losses. Masked hypodiploidy may be differentiated
by observing mainly tetrasomies but not trisomies, which are
common in genuine high hyperdiploidy [69]. The distinction
of near-haploid ALL and secondary hyperdiploid clones from
bona fide hyperdiploid ALL is of great clinical significance,
since the prognostic implication is vastly different between the
two.

Translocation t(9;22)(q34;q11.2)

Translocation t(9;22)(q34;q11.2) is the most frequent
chromosomal abnormality found in adult ALL. The pres-
ence of Ph chromosome in ALL is a poor prognosticator,
with lower rates of 5-year event-free and an overall sur-
vival compared with those without Ph chromosome [61].
Ph-positive ALLs also are associated with additional
chromosomal aberrations, typically with additional deriv-
ative der(22)t(9;22) or trisomy 21, abnormalities of 9p,
trisomy 8, monosomy 7, or trisomy X [70, 71]. The pres-
ence of additional chromosomal abnormalities, especially
in patients without monosomy 7, appears to have a poor
outcome even after ASCT [70, 71]. Although molecular
genetic techniques can detect the BCR-ABL1 gene fusion,
cytogenetic analysis is necessary to pick up relevant and
novel secondary abnormalities, which may impact on the
prognosis.

11q23 /KMT2A Translocation

11q23 / KMT2A gene rearrangements are common in infant
ALL with the most prevalent translocation t(4;11)(q21;q23)
(KMT2A-AF4) [72]. Infants ALL with translocation t(4;11)
experience a very low event-free survival [69].

BCR-ABL1-like (Ph-Like ALL)

Ph-like ALL is a new provisional entity in 2016 revisedWHO
classification [11••]. It displays a gene expression profile sim-
ilar to that of Ph-positive ALL but without BCR-ABL1 gene
fusion. It confers a poor prognosis and harbors a wide range of
genomic alterations that activate cytokine receptor genes and
kinase signaling pathways, making it susceptible to TKI ther-
apy [73]. The frequency of Ph-like ALL exceeds 20% across
the adult age ALL spectrum and is independently associated
with a poor prognosis [74, 75].

Curr Genet Med Rep (2018) 6:165–175 169



Intrachromosomal Amplification of Chromosome 21
(iAMP21)

iAMP21 is another new provisional entity of the 2016 revised
WHO classification and was associated with a high relapse
rate when treated with standard therapy [11••]. It can be iden-
tified and characterized by FISH method using ETV6-RUNX1
probe. iAMP21 demonstrates with three or more extra signals
of RUNX1 on a structurally abnormal chromosome 21.
Interpretation should be made with caution, as extra RUNX1
signals can also be due to additional copies of chromosome 21
when using only interphase FISH; however, the latter is char-
acteristic for high-hyperdiploid ALL. As a result of such con-
cerns, the distinctive genomic profile of chromosome 21 is
being used to confirm the accuracy of iAMP21 diagnosis
[76]. In an international collaborative study of iAMP21, typ-
ical secondary chromosome abnormalities were found, includ-
ing trisomy X, monosomy 7/derivative der(7q), derivative
der(11q), and derivative der(12p) [77].

Translocation t(1;19)(q23;p13)

The translocation t(1;19) involves fusion of TCF3 (19p13) and
PBX1 (1q23) genes. There is another unbalanced form of trans-
locationwhich has one derivative der(19)t(1;19)(q23;p13), one
normal chromosome 19, and two normal chromosomes 1. The
prognoses of both forms are similar and have long been asso-
ciated with a poor outcome [78]. However, recent studies have
shown that this adverse outcome can be overcome by a more
intensive treatment regimen [79, 80].

Translocation t(17;19)(q22;p13)

Translocation t(17;19) involves TCF3 gene in 19p13 andHLF
genes in 17q22. The translocations t(17;19)(q22;p13) and
t(1;19)(q23;p13) can be considered as variants of each other.
It is an uncommon translocation in B-ALL, having a very
dismal prognosis. Most of patients with translocation
t(17;19) had relapsed while being under treatment, and even-
tually died [60, 81]. Owing to the extremely poor outcome of
translocation t(17;19), prompt identification of this rearrange-
ment is important, that a more intensive regimen may be ap-
plied to such patients.

Dicentric dic(9;20)(p11~13;q11)

The chromosomal abnormality dicentric dic(9;20)(p11~13;q11)
is rare, both in pediatric or adult ALL. As this aberration is quite
difficult to characterize by banding cytogenetic analysis and
often being incorrectly interpreted as monosomy 20 and/or de-
letion of 9p, FISH remains the most accurate method for its
detection. However, as dicentric dic(9;20) has not been shown
to result in any gene fusion, no single specific FISH probe can

be used to elucidate this aberration. FISH probes consisting of
CDKN2A at 9p21, centromeric probe of chromosome 9, cen-
tromeric probe of chromosome 20, and subtelomeric probe of
20p and 20q may be used instead [82]. Most cases with dicen-
tric dic(9;20) are considered as high-risk group patients, which
require a more aggressive treatment, and with increased rates of
central nervous system diseases on relapse [83, 84].

Deletion del(9p)

The minimal commonly deleted segment in deletion del(9p)
ALL patients is band 9p21, including the tumor suppressor
genesCDKN2A andCDKN2B. The prognostic significance of
9p21 deletion is poor in adult ALL [85]. Nevertheless, con-
flicting data appeared on the outcome for this abnormality in
childhood ALL. Deletion of 9p21 was classified as
intermediate-risk group in childhood B-ALL and not associ-
ated with adverse prognosis in childhood T-ALL [60, 86].

Mature B-ALL

Translocation t(8;14)(q24;q32) can be recognized in most ma-
ture B-ALL cases. This is the same translocation occurring
typically in Burkitt’s lymphoma, comprising two uncommon
variant forms: translocations t(8;22)(q24;q11) and
t(2;8)(p12;q24). All these three translocations involve the jux-
taposition of theMYC gene (8q24) to immunoglobulin heavy-
chain locus (14q32), immunoglobulin light-chain lambda lo-
cus (22q11), or immunoglobulin light-chain kappa locus
(2p12), leading to dysregulation of MYC gene expression
[87]. Patients with translocation t(8;14) usually have a poor
outcome with lower rates of event-free and overall survival
[61].

T-ALL

Owing to the low frequency and heterogeneous nature of T-
ALL, the prognostic value of cytogenetics is not as well-
defined as in B-ALL. In general, T-ALL is an aggressive dis-
ease with poor outcome. Although normal karyotype occurs in
half of T-ALL, some well characterized and recurrent cytoge-
netic abnormalities are found to be associated with T-ALL. The
aberrations mostly involve T cell receptor genes (TCR) on
14q11 (TCR-alpha/TCR-delta) or TCR on 7q34 (TCR-beta).
Two most common chromosomal rearrangements are translo-
cations t(10;14)(q24;q11) and t(7;10)(q34;q24), both resulting
in overexpression of the TLX1 gene on 10q24; however, the
former translocation has a relatively good prognosis. Other
translocations include t(1;14)(p32;q11), t(11;14)(p13~15;q11),
t(7;9)(q34;q32~34), and t(7;19)(q34;p13) [88]. Notably, two
cryptic aberrations are also frequently seen in T-ALL: translo-
cation t(5;14)(q35;q32) juxtaposing TLX3 gene in 5q35 to
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BCL11B gene in 14q32 and deletion of 1p32, which causes a
TAL1-STIL gene fusion [89].

Significance of Cytogenetics in Chronic
Myeloproliferative Neoplasm

According to the 2016 revised WHO classification, MPN can
be divided into chronic myeloid leukemia (CML), polycythe-
mia vera (PV), primary myelofibrosis (PMF), essential
thrombocythemia (ET), chronic neutrophilic leukemia
(CNL), and chronic eosinophilic leukemia (CEL) [11••].
Apart from translocation t(9;22)(q34;q11.2) (BCR-ABL1)
which is specific in CML, no specific chromosomal abnormal-
ities are clearly defined for the other MPN subtypes.
Nowadays, MPN classification or risk stratification is mostly
focused on the various well-known driver mutations such as
JAK2, CALR, or MPL genes [90]. However, karyotyping still
plays a role in confirmation of clonality and clonal evolution
follow-up. The most frequent cytogenetic abnormalities har-
bored in BCR-ABL-negative MPNs are deletion of 13q/20q,
trisomy 8/9, duplication of 1q, monosomy 7/deletion of 7q,
and deletion of 17p /isochromosome of 17q [91, 92].

Significance of Cytogenetics in Chronic
Lymphocytic Leukemia

Banding cytogenetic investigation usually fail to delineate the
chromosomal abnormalities in chronic lymphocytic leukemia
(CLL). This is due to the low mitotic index of the abnormal
lymphoid cells in culture, which results in poor growth and/or
the result that only normal karyotype cells can be recorded. To
date, interphase FISH has been routinely used to identify ab-
normalities in CLL at presentation. Standard FISH probes
used comprise centromeric probe for chromosome 12, dele-
tion probe for ATM, TP53, and 13q loci; besides, multiplex
ligation-dependent probe amplification (MLPA) is routinely
used to pick up a larger range of known chromosomal aberra-
tions in CLL. These well-defined genetic markers have prog-
nostic implication to guide the therapy. As FISH method is
probe-specific, no other information can be obtained other
than these genetic markers. Thus, karyotyping cannot be
phased out, which has the benefit for recognition of novel
aberrations and the complexity of the abnormal clone.
Fortunately, the detection rate of cytogenetic abnormalities
can be raised with the utilization of a CpG-oligonucleotide
and interleukin 2 [93]. The most common chromosomal ab-
normality is deletion of 13q14 which has favorable prognosis.
Deletion of 11q23 and 17p13 is associated with dismal out-
come with the loss of ATM gene and TP53 gene, respectively.
Trisomy 12, whether it appears as sole abnormality or not, is
considered as an intermediate-risk indicator [94–96].

Conclusions

Nowadays, biology and pathogenesis of hematological malig-
nancies can be delineated rapidly by the advanced high
throughput molecular technologies. In contrast, banding cyto-
genetics through the analysis of chromosomes is more time
consuming and labor intensive. Nevertheless, cytogenetics
can provide a comprehensive global picture of cancer genome
and detect the complexity of the abnormal clone for diagnosis
or risk stratification. Thus, a complete karyotype is still one of
the criteria in the diagnostic workup of AML or ALL in var-
ious clinical practice guidelines. In addition, banding cytoge-
netics is much cheaper than NGS or other advanced ap-
proaches—thus only cytogenetics will be available for the
majority of people worldwide, as the new approaches will
not be affordable for them. Taken together, the role of cytoge-
netics is still crucial in leukemia diagnostics in this molecular
era with NGS and will probably be used as an essential base-
line investigation in the future.
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