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Abstract RNA localization is a key mechanism in the

regulation of protein expression. In neurons, this includes

the axonal transport of select mRNAs based on the

recognition of axonal localization motifs in these RNAs by

RNA-binding proteins. Bioinformatic analyses of axonal

RNAs suggest that selective inclusion of such localization

motifs in mature mRNAs is one mechanism controlling the

composition of the axonal transcriptome. The subsequent

translation of axonal transcripts in response to specific

stimuli provides precise spatiotemporal control of the

axonal proteome. This axonal translation supports local

phenomena including axon pathfinding, mitochondrial

function, and synapse-specific plasticity. Axonal protein

synthesis also provides transport machinery and signals for

retrograde trafficking to the cell body to effect somatic

changes including altering the transcriptional program.

Here we review the remarkable progress made in recent

years to identify and characterize these phenomena.
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Introduction

Tight regulation of subcellular protein localization is

required for establishing and maintaining the structural and

functional polarity of neurons. A fundamental question is

how genes expressed by a single nucleus can be regulated to

achieve this specificity. One strategy that neurons employ to

achieve spatial protein distribution is the transport ofmRNAs

to distal cellular sites where their subsequent translation can

be regulated in response to appropriate signals. This local

protein synthesis provides tight spatiotemporal control of the

local proteome, supporting not only polarized function but

also the capacity for rapid changes of the proteome in

response to stimuli.While local neuronal translation has been

long studied in dendrites,more recent efforts have focused on

elucidating the roles and regulation of local translation in the

axon. Here we focus on recent advances uncovering how

particular mRNAs are transported to axons as well as the

subsequent regulation of their translation in order to support

axon outgrowth, mitochondrial function, synaptic plasticity,

and signaling between axons and somata.

Localization of Transcripts to Axons

In cells, mRNA is packaged into large, multi-molecular

granules along with proteins, such as RNA-binding proteins

andmolecularmotors, which determine the localization of the

mRNAwithin the cell. These granules can be transported into

axons immediately or in response to specific events, such as
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injury or signaling by neuromodulators or growth factors [1•,

2, 3••, 4]. mRNAs dynamically associate with these granules

based on selective binding between RNA sequence motifs

and the RNA-binding proteins in the granules. For instance,

the axonal transport of the transcript encoding b-actin (but not
the one encoding the closely related c-actin) ismediated by an

interaction between a zip code motif in the b-actin RNA and

the zipcode-binding protein ZBP1/IMP1 [5–7]. Individual

proteins may be encoded by several different transcripts

generated through alternative splicing and/or alternate

polyadenylation site selection. These various transcripts may

differ in whether they include the axonal localization motifs,

thereby regulating which transcripts are transported into

axons (Fig. 1a). This idea is consistent with the finding that

axonal and somatic transcriptomes differ in their enrichment

for particular transcript variants [8•]. Further, an individual

axonal RNA is likely to have multiple motifs that collaborate

to guide it to particular compartments within axons. For

example, in the sea slug Aplysia californica, the transcript for

the sensorin gene is directed to axonal processes by one motif

in the 30 UTR (untranslated region) and specifically to

presynaptic terminals by a secondmotif in the 50 UTR [9, 10].

The localization of an RNA to and within axons is thus

mediated by selective association with appropriate granules

based on the presence of particular motifs in that RNA.

The granules with which an individual RNA associates are

influenced by competitive binding with both other RNAs and

RNA-binding proteins. The b-actin zip code and similar

motifs are expressed in many transcripts, such as that

encoding GAP-43, which can compete with the b-actin
mRNA for association with ZBP1. Experimentally manipu-

lating the levels of the various zip code-containing transcripts

or ZBP1 modulates which RNAs are transported into axons

[11, 12•, 13]. Similarly, the RNA-binding protein TRF2-S

(telomere repeat binding factor 2) can facilitate the axonal

localization of its target mRNAs [14••]. This association and

subsequent localization is antagonized by TRF2-S interaction

with the RNA-binding protein Fragile X mental retardation

protein (FMRP). Whether the relevant interaction between

these two proteins occurs in the soma or axon is unclear as

FMRP, though present in the cell bodies of all neurons, is

found in the axons of select neuronal populations [15, 16].

The relative expression levels of both RNAs and RNA-

binding proteins will thus influence the RNAs that are present

in axons, thereby altering how axonal translation contributes

to cellular function.

Regulation of Axonal Translation

Extrinsic signaling on restricted subdomains of the axonal

arbor can drive localized protein synthesis with high spatial

and temporal resolution. As discussed below, this localized

translation can occur with remarkable specificity occurring

selectively in response to extracellular stimuli that occur on

one side of a growth cone or only at activated synapses.

This specificity is supported by the subcompartmental

localization of signaling molecules and/or translational

machinery based on selective association with components

of the cytoskeleton. Binding of the growth cone chemoat-

tractant netrin-1 to the axonal receptor DCC leads to

clustering of translational machinery and an induction of

axonal protein synthesis [17]. Interestingly, the actin

cytoskeleton (located at the periphery of the growth cone

where netrin is sensed) is required for the initiation of

netrin-induced axonal translation via the initiation regula-

tor eIF4E-BP1 (eukaryotic initiation factor 4E binding

protein 1) [18]. In contrast, the microtubules (located at the

core of the growth cone) are required for translational

elongation via the elongation regulator eEF2 (eukaryotic

elongation factor 2) and its kinase, eEF2K. The spatial

restriction of axonal translation thus relies not only on the

limited binding of extracellular cues, but also on the highly

localized translational machinery.

The signaling mechanisms that control local axonal

translation largely resemble those that occur in the cell

body. The best studied of these is signaling through the

PI3K (phosphatidylinositol 3-kinase) and mTOR (mam-

malian target of rapamycin) kinase cascades. As dis-

cussed above, netrin-1 binding activates PI3K, leading to

phosphorylation and activation of mTOR and the sub-

sequent phosphorylation of eIF4E-BP1 [18]. Similarly,

NGF binding signals through PI3K and mTOR to induce

axonal translation of the GTPase TC10 and the polarity

complex protein Par3 [19•]. Whether the molecules that

converge on mTOR signaling result in the translation of

the same or separate sets of axonal mRNAs remains to

be determined. However, activation of different cell

surface receptors can elicit distinct translational pro-

grams within axons [20]. Furthermore, each of these

ligands has disparate effects on axons apart from the

induction of local translation. Thus, newly synthesized

proteins will be incorporated into a different cellular

environment depending on the other effects initiated by

ligand binding.

Axonal Outgrowth

Local translation in axons has been well studied in the

context of axon outgrowth during development or after

injury (Fig. 1b). Axonal outgrowth can occur in two dif-

ferent modes: non-directional extension and growth direc-

ted by guidance cues. Non-directional extension does not

appear to depend on local translation, since axons can

elongate for 2–5 h in the presence of translation inhibitors
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[21–23]. Instead, local translation seems to be a strategy for

responding to directional guidance cues [24, 25]. Interest-

ingly, whether the response to a guidance cue involves

local protein synthesis depends on the concentration of that

cue, with lower concentrations generally inducing local

translation [26]. Many guidance cues affect protein syn-

thesis by increasing mTOR-mediated translation [27].

Since mTOR is activated in a concentration-dependent

manner, the edge of the growth cone receiving the highest

concentration of guidance cue has the greatest activation of

protein synthesis, leading to asymmetric growth toward the

source of the guidance cue [25]. Local translation affects

growth by supplying new b-actin monomers, which display

different post-translational modifications from soma-

derived b-actin, allowing more efficient actin polymeriza-

tion and thereby biasing cytoskeletal extension in one

direction [28–30]. Local translation thus supports axon

pathfinding by regulating the arrangement of the growth

cone cytoskeleton.

Local Translation and Context-Dependent Growth

Mechanisms

The ability of axons to extend new processes over large

distances depends on the cellular context that these axons

must navigate. For example, while axons throughout the

body must grow during development, regrowth following

injury in adult animals is restricted to peripheral axons.

Interestingly, central axons can exhibit the capacity to

regrow if provided an appropriate PNS substrate, and these

regrowing CNS axons upregulate translational machinery in

a manner very similar to that seen in peripheral axons [31•].

This difference in the localization of translational machinery

may in part reflect the interactions with PNS versus CNS glia

as regenerating peripheral axons have been proposed to

receive ribosomes from surrounding glia [32, 33]. Addi-

tionally, peripheral axons exhibit a greater capacity for

regeneration during development than in adult animals.

This difference may reflect alterations in the axonal

Fig. 1 RNA transport and local translation play various roles in

axons including: a Assuring that specific transcripts localize to the

correct compartments; b Supplying growth cones with materials

necessary for responding to guidance cues; c Supporting mitochon-

drial function; d Facilitating structural changes underlying synaptic

plasticity; and e Providing proteins that are trafficked back from the

axon to the soma during retrograde signaling. Listed is a selection of

locally synthesized proteins whose involvement with each step has

been characterized
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transcriptome, as embryonic axons are enriched for tran-

scripts classically implicated in guidance and growth, while

adult axons are enriched for transcripts associated with

inflammation and immunity [34]. The differential ability of

axons to regrow is thus reflected in differences in the levels

of axonal translational machinery as well as the composition

of the axonal transcriptome. Similar studies will be required

to determine whether this pattern holds in other contexts,

such as in axon outgrowth from central neurons generated

via adult neurogenesis.

The Role of mRNA Degradation and Translational

Inhibition in Axonal Guidance

Fine-tuning the local concentration of proteins requires

balancing the signals that drive protein synthesis with those

that repress this synthesis. For example, when a growth

cone receives the guidance cue Sema3a, growth cone col-

lapse is mediated by the translational suppression of

MAP1B by FMRP [35, 36]. Similarly, the microRNA miR-

132 promotes axonal extension by repressing the transcript

for RASA1, a component of the Ras pathway that feeds

into mTOR signaling [37]. These studies illustrate that the

production of axonal proteins is also balanced by brakes

that regulate their function.

In addition to inhibiting translation, protein synthesis

levels can also be negatively regulated via mRNA degrada-

tion. Controlled degradation can serve to regulate the surface

expression of guidance receptors to guide axons through

complex, multi-step trajectories. Commissural axons cross-

ing to the other side of the bodymust be sequentially attracted

to and then repelled from the midline. During midline

attraction, the transcript coding for the repulsive receptor

Robo3.2 is translationally silent due to its transport within a

repressive complex. Guidance cues at the midline de-repress

the transcript, allowing for midline-sensitive Robo3.2

expression. However, many commissural axons remain close

to the midline after crossing, so the levels of Robo3.2 protein

must be kept in check. This is accomplished by a stop codon

unique to the Robo3.2 splice form that induces nonsense-

mediated decay after the first round of translation, ensuring

that each transcript generates a limited number of Robo3.2

proteins [38••]. Nonsense-mediated decay is also used to

limit the number of proteins produced in dendrites [39],

suggesting that rapid turnover of mRNA after translation is a

general mechanism for controlling local protein synthesis.

Mitochondrial Function

Several recent studies have indicated that axonal translation

can support mitochondrial function in axons (Fig. 1c). In

addition to serving as an energy source, neuronal

mitochondria have diverse roles including storing calcium

and modulating the membrane potential [40]. Many of these

newly identified roles may be especially prevalent in axons,

since injured neurons downregulate transcripts related to

electron transport but upregulate other transcripts like those

related to mitochondrial fusion and morphology [41]. Even

proteins produced from transcripts with similar abundance in

axons and somatamay have different functions depending on

their site of production. Axonally synthesized laminB, which

is distinct from somatically synthesized lamin B in its ability

to associate with mitochondria, can be specifically down-

regulated without affecting somatic lamin B. This manipu-

lation causes axonal degeneration, demonstrating that the

two populations of lamin B play non-redundant roles [42].

The importance of axonal translation to mitochondrial

function is highlighted by the observation that specifically

decreasing the axonal expression of nuclear-encoded mito-

chondrial transcripts caused mice to display anxiety- and

depression-like behaviors [43•]. These findings also empha-

size that the pool of locally produced proteins may differ

functionally from those proteins synthesized in the soma.

Synapse Formation and Signaling

In comparison to local translation during axon outgrowth,

relatively little is known about how axonal translation

impacts synapses. Several lines of evidence from both

vertebrate and, especially, invertebrate systems suggest a

role for local protein synthesis in supporting structural

changes underlying presynaptic plasticity (Fig. 1d). Long-

term facilitation (LTF) requires presynaptic protein syn-

thesis in both crayfish and Aplysia [44–46]. These studies

have implicated that many of the signaling pathways found

to regulate protein synthesis in other cellular contexts,

including the TOR (target of rapamycin), MAP kinase,

calcineurin, and PI3K pathways [47, 48]. Interestingly,

FMRP has a presynaptic role in Aplysia in the regulation of

synaptic depression induced by FMRFamide, but not in

serotonin-induced LTF, indicating the presence of distinct

regulatory mechanisms underlying different forms of

plasticity [49]. Local translation also likely contributes to

several forms of presynaptic plasticity in the vertebrate

nervous system. In nerve-muscle preparations from Xeno-

pus, BDNF (brain-derived neurotrophic factor) induces a

presynaptic translation-dependent synaptic potentiation

[50]. Presynaptic translation has also been suggested to

support long-term depression (LTD) and long-term poten-

tiation (LTP) in rodent corticostriatal and hippocampal

mossy fiber axons [51, 52]. Local synthesis of proteins

directly in the presynaptic compartment thus contributes to

specific forms of synaptic plasticity in both invertebrate

and vertebrate nervous systems.
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Bidirectional Synaptic Signaling Regulates

Presynaptic Translation

Critical to elucidating the functional roles of presynaptic

protein synthesis is identifying the transcripts that are

localized to and translated in the presynaptic compartment.

Here, significantly less progress has been made than in

illuminating the general regulatory principles. Best char-

acterized of the presynaptic transcripts is the transcript

encoding the neuropeptide sensorin in Aplysia neurons.

Sensorin RNA localizes to synapses shortly after synapse

formation and blocking translation of this RNA inhibits the

formation of new synapses [46, 53, 54]. Serotonin-induced

LTF, which markedly increases the size and complexity of

synapses, induces local protein synthesis of sensorin in

isolated neurites [9]. Importantly, this local translation only

occurs if the postsynaptic cell is stimulated, as it requires

calcium-dependent postsynaptic release of netrin, which

binds to the presynaptic DCC receptor [1•]. The detailed

study of the regulation of local sensorin production thus

reveals the importance of bidirectional communication

across the synapse in the regulation of presynaptic protein

synthesis.

Regulation of Synaptic Vesicles

Several presynaptically synthesized proteins have also

been identified in vertebrate neurons, with findings to date

converging on a role for presynaptic translation in regu-

lating the structure and dynamics of the vesicle pool.

Locally translated b-catenin mRNA rapidly accumulates at

nascent synaptic sites [55•]. This b-catenin helps to restrain

the vesicle pool at these synapses. Loss of b-catenin, either
through cell-wide knockout or by specifically targeting

axonal translation using siRNAs, leads to increased

synaptic release during lower stimulation intensities and an

inability to sustain release during prolonged stimulation

[55•, 56]. Local translation of b-catenin may thus serve to

stabilize the vesicle pool and constrain the release proba-

bility as synapses mature [57].

Investigation of additional presynaptic transcripts sug-

gests that separate pools of mRNAs may be used under

different conditions in response to distinct signaling events.

Inhibiting all translation briefly (for up to several hours) at

nascent synapses leads to a decrease in the recycling pool

of synaptic vesicles without a change in the size of the

readily releasable pool [58]. This inhibition can lead to a

complete destabilization and loss of nascent synapses. In

contrast, mature synapses do not require ongoing local

translation and are not affected by this manipulation. Local

translation of the calmodulin-dependent kinase CaMKIIa is

required to maintain these new synapses. The stabilization

of newly formed synapses thus appears to, at least in some

conditions, require ongoing local synthesis of CaMKIIa.
However, while acute block of local translation decreases

the recycling vesicle pool, longer term blockade specifi-

cally of cap-dependent protein synthesis leads to an

increase in the size of the recycling vesicle pool [59]. This

effect at least in part involves modulation of cdk5 signaling

via local translation of the cdk5 activator p35. Both

CaMKII and cdk5 can phosphorylate b-catenin [60, 61], as

well as other proteins important for the regulation of the

synaptic vesicle pools. The opposing roles of locally

translated CaMKII and cdk5 in the regulation of vesicles

suggest that distinct signals may employ translational

programs that include one or the other. Although the

endogenous signals that regulate presynaptic translation in

the vertebrate nervous system have not been well charac-

terized, it is of note that netrin regulates axonal b-catenin
translation during outgrowth in both hippocampal and

thalamocortical axons [62, 63]. The cues that regulate local

presynaptic translation may thus be broadly conserved in

both Aplysia and mammals. Further, b-catenin translation

is regulated by FMRP, which is found at presynaptic sites

in select axonal populations throughout the nervous system

[15, 16, 64]. Interestingly, FMRP is mutated in the autism-

related disorder Fragile X syndrome, while b-catenin is

mutated in both autism and intellectual disability [65, 66].

Thus, alterations in presynaptic protein synthesis may

contribute to the symptoms seen in autism patients.

Together, these findings suggest a model in which local

protein synthesis controls presynaptic b-catenin levels as

well as the post-translational regulation of its activity in

order to modulate the size and dynamics of the synaptic

vesicle pool in a synapse-specific manner.

Retrograde Signaling

Retrograde Transport of Transcription Factors

In addition to providing proteins for use locally in the axon,

axonal translation can also serve as the source for retro-

grade signals transmitted from the axon to the soma

(Fig. 1e). For example, local protein synthesis of tran-

scription factors in the distal axon can lead to somatic

transcriptional responses during development and in

response to injury. Axonal exposure to NGF in developing

neurons can initiate local synthesis of the transcription

factor CREB (cAMP response element-binding protein),

which is then trafficked to the soma [67]. The subsequent

specific somatic transcriptional responses to this CREB

signaling are critical for neuronal survival early in devel-

opment. NGF may also impact CREB function through the

local translation of the inositol metabolism enzyme IMPA1

(myo-inositol monophosphatase-1). Disrupting Impa1
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translation in axons alters both nuclear CREB activation

and axonal integrity [2]. In a sciatic nerve and dorsal root

ganglia axonal injury model, trafficking of axonally

translated STAT3 via the importin/dynein complex influ-

ences neuronal survival [68]. Likewise, axonal synthesis of

the transcription factor SMAD1/5/8 in the trigeminal gan-

glia mediates the somatic transcriptional response to BDNF

and BMP4 (bone morphogenetic protein 4) with effects on

neuronal specification [69]. Similarly, axonal synthesis of

Luman/CREB3, an intra-axonal ER transmembrane protein

that can be cleaved to produce an active transcription

factor, helps regulate axonal regeneration after injury [70•].

Together, these studies demonstrate that axonal translation

can impact gene expression profiles via retrograde trans-

port of axonally synthesized transcription factors.

Retrograde Signaling in Response to Injury

Retrograde signaling in response to axonal injury com-

municates information from distal cues to the soma and

enacts transcriptional change to aid in neuronal survival

and regeneration. After axotomy, there is a rapid and

transient increase in intracellular calcium concentration,

which propagates from the site of injury back to the soma

and acts as a priming signal for the transcriptional injury

response [71–73]. The increase in calcium concentration

activates PKCl (protein kinase Cl), which subsequently

induces nuclear export of HDAC5 (histone deacetylase 5)

into the axon [73]. HDAC5 export enhances histone

acetylation to activate pro-regenerative genetic cascades

necessary for axon regeneration. Injury induces axonal

translation of filamin A, which binds to HDAC5 to facili-

tate tubulin deacetylation and localization to the growth

cone while promoting regeneration [74•]. This response is

likely cell type specific, as it was not seen in an optic nerve

model [72]. These studies demonstrate that, in addition to

the trafficking of transcription factors, retrograde transport

of locally translated products plays a role in the epigenetic

response to injury.

Axonal protein synthesis also plays an important role in

the nuclear localization of a signal-dependent retrograde

signaling complex. In this system, importin-a, importin-b1,
and dynein bind signals and transcription factors at the site

of axonal injury and transport them on microtubules to the

soma to effect a specific transcriptional response [75]. This

retrograde transport is supported by injury-induced axonal

synthesis of several components of this complex including

importin-b1, RanBP1 (RAN-binding protein 1), and the

intermediate filament vimentin [76–78]. Importin-b1 is

encoded by two transcripts that vary in the length of their 30

UTR. Specifically targeting the axon-specific long variant

eliminates axonal importin-b1 synthesis without disrupting

the somatic synthesis [76]. This loss of axonally translated

importin-b1 both reduced and delayed the somatic tran-

scriptional response to injury in vivo resulting in delayed

functional recovery. RanBP1 stimulates dissociation of

RanGTP from newly synthesized importin-b1, which can

then form a complex with importin-a and dynein [77]. The

injury-induced Ca?? wave increases activity of calpain,

which cleaves the newly synthesized vimentin to facilitate

importin-dependent retrograde transport of the active,

phosphorylated form of the kinase ERK [78, 79]. Inter-

estingly, investigation in a pseudorabies virus infection

model in superior cervical ganglia cells identified several

other retrograde transport-associated proteins synthesized

locally in the axon: peripherin (another intermediate fila-

ment), annexin A2 (a calcium-regulated phospholipid-

binding protein mediating interactions between vesicles

and the actin cytoskeleton), and Pafah1b1 (a dynein regu-

lator) are locally translated and required for efficient viral

trafficking from axons to somata [80]. These findings thus

highlight the importance of the axonal translation of

transport machinery for soma-directed trafficking in both

physiological and pathophysiological conditions.

Retrograde Signaling in the Alzheimer’s Brain

Although most of the research in axonal translation in the

context of retrograde signaling has focused on the PNS,

studies of Alzheimer’s disease (AD) provide compelling

insights into the role this phenomenon plays in the CNS.

Axonal transport is well known to be disrupted in AD and

other neurodegenerative diseases [81, 82], leading to often-

severe pathologies in the brain. AD is the leading cause of

age-related dementia and is largely manifested through

axonal pathogenesis including tau hyperphosphorylation

and exposure to amyloid plaques [83, 84]. These plaques

arise when pathogenic cleavage of APP (amyloid precursor

protein) leads to formation of both Ab plaques and oligo-

mers. Ab oligomers can bind to receptors, including

mGluR5, to initiate signal cascades that alter neuronal

physiology [85]. Axonal exposure to pathogenic Ab oli-

gomers interferes with BDNF retrograde signaling, and is

thought to be sufficient to induce neurodegeneration

without somatic exposure [84, 86]. Axonal exposure to

these pathogenic oligomers also induces axonal recruit-

ment of mRNAs including the transcript encoding ATF4

(activating transcription factor 4) [3••]. ATF4 is locally

synthesized and retrogradely trafficked to the soma, initi-

ating neuronal expression of the ER stress-associated

transcription factor CHOP and subsequent cell death,

indicating a contribution of intra-axonal transcription to

neurodegeneration in AD patients. Other mRNA transcripts

with increased localization in the Ab-exposed axons

included APP, ApoE (apolipoprotein E), clusterin, and

fermentin family homolog 2; all of these proteins have
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characterized roles in AD pathology [87–90]. These data

point to a previously unexplored path by which pathology

spreads from the distal axon via retrograde trafficking of

axonally synthesized proteins and also add to the relatively

small but growing body of evidence for axonal translation

in the mature CNS.

Conclusions

Neurons use local protein synthesis to establish and

maintain their exquisite structural and functional polarity.

Significant progress has been made in the last several

decades in revealing the importance of local axonal

translation to the structure and function of axons. Recent

technical advances in subcellular transcriptome analysis

have allowed the identification of many axonal transcripts

and suggest patterns in the composition of the axonal

transcriptome. The number of transcripts identified by

these approaches indicates that axonal translation supports

many functions that have yet to be characterized. It should

be noted that these approaches will be biased toward the

most highly expressed axonal transcripts. However, low

levels of axonal expression for a particular transcript does

not negate the possibility of an important functional role

for that transcript, as exemplified by the requirement for

axonal synthesis of TC10 despite vanishingly low axonal

levels of the TC10 mRNA [19•]. Additionally, it remains

to be determined how association with specific RNA

granules segregates the axonal transcriptome into distinct

functional pools, each of which can respond to distinct cell

signaling events. Further, neurons are remarkably diverse

in their morphology and function. The extent to which the

axonal transcriptome and its regulated translation differ

among these varied neuronal types remains to be deter-

mined. Finally, while an increasing number of experiments

has been conducted in live organisms, most studies of

axonal translation have been performed in cell culture. It

will be of great interest to further elucidate how axonal

translation is regulated by and contributes to the biology of

living organisms.
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