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Abstract

Purpose of Review Integrative networks combine multiple

layers of biological data into a model of how genes work

together to carry out cellular processes. Such networks

become more valuable as they become more context-

specific, for example, by capturing how genes work toge-

ther in a certain tissue or cell type. We discuss the appli-

cations of these networks to the study of human disease.

Recent Findings Once constructed, these networks provide

the means to identify broad biological patterns underlying

genes associated with complex traits and diseases. We

cover the different types of integrative networks that

currently exist, and how such networks that encompass

multiple biological layers are constructed. We highlight

how specificity can be incorporated into the reconstruction

of different types of biomolecular interactions between

genes, using tissue specificity as a motivating example. We

discuss examples of cases where networks have been

applied to study human diseases and opportunities for new

applications.

Summary Integrative networks with specificity to tissue or

other biological features provide new capabilities to

researchers engaged in the study of human disease. We

expect improved data and algorithms to continue and

improve such networks, allowing them to provide more

detailed and mechanistic predictions into the context-

specific genetic etiology of common diseases.

Keywords Systems biology � Genomics � Genetic
association � Tissue-specificity � GWAS � PheWAS �
Integrative biology � Protein–protein interaction networks

Introduction

Many biological concepts and their interactions can be

represented as networks. Existing types of networks used in

computational analyses include networks of correlation

based on gene expression [1, 2], protein–protein interac-

tions [3, 4], and even phenotype–phenotype interactions

[5, 6]. Some networks [7, 8•] incorporate data from mul-

tiple layers of regulation, including the interactome, tran-

scriptome, and proteome.

In addition to data integration, a significant frontier for

biological networks has been to include various forms of

context specificity such as capturing interactions related to

a certain process [9, 10] in a specific tissue [8•, 11, 12].
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This specificity has been achieved by either overlaying

multiple resources of interactions [11] or employing a

machine learning process that captures context specificity

[8•].

Biological networks, once constructed, provide a unique

resource for the study of human disease. In many cases,

phenotypes are expected to arise due to changes in how

information flows through a biological system. For exam-

ple, somatic mutation events in pancreatic tissue that

constitutively activate KRas provide a constitutive growth

signal to the system that can result in uncontrolled prolif-

eration and pancreatic ductal adenocarcinoma [13, 14].

Large-scale biological networks serve as systems-level

molecular scaffolds of cells on which researchers can

locate known disease-associated genes, interpret their

relationships in the context of other genes, and gain

insights into how these genes might be involved in the

disease. Given that the genetic bases of most complex

diseases are poorly characterized, these networks also

provide a genomic framework for identifying novel genes

linked to diseases based on their patterns of network con-

nectivity. These ‘interpretive’ and ‘predictive’ modes are

often used in tandem with one cyclically feeding the other

toward filling gaps in our knowledge of disease biology.

Integrated and Multi-Omic Networks

Biological networks can be constructed in many different

ways and from many types of data. Correlation networks,

for example, are one of the first large-scale models of gene

interactions built solely based on patterns of shared gene

expression and can be used to suggest opportunities for

drug development or repurposing [2]. These can be global-

or tissue-specific [15]. Integrative, also called multi-omic,

approaches, on the other hand, combine data types across

levels of biological regulation. One way to combine mul-

tiple data types is to overlay distinct information from

separate data types. Okada et al. [16] combined data from

text mining, risk-associated variants, protein–protein net-

works, molecular pathways, mouse phenotypes, and other

sources to identify biological support for potential

rheumatoid arthritis drugs. Such approaches look for broad

support for the captured interactions based on evidence in

all (intersection) or at least one (union) type of data without

explicitly modeling distinct layers of data together.

Approaches that model multiple data types vary in how

much they condition on known biological processes. Those

that use documented regulatory patterns, e.g., one protein

inhibits transcription of another gene, can reach a high

level of detail in the constructed models. PARADIGM is an

example of this type of approach. The method uses bio-

logical regulatory patterns to integrate multi-omic cancer

measurements into a model that estimates the activity of

individual proteins or pathways in a given tumor biopsy

[17]. PARADIGM takes advantage of multiple data layers

for the same samples. This makes it and the methods like it

well suited to the analysis of cancer genomics data where

such opportunities are plentiful, but such methods are not

as well suited to the analysis of large public data com-

pendia. In these collections, such matched data are often

unavailable.

Methods that integrate public data into networks can

first transform these datasets into scores for each gene pair.

Some data types, such as protein–protein interactions, are

already pairwise: edges exist for pairs of genes that encode

proteins that physically interact. Other data types must be

wrangled into pairwise relationships. For example, gen-

ome-wide expression information can be converted to

correlations between each gene pair. Once converted to

pairwise scores, machine learning methods allow

researchers to combine different datasets, including gene

expression and protein–protein interaction information,

into a single network [9, 10, 18, 19]. These integrated

networks capture broad biological processes and can be

used for gene function prediction or other tasks

[18, 20, 21]. In this review, we discuss their applications

that aid in understanding the genetic and genomic basis of

human phenotypes.

Incorporating Tissue Specificity into Networks

Constructing the biological gene networks specific to the

hundreds of tissues and cell types in multicellular organ-

isms is a major goal toward applying network biology to

higher organisms. Pursuing this goal is to realize

Waddington’s vision of ‘‘the complex system of interac-

tions’’—pegs representing genes and strings representing

their ‘‘chemical tendencies’’—underlying developmental

landscape pulled by interactions anchored to genes [22].

This goal is being actively pursued using a variety of

approaches addressing different facets of the challenge

such as capturing specific types of gene interactions (e.g.,

functional, physical, or regulatory) and expanding the

coverage of these networks to all genes in the genome and

all tissues and cell types in the body.

Overlaying gene (co-)expression, obtained from samples

of a particular tissue, on protein–protein interaction (PPI)

networks has been a straightforward and popular way to

generate tissue-specific molecular networks [23•]. Magger

et al. [11] have shown that tissue-specific PPI constructed

in this manner are valuable for disease gene prediction

using label-propagation methods. Comprehensive curation

and comparison of multiple sources of tissue-gene

expression have since been carried out [24, 25], results
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from which can be used to create tissue-specific PPI for an

expanded set of genes and tissues. As an example, Cornish

et al. [26] have incorporated more tissues and cell types to

show that how tightly interconnected disease genes are in

such tissue-specific networks and can reveal interesting

links between diseases and tissues. While comparing

favorably with known associations from the literature, their

results also point to novel tissue disease links including one

implicating mast cells in multiple sclerosis. These ‘data-

overlay’ approaches succeed when many high-quality

documented annotations of gene expression and interaction

are available.

Tissue-specific networks can also be generated using

tissue-specific genome-wide data using approaches that do

not require numerous documented annotations. Regulatory

networks with tissue specificity have been constructed by

mapping transcription factor binding sites to open chro-

matin regions in different tissues/cell types identified based

on DNase I sensitivity [27]. Alternative efforts have

inferred networks by employing tissue-expressed promoter

and enhancer elements [28•]. Still, others have developed

inference methods to mine functional [29] or regulatory

relationships [30] from large amounts of gene expression

data from a single tissue. Such approaches are particularly

well suited when the cells being assayed (on a large scale)

most closely reflect the situation in complex human tissues.

However, large troves of existing genomic data avail-

able in public repositories, especially hundreds of thou-

sands of gene expression samples, are not resolved to

tissues and cell types. This represents a threefold problem:

(1) Many datasets are not annotated to the tissue/cell type

of origin due to unclear or entirely missing metadata; (2)

Most samples are cell type/tissue mixtures; and (3) Many

cell types are hard to isolate at all or enough to profile gene

expression. This challenge hence requires alternative

approaches for integration and network inference.

A third type of approach aimed at addressing this

challenge relies on applying machine learning methods

to simultaneously extract tissue and functional signal

from data compendia representing heterogeneous tissue

collections. Networks generated by these methods aim to

be complete and predictive in general; however, specific

edges may be difficult to interpret. Work in

Caenorhabditis elegans [31] and Mus musculus [32]

demonstrated the potential viability of these approaches.

Recently, tissue-specific networks constructed in this

manner were generated for humans as well [8•]. To

perform this analysis, the authors developed gold stan-

dards of expression for 144 human tissues. They com-

bined this with a gold standard of relationships within

cellular pathways to generate 144 tissue-specific gold

standards. The machine learning process shown in Fig. 1

constructs tissue-specific models from more than 32,000

experiments, most of which were not annotated or

resolved to specific tissues. The models were then used

to produce tissue-specific networks for each tissue.

Comparison of tissue-specific networks constructed in

this manner to those constructed only on tissue-specific

data revealed consistent improvements with the machine

learning-based integration of the complete data com-

pendium. In addition to improved performance, the

machine learning approach could also be applied to

generate networks for more tissues than the integration

restricted to tissue-specific data.

Applying Tissue-Specific Networks to Study
Human Disease

Human diseases are complex, and it is now clear that in

many cases, weak association signals are revealing broad

networks of variants associated with such phenotypes [8•,

33]. These may be numerous variants of weak effect acting

additively, or the single-variant projections of complex

epistatic disease models [34, 35]. In either case, the chal-

lenge now is to identify the biological signal hidden in a

noisy set of statistical associations [36].

Networks provide a mean to investigate these associa-

tions and potentially separate the disease-associated signal

from statistical noise. Network-based approaches to iden-

tify and interpret disease associations are demonstrating

success across diverse diseases including coronary artery

disease [37], hypertension [8•], cancer [38–40], multiple

sclerosis [41], Alzheimer’s disease [42], and autism spec-

trum disorder [43•]. Network-based approaches also pre-

sent unique challenges—e.g., genes with more single

nucleotide polymorphisms (SNPs) are also more likely to

be highly connected within the network [44]. Approaches

that employ network-based analysis should carefully

evaluate and control such biases.

In addition to considering networks, tissue specificity of

either causes or symptoms is a key feature of many dis-

eases, and work by Lage et al. demonstrated the importance

of considering tissues [45•]. The importance of tissue

specificity has carried over to recent work that examines

many genetic associations for a specific disease, for

example, rheumatoid arthritis is an autoimmune disease.

Walsh et al. [46] recently demonstrated that genetic asso-

ciations with the disease reveal how those variants can

impact cell lineage-specific regulation to contribute to the

etiology of the disease. There are a number of strategies for

incorporating tissue specificity into the network analysis of

disease. We review four approaches that use network

analysis of associations of SNPs, gene expression, or

exome sequencing to identify factors underlying complex

diseases.
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Tissue-specific networks can identify biologic com-

monalities underlying variants associated with human

phenotypes and use those commonalities to identify dis-

ease-associated genes by their network connectivity pat-

terns. In Greene et al. [8•], the authors constructed 144

tissue-specific networks of predicted intra-pathway rela-

tionships (Fig. 1). They then developed a procedure called

the network-wide association study (NetWAS). The Net-

WAS trains a classifier to identify genes that should be

associated with a disease based on their network connec-

tivity patterns. Specifically, genes with a nominal associ-

ation are used as positives for a machine learning algorithm

and those without a nominal association are used as neg-

atives. A classifier is then trained with these labels and all

pairwise network edges as features. The classifier is then

applied back to the network to identify genes with edges

that indicate potential associations. This approach outper-

formed a hypertension genome-wide association study

(GWAS) alone, and the network-prioritization process also

ranked the gene targets of antihypertensive drugs more

highly than GWAS. This suggests that association-guided

network-based approaches may also aid drug development

and repurposing.

Tissue- and cell type-specific networks that integrate a

large amount of data can be particularly valuable for the

study of rare diseases. For instance, systemic sclerosis

(SSc) is a rare autoimmune disease characterized by

fibrosis in skin and internal organs (e.g., pulmonary fibro-

sis). The challenges of studying of SSc at the molecular

level are common to many rare diseases: sample sizes tend

to be small and internal organ biopsies are often difficult to

obtain. Thus, there is a critical need for leveraging addi-

tional biological data to make inferences about rare disease

pathobiology. Taroni et al. [47•] mined gene expression

spanning multiple tissues and clinical manifestations in

SSc to derive a disease-associated gene set used to query

the tissue-specific networks from Greene et al. [8•]. The

authors then performed differential network analysis on

skin- and lung-specific networks to compare disease signal

in the major organ systems affected by fibrosis. The authors

first identified gene–gene interactions that were highly

specific to each tissue by subtracting the global edge
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Fig. 1 Integrating genomic data in the context of tissue- and

functional knowledge to generate tissue-specific functional gene

interaction networks. Nodes represent genes and edges represent

specific relationships. Known tissue-naı̈ve functional relationships

(pathway/process co-membership links that are not specific to any

tissue) are gathered from databases such as Gene Ontology. Known

tissue-specific genes (black genes expression in tissue of interest, say,

kidney; grey genes expressed in other unrelated tissue) are gathered

from databases such as HPRD. Both tissue-naive relationships and

tissue-specific genes are manually curated in these resources based on

high-quality low-throughput experimental evidences. Combining the

two produces a gold-standard that represents our knowledge of

‘positive’ (both genes expressed and functionally related thick black

edges) and ‘negative’ (either gene in not expressed or genes not

functionally related full and dotted grey edges) gene interactions

relevant to that tissue (labeled 1). Complementary to this low-

throughput knowledge, thousands of genome-scale high-throughput

experiments in the form of gene-expression profiles, protein physical

interactions, genetic perturbations, and regulatory sequence patterns

are available from public databases (labeled 2). A machine-learning

algorithm can integrate all these of genomic datasets weighted by

their relevance for and accuracy in capturing the tissue-specific

knowledge of a given tissue. The algorithm learns distinctive patterns

in genomic data that are characteristic of positive interactions and

used these patterns to then predict the tissue-specific functional

relationships between all pairs of genes in the human genome.
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weights from the skin and lung networks. Then, these

highly tissue-specific edges were compared to identify

functional differences. They found a set of edges highly

specific to lung and suggestive of a distinct macrophage

phenotype in lung as compared to what could be inferred

from SSc skin gene expression data. The authors also

developed a cell type-aware multi-network approach that

detected genes which preferentially downregulated in skin

during improvement of immunomodulatory treatment. This

work suggests that tissue- and cell type-specific functional

genomic networks can provide insight into rare disease

processes that are difficult to capture experimentally.

The advent of high-throughput sequencing has enabled

the discovery of regulatory variants relevant to disease

especially through studying the genetics of gene/protein

expression [48]. Projects such as the GTEx [49, 50] and

FANTOM5 [51] have used this approach to highlight

regulatory variants that are specific to or shared across

tissues. Analogous to tissue-specific functional networks,

tissue-specific regulatory networks that can be inferred

from such data have the potential to delineate the role of

regulatory variants in specific tissues. Marbach and col-

leagues [28•] inferred tissue-specific regulatory networks

by overlaying transcription factor binding site occurrences

over promoter and enhancer elements detected in hundreds

of tissues/cell types in the FANTOM5 project. They then

used these networks to assess links between diseases and

tissues by calculating how surprisingly tightly connected

disease genes (implicated by GWAS) were in a particular

tissue regulatory network (termed connectivity enrichment

analysis). This analysis entails ranking genes by their

summarized GWAS p-values, calculating the average

connectivity of the genes above each rank along the list,

and estimating the area under the curve (AUC) of con-

nectivity as a function of rank. A connectivity score is

finally reported based on the comparison of the observed

AUC with an empirical distribution of AUCs generated by

performing the analysis on thousands of permuted rank-

ings. By performing this analysis across multiple diseases

and networks, the authors find that disease genes are indeed

tightly clustered in tissues relevant to the disease.

Traditional network-based disease gene prediction

algorithms take as input either only known high-confidence

disease genes or all genes irrespective of evidence.

Krishnan and colleagues [43•] have recently developed an

evidence-weighted approach that incorporates the trust

with which disease genes are known from the sources of

evidence be it high-confidence candidates identified in

sequencing studies or weak associations mined from liter-

ature. They used this approach in conjunction with the

brain-specific network, developed previously [8•], to dis-

cover novel candidate genes associated with autism spec-

trum disorder (ASD). Intuitively, the underlying machine

learning method learns the pattern of network connectivity

characteristic of known ASD genes (weighted proportional

to their evidence) and then identifies other genes in the

network that highly resemble known genes in their network

pattern. The method is highly general and can be applied to

any complex disease to predict new genes based all the

genes previously identified in single exome/whole-genome

sequencing studies or collated from multiple datasets.

Taken together, integrative networks serve as powerful

means to both interpret existing knowledge about complex

physiology and disease, while also offering data-driven

predictions that point to uncharted territory, be it novel

genes associated with diseases, new pathway memberships,

key regulators of disease genes/pathways, surprising asso-

ciations between tissues and diseases, or differential effects

of disease on different tissues. Based on their interest and

scope, experimental/biomedical researchers use these net-

work-based tools to identify a small number of targets for

careful investigation or to gather a prioritized list of can-

didates to guide further large-scale genetic screens.

The Road Ahead

A major bottleneck in building accurate tissue- and cell

type-specific networks is the extreme scarcity of prior

knowledge about tissue-specific genes and interactions

based on high-quality experimental evidence. As we amass

even a few scores of such specific genes and interactions

across under-studied tissues/cell types, they can be used to

train better machine learning classifiers and serve as reli-

able evaluation standards. A lesser but still significant

challenge is the unavailability of large-scale genomic data

uniformly from normal and disease states across a wide

range of tissues/cell types. Such biases in input datasets,

along with scarce prior knowledge, creep into the final

inferred networks for different tissues/cell types, affecting

their robustness and genomic coverage. In contrast, rare

examples of massive efforts focused on a single tissue/cell

type would help us describe the scope of data needed to

construct better networks. Such efforts are fueled by a large

collection of data from a single tissue/cell type including

transcriptional profiles across a range of different genetic

perturbations and time points, sometimes further profiling

protein–protein or protein–DNA binding on a large scale,

which together facilitate integrative methods to reconstruct

accurate networks [52, 53]. Overall, both approaches—

broadly covering many tissues and deeply covering single

cell types—have enormous merits to be pursued simulta-

neously and, ideally, feed into each other.

If sufficient gene expression data are available, at least

for multiple tissues in healthy and a particular disease

condition, it may be possible to utilize differential network
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analysis to study across tissues akin to Taroni et al. [47•].

We illustrate with a hypothetical example centered on

blood and a disease end-target tissue, kidney, as an

example for how this strategy may be used to gain insight

into disease mechanisms. Tissue- and condition-specific

networks could be learned from four compendia of data

(disease blood, healthy blood, disease kidney, and healthy

kidney), using the same functional standards and then

compared. If an intra-pathway relationship exists in both

disease and healthy blood, but that intra-pathway rela-

tionship is absent in healthy kidney when compared to

disease, we might infer that a leukocyte population is

present in the diseased tissues. Furthermore, if the intra-

pathway relationships identified in blood were connected to

other pathways in diseased tissues (blood and kidney) alone

that would suggest immune infiltrate with a particular

phenotype in diseased kidney. With data available on

genetic variants, it could also be possible to link cell type-

specific changes in networks to underlying causal variants

[54]. These multi-tissue differential network analyses could

then guide further analyses and experiments centered on

this complex multi-cell lineage disease process.

In addition to the gene networks specific to individual

tissues, another milestone for the biological networks is the

ability to capture cross-tissue interactions. Much of human

physiology relies on biochemical interactions such as

hormonal signaling and immune response that span across

tissues. Capturing these interactions requires particular data

from multiple tissues of matched individuals. Dobrin et al.

[55] proposed one of the earliest approaches toward this

goal by calculating gene–gene correlation across hypotha-

lamus, liver, and adipose tissues in mouse and using the

resulting networks to study molecular crosstalk between

these tissues related to obesity. However, coordinated

changes in gene expression across tissues can arise due to a

common underlying genetic or regulatory mechanism.

Such mechanisms could induce changes in both tissues,

without reflecting bona-fide cross-tissue interactions. The

recently produced large multi-tissue, multi-individual gene

expression data from the GTEx consortium helps to address

this challenge. Long and colleagues [56] calculated inter-

tissue interactions while carefully controlling for the

identical genetic regulation. Using these inter-tissue net-

works, they highlight specific signaling links between heart

and whole-blood or lung. Similar to the methods described

above for constructing tissue-specific networks, another

recent study [57] has taken a network-overlay approach to

infer cross-tissue interactions. In this study, Ramilowski

and colleagues overlay tissue/cell type gene expression

data from the FANTOM5 database onto known physical

interactions between ligands and receptors, identifying

cases where the ligand is expressed in one tissue and the

receptor in another. While these methods are beginning to

shine light on important aspects of human biology, the

ground is fertile for novel integrative methods that can

construct such cross-tissue maps on a large scale.

As network-based approaches are gaining use in genetic

association analysis of individual complex diseases,

another natural leap is to the domain of multiple-phenotype

analyses. Since many genes and pathways have pleiotropic

effects, i.e., their activity can alter multiple phenotypes,

phenome-wide association studies (PheWAS) allow for this

additional information to be incorporated. Complementary

to identifying multiple variants associated with a trait of

interest using GWAS, PheWAS interrogates the associa-

tion of a variant of interest with a range of traits/pheno-

types. Phenotype data for such an analysis are abundant,

albeit in a noisy manner, in electronic health records

(EHRs) of thousands of patients. If these patients have also

been genotyped, PheWAS can be used to link variation at

those locations to EHR-derived phenotypes or clinical

outcomes that vary in the patient population [58]. Denny

and colleagues [59] have applied this approach to specifi-

cally discover several novel pleiotropic variants associated

with multiple phenotypes, a feat that is challenging in a

disease-centric setting as in GWAS. Although a few pre-

vious studies have used a disease network (inferred based

on phenotypic similarity) in combination with a gene net-

work to model many-to-many disease–gene associations

[60], much work is needed to develop network-based

approaches that can complement PheWAS in identifying

the tissue-specific effects of pleiotropic genes.

Most networks approaches developed to date have dealt

with a single data type or a single integrated portrait from

multiple data types over a common biological entity, the

gene. New methods are being developed that incorporate

multiple network types into a single heterogeneous net-

work (‘hetnet’) [41]. These methods have helped to prior-

itize disease-associated genes [41], and the ongoing Project

Rephetio [61] provides a promising method for drug

repurposing using these data. Although hetnets are in their

early days, they may provide a powerful mean to develop

algorithms that can consider multiple biological entities

simultaneously to identify the basis of human phenotypes.

Conclusions

Progress to date on network-based methods to identify the

basis of human phenotypes has been promising. The initial

step, connecting genetic variants to the gene that they affect

remains challenging [62]. Advances in this domain will

naturally translate to improvements for network-based

methods which generally focus on genes. In addition to the

supervisedmethods to construct networks highlighted in this

review, new and powerful unsupervised learning approaches
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may allow us to construct networks in caseswhere biological

knowledge is limited or unavailable [63]. While we antici-

pate that large-scale integrated networks will make their first

contributions at the level of identifying a shared genetic or

pathway basis behind observed associations, we look for-

ward to detailed networks that can suggest a mechanistic

hypothesis. These networks will require the combination of

new algorithms and analytical methods as well as detailed

data in targeted domains. Althoughmore remains to be done,

progress in this area is encouraging, and we look forward to

advances in the years to come.
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