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Abstract
Purpose of Review To discuss the potential use of transcranial direct current stimulation (tDCS) to improve motor behavior after
brain injury.
Recent Findings Despite evidence that tDCS can improve motor function following brain injury, meta-analysis studies have
largely failed to find conclusive support for tDCS as a viable treatment. In part, these inconsistencies arise from widespread
variability in individuals’ responsiveness to tDCS because of biological and experimental factors.
Summary Properly designed smart clinical studies are still needed to determine the optimal stimulation parameters and combi-
nations of tDCS. However, some patterns of “best practice” have begun to emerge: (1) pairing tDCS concurrently with high-
intensity motor training as opposed to before, after, or in the absence of physical practice, (2) repeating sessions of stimulation in
close succession over a single administration, (3) administering stimulation during more acute periods of recovery over chronic
states, and (4) utilizingmodeling techniques based on individual anatomy to tailor electrode placement and optimize current flow.
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Introduction

There has been a recent rise in popularity of using transcranial
direct current stimulation (tDCS) to modulate cortical excit-
ability in hopes of improving behavior. Here, we will discuss
the potential use of tDCS for neurorehabilitation to improve
motor behavior after brain injuries. We begin with a review of
how tDCS induces neuroplastic changes. Next, we summarize
how neurophysiological changes associatedwithmotor recov-
ery following brain injury andmotor learning can inform treat-
ment. Finally, we coalesce the successes and failures that have
been documented using tDCS to treat brain-injured patients
into recommendations for practical application.

Mechanisms of tDCS

Evidence suggests tDCS is a form of non-invasive brain stim-
ulation (NIBS) that can elicit functional and morphological
changes of the underlying cells it targets. It is thought to
slightly depolarize/hyperpolarize cell membranes depending
on the polarity of the stimulation and can affect cellular excit-
ability from minutes to hours [1–4, 5•, 6]. In vitro and in vivo
animal studies using direct current stimulation (DCS)–in-
duced changes in synaptic plasticity such as modulations in
spontaneous neuronal activity [7•, 8–10], neuronal evoked
potentials [11••, 12, 13, 14•], and neuronal paired-pulse plas-
ticity [12]. DCS also increased expression of BDNF, Ca2+,
and other genes that play a role in long-term potentiation
(LTP)/long-term depression (LTD) [15–17]. DCS-induced ef-
fects rely on calcium-dependent mechanisms [14–16],
NMDA receptors [18], and BDNF and TrkB receptor path-
ways [11, 19], and are modulated by other types of LTP-
inducing protocols [20]. Other cell types besides neurons are
affected by DCS; DCS increased Ca2+ surges in astrocytes,
cells with a crucial role in NMDA-dependent plasticity [14•].

In addition to functional changes, DCS elicits morpholog-
ical changes. DCS can influence orientation of neuronal pro-
cesses and their growth direction [21], increase spine density
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[22•], and increase oligodendrocyte-specific progenitor cells
[23]. Individual cells can be affected by orientation of the
electrical field, distance from the current, and their own mor-
phology. Hence, the orientation of the electrical field influ-
ences different cell types and different compartments within
the same cell [24••].

In humans, there is similar evidence that tDCS modulates
cortical excitability. tDCS can modulate motor evoked poten-
tial (MEP) amplitudes and cerebello-brain inhibition (CBI) as
assessed by transcranial magnetic stimulation (TMS), [2, 5•,
25–29] spectra changes at different frequency bands in elec-
troencephalogram (EEG) [30], blood oxygenation level–
dependent (BOLD) changes assessed by functional magnetic
resonance imaging (fMRI) [31–33], and GABA and gluta-
matergic concentrations assessed bymagnetic resonance spec-
troscopy (MRS) [34, 35]. Pharmacologically, NMDA recep-
tors [36] and Ca2+ are underlying mechanisms for the lasting
effects of tDCS [1, 2, 5•].

Overall, the literature suggests tDCS uses direct electrical
currents to modulate both the functional strength and mor-
phology of neuronal and non-neuronal synapses. Substantial
evidence links these effects to LTP-like and LTD-like mech-
anisms. Generally, anodal tDCS is believed to enhance corti-
cal excitability of the targeted brain area whereas cathodal
tDCS diminishes it. However, it is important to note that this
is an oversimplification of what happens with an electrical
current in a complex structure as the human brain.

Neurophysiological Changes in Motor Recovery and
Motor Learning

The motivation behind using tDCS in neurorehabilitation
largely rises from two bodies of literature: first, research on
the neurophysiological changes associated with motor recov-
ery after brain injury and second, neurophysiological changes
associated with learning newmotor tasks. A basic understand-
ing of any overlapping mechanisms that drive recovery and
learning can guide tDCS strategies for neurorehabilitation.

Neurophysiological studies of upper limb motor recovery
in chronic (> 6 months post injury) stroke patients using TMS
have found higher motor thresholds and reduced MEP ampli-
tudes in ipsilesional motor cortex (iM1) as compared to
contralesional M1 (cM1) and healthy controls, and are often
correlated with measures of hand dexterity and function [37,
38]. In healthy individuals, the two motor cortices exert mu-
tual inhibition at rest and prior to movement (i.e., interhemi-
spheric inhibition—IHI). However, chronic stroke patients
have stronger IHI imbalances (from cM1 to iM1) both at rest
and prior to movement onset that are correlated with more
severe motor impairments [39•, 40, 41]. Interhemispheric im-
balances are also present in other motor areas such as the
dorsal premotor (dPM) cortex where more unbalanced
contralesional PMd (cPMd) influence on iM1 is present in

patients with greater clinical impairment [42–44]. Similarly,
stroke patients with right hemisphere neglect have shown
pathologically exaggerated intrahemispheric influence from
left contralesional posterior parietal cortex (cPPC) to left
cM1 that was related to severity of neglect [45].

In studies following stroke recovery in acute stroke patients
(< 3 months after injury), iM1 thresholds and corticomotor
excitability of the upper limb were initially reduced but over
time increased with improved upper limb impairment and
function [46•, 47–49]. Interestingly, in acute stroke patients,
premovement IHI was initially normal following injury and
later became abnormal. This emergence of the abnormal pat-
tern from acute to chronic recovery was inversely correlated
with motor recovery suggesting that interhemispheric imbal-
ances might be a consequence of other underlying recovery
processes rather than the cause of poor motor recovery [50].

Neurophysiological changes following motor recovery in
traumatic brain injury show a similar profile to stroke.
Moderate to severe chronic TBI patients show higher motor
thresholds [51, 52], higher MEP variability [52], and reduced
MEP amplitudes in the paretic upper limb as compared to the
non-paretic side, changes that were found to be related to the
severity of diffuse axonal injury (DAI) and motor impairment
[51, 53•]. In acute cases of mild to moderate TBI, patients had
initially higher motor thresholds, higher MEP variability, and
reduced MEP amplitude that then showed a trend to return to
normal levels in the chronic state [52, 54].

Overall, both stroke and TBI patients show neurophysio-
logical evidence of cortical reorganization after injury and
normalization of these corticomotor changes with recovery.
This suggests motor and functional recovery in brain injury
patients might be linked to the restoration of normal inter- and
intracorticomotor patterns. Based on this theory of restoring
normal corticomotor patterns after brain injury, several strat-
egies for neurorehabilitation have emerged to either upregu-
late excitability of ipsilesional motor areas (e.g., M1, dPM,
PPC), downregulate excitability of contralesional motor areas,
or do both simultaneously to ameliorate the paretic side motor
dysfunction. However, it is important not to assume that all
behaviors follow the same recovery pattern as the upper limb.
For example, in contrast to upper limb motor recovery post
stroke, in swallowing motor recovery, corticomotor excitabil-
ity of laryngeal cM1 in acute stroke patients was initially
reduced, but over time increased along with improved
swallowing impairment and function [55]. Moreover, an im-
portant caveat to this body of work is that it is limited to stroke
and TBI patients for whom it is possible to obtain MEPs (i.e.,
mild to moderate motor deficits). Thus, it remains unclear
what neurophysiological recovery may look like for patients
with more severe motor deficits lacking MEPs.

Similar neurophysiological changes happen with motor
learning as seen with motor recovery following brain injury.
Motor learning in neurorehabilitation is to either relearn to
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perform a task the same way as it was done before injury
(recovery) or to implement a different strategy from that used
before injury (compensation). Although recovery and com-
pensation likely involve different pathophysiological mecha-
nisms, both are associated with an increase in corticomotor
excitability. Changes in the plasticity of synaptic connections
of M1 are widely believed to play an essential role in learning
and memory [56•]. In both animals and humans, there is evi-
dence of increased M1 excitability following motor learning
[57–64], as well as functional and structural changes to a
distributed brain network that connects M1 with the dPM,
PPC, cerebellum, somatosensory cortex, supplementary mo-
tor area (SMA), and other motor areas [65–67].

Based on studies demonstrating increased excitability of
motor areas following motor learning, a body of research
has emerged attempting to use tDCS to modulate M1 excit-
ability and/or its connection with other motor areas to aug-
ment motor learning and retention. Notably, several studies
have demonstrated application of tDCS during motor learning
can boost performance in healthy humans: sequential visual
isometric pinch task [11••, 27, 68•], finger sequencing [2,
69–71], reaching adaptation [29, 72, 73], walking adaptation
[74], balance [75], and even functional motor tasks such as the
Jebsen-Taylor Hand Function Test (JTT) [76•].

Utilizing tDCS to Augment Motor Recovery
in Neurorehabilitation

Converging evidence that motor recovery and learning engage
overlapping neurophysiological mechanisms and tDCS can
improve motor learning in healthy individuals has made
tDCS an appealing strategy for augmenting motor recovery
in brain-injured patients. Here, we identify some successes
and failures associated with using tDCS over various motor
areas to treat motor syndromes such as hemiparesis,
hemineglect, and dysphagia.

Hemiparesis

The most studied application of tDCS in brain injury patients
is hemiparesis of both the upper and lower limbs. The most
commonly studied electrode montages are anodal tDCS ap-
plied over ipsilesional M1 (anodal-iM1), cathodal tDCS ap-
plied over contralesional M1 (cathodal-cM1), and
bihemispheric-M1 (i.e., anode and cathode are placed simul-
taneously over iM1 and cM1, respectively).

In hemiparesis of the upper limb, tDCS has been used to
improve arm and hand function. In some studies of chronic
stroke patients, even a single session of anodal-iM1, cathod-
al-cM1, or bihemispheric-M1 stimulation during motor train-
ing improved upper motor limb function measures such as
JTT, pinch force, and reaction time [77–81] and was

associated with enhanced cortical excitability and reduced
intracortical inhibition of iM1 [77, 78]. Studies with multiple
sessions (ranging from 5 to 20) of tDCS over M1, applied
prior to or concurrently with motor training, have elicited
immediate and long-lasting behavioral improvements of
JTT, Upper Extremity Fugl-Meyer (UE-FM) Scale, Action
Research Arm Test (ARAT), Wolf Motor Function Test
(WMFT), Modified Ashworth Scale (MAS), Stroke Impact
Scale (SIS), Medical Research Council (MRC) Scale, Barthel
Index (BI), National Institutes of Health Stroke Scale
(NIHSS), and muscle strength with effects ranging from
weeks up to a year in acute and chronic stroke patients
[82–97]. Some of these behavioral changes were also accom-
panied and/or correlated with increased iM1 cortical excit-
ability [96, 98••], reduced IHI imbalance [98••], increased
fMRI activation in ipsilesional and decreased in
contralesional motor areas [85, 91], and increased fractional
anisotropy of descending motor tracts of iM1 [94]. Though
largely less examined, studies targeting other motor areas like
ipsilesional PM (iPM) have also shown that repeated anodal
stimulation over iPM with concurrent motor training can im-
prove UE-FM Scale, MAS, MRC Scale, and BI, [99–101]
behavioral changes that were accompanied with increased
iM1 cortical excitability [99]. Surprisingly, only one study
has explored the effects of tDCS to treat upper limb
hemiparesis in TBI. Pairing multiple sessions of
bihemispheric-M1 with concurrent motor training improved
UE-FM Scale, SIS, Box and Block Test, and Purdue
Pegboard Test in chronic TBI patients, changes that were
largely sustained 6 months post intervention [102].

In contrast to these promising findings, other studies have
presented contradictory results. In a single session of
bihemispheric-M1 applied concurrently with motor training,
although chronic stroke patients showed reduced IHI imbal-
ance, there was no improvement in UE-FM Scale [103]. In
other studies where anodal-iM1, cathodal-cM1, or
bihemispheric tDCS was administered for multiple sessions
either in the absence of [104], prior to [105], or concurrently
with motor training [106–109], tDCS failed to elicit improve-
ments in UE-FM Scale, MAS, Motricity Index (MI), NIHSS,
and Box and Block Test beyond sham stimulation, and in
some patients even worsened performance [109].

Meta-analysis studies have largely failed to validate the
effectiveness of tDCS for improving upper limb function fol-
lowing a stroke. [110] This may be due to the vast variability
in patient demographics and experimental protocols, as well
as a lack of large robust randomized controlled trials.
However, some patterns supporting improved effectiveness
have emerged. Namely, multiple stimulation sessions in close
succession with concurrent motor training are suggestive of
better outcomes [111]. Additionally, efficacy is influenced by
dose-related parameters relating to electrode size, charge den-
sity, and current density [112].
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In hemiparesis of the lower limb, tDCS studies have fo-
cused on improvement of gait and balance. In acute and
chronic stroke patients, a single session of anodal-M1 or
bihemispheric-M1 tDCS, with concurrent motor training,
has acutely enhanced paretic ankle control, Five Times Sit-
to-Stand (FTSTS) Test, Timed Up and Go (TUG) Test, lower
limb force production, postural stability, and walking speed
[113–117] and simultaneously increased iM1 and decreased
cM1 cortical excitability [118]. Another single-session study,
targeting ipsilesional SMA during motor training, showed im-
proved 10-Meter Walk Test (10MWT) and TUG Test [119].
Similarly, studies with multiple sessions (ranging from 10 to
14) of anodal-iM1 tDCS applied concurrently with motor
training have elicited immediate and long-lasting behavioral
improvements of Lower Extremity Fugl-Meyer (LE-FM)
Scale, Lower Extremity Motricity Index (LE-MI),
Functional Ambulatory Category (FAC), 6-min Walking
Test (6MWT), 10MWT, TUG Test, and SIS [120•, 121,
122], and increased iM1 cortical excitability [120•].

In contrast, some single-session studies of either anodal-
iM1 or bihemispheric-M1 applied before [123], after [124],
or concurrently with motor training [125, 126] have failed to
show behavioral improvements in spatial-temporal gait pa-
rameters and MAS nor elicit cortical excitability changes in
iM1 or cM1. Additionally, one study with repeated sessions of
anodal-iM1 with concurrent motor training failed to improve
6MWT or 10MWT [127].

However, in spite of some conflicting evidence, a systemic
review with meta-analysis supports tDCS in improving gait
speed after stroke, with multiple sessions being more effective
than single sessions to improve functional outcomes [128].

Hemineglect

In hemineglect, tDCS montages are based off a similar con-
cept as hemiparesis studies with either increasing activity of a
hypoactive cortical region affected by the stroke (i.e., the right
hemisphere in the case of neglect) or reducing cortical hyper-
activity of the corresponding cortical region in the contralat-
eral left hemisphere. Hence, tDCS studies on neglect have
exclusively studied montages of either anodal applied over
ipsilesional right posterior parietal cortex (anodal-iPPC), cath-
odal applied over contralesional left PPC (cathodal-cPPC), or
simultaneously placed anode and cathode over iPPC and
cPPC, respectively (bihemispheric-PPC).

In acute and chronic stroke patients, a single session of
tDCS of anodal-iPPC, cathodal-cPPC, or bihemispheric-
PPC, even without therapy, has shown significant improve-
ment of Line Bisection Test (LBT), Star Cancellation Test
(SCT), and Neglect Subtest of Test Battery for Attentional
Performance (TAP) [129–131]. In other studies where multi-
ple sessions (ranging from 10 to 15) of tDCS were applied
either prior to or concurrently with motor training, both

anodal-iPPC and cathodal-cPPC improved performance on
the Motor-Free Visual Perception Test (MVPT), LBT, SCT,
Modified BI, and Behavioral Inattention Test (BIT) [132,
133•]. In contrast, one study applying bihemispheric-PPC
for multiple sessions (unpaired with therapy) failed to show
improvements in BIT [134].

Though no meta-analysis study has focused solely on the
efficacy of tDCS in the treatment of hemineglect, other meta-
analyses including tDCS and other NIBS protocols have
found moderate-quality evidence supporting the effectiveness
of NIBS techniques for the treatment of neglect especially
when combined with therapy [135, 136].

Dysphagia

Unlike upper and lower limb muscles, cortical representations
of swallowing muscles have more bilateral cortical innerva-
tions [137]. Though cortical representations of swallowing
muscles are asymmetrical (showing a swallowing dominant
side unrelated to handedness) [137, 138], research studies
have exclusively explored stimulating either iM1 or cM1.
Currently, only four studies have specifically investigated
the effects of tDCS in post stroke dysphagia.

In each of these studies of either acute, subacute, or chronic
stroke patients, repeated sessions (ranging from 5 to 10) of
anodal tDCS over iM1 or cM1, paired with concurrent motor
training, were found to improve Functional Dysphagia Score
(FDS) and Dysphagia and Outcome Severity Scale (DOSS)
either immediately following treatment [139, 140•, 141] or at
a 1–3-month follow-up [140, 142].

Although no meta-analysis studies have focused solely on
the efficacy anodal tDCS in the treatment of dysphagia, other
meta-analyses including tDCS and other NIBS protocols have
found a small but significant effect of NIBS on post stroke
dysphagia with slightly better effect size for stimulation of
cM1 over iM1 [143, 144].

Limited and Conflicting Evidence for tDCS
in Neurorehabilitation

Some consistent patterns have emerged implicating a com-
mon thread of “best practice” across syndromes: Pairing
tDCS concurrently with motor training, repeated sessions of
stimulation in close succession, and early administration dur-
ing more acute periods of recovery show the best efficacy. A
noteworthy limitation in the tDCS literature on the treatment
of brain injury is the bias toward the study of stroke recovery.
Few studies have examined the use of tDCS as clinical inter-
vention for motor recovery in TBI patients.

Additionally, despite promising evidence that tDCS can
serve as an adjunct to maximizemotor recovery in brain injury
patients, there have been some studies showing inconsistent
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and even contradictory effects such that meta-analysis studies
have failed to find conclusive support for the use of tDCS as a
viable treatment [110]. Factors relating to both biological and
experimental variability are major culprits that underlie some
of these inconsistencies across the literature [145••].

Biological Factors

Even in healthy participants, there is a fair amount of hetero-
geneity in responsiveness to tDCS due to a variety of biolog-
ical factors. These biological factors can be subdivided into
factors that affect inter- (across) and intra- (within) subject
variability. Inter-subject variability is affected by factors that
are due to an individual’s constant traits, such as age [146],
gender [147], anatomical variability [148, 149], and genetics
[11••, 150, 151]. Intra-subject variability is affected by factors
that are due to an individual’s current state, such as hormonal
cycles (menstrual cycle and circadian rhythms) [152, 153],
prior history of brain activation [154], sleep deprivation
[155], attentional focus [156, 157], alcohol/drug use [158],
and fluctuations in resting brain activity [159].

In brain injury patients, these same biological factors are
further complicated by additional heterogeneity introduced by
the brain lesion itself. For example, brain injury patients may
have structural brain changes related to the underlying pathol-
ogy (e.g., brain atrophy) that can alter the current distribution
[160]. In a tDCS modeling study based on individual MRI
anatomy, patients with skull damage (after TBI) were found
to have significant changes in their current distribution which
altered the efficacy of tDCS application and in some cases
even lead to unfavorable neurophysiologic changes [161,
162]. Brain injury patients are also likely to be on concurrent
medications affecting the nervous system (e.g., antidepres-
sants, antipsychotics, anxiolytics, analgesics, anticonvulsants)
and have other comorbidities that may alter their neurochem-
istry. Overall, these trait and state biological factors introduce
significant challenges in standardizing current flow and inten-
sity across individuals.

Experimental Factors

In addition to individual variability introduced by biological
factors, there are several other experimental factors relating to
the administration of tDCS that influence its efficacy: elec-
trode montage and type, dosage, timing, and endpoint
measures.

Electrode montage, skin preparation, and type of electrodes
are all critical for the spatial distribution and direction of the
electric current. The diversity of tDCS montages (unilateral or
bilateral, and over various motor areas), type (bipolar or high-
definition tDCS [163]), and polarity (anodal or cathodal) can
induce varied effects on the brain. Even when targeting a
particular motor region, neighboring and connected areas

can be affected as well. Not surprisingly, research has shown
that different montages have distinct effects on a motor behav-
ior—i.e., targeting M1 preferentially influenced speed and
retention of motor learning [68•], whereas targeting the cere-
bellum promoted accuracy and acquisition [164].

A second experimental factor is the dosage of stimulation,
including both intensity, duration, and number of sessions and
their relative spacing—all of which influence the longevity,
magnitude, and even direction of the effects of tDCS [5]. To a
certain extent, longer bouts of stimulation elicit longer-lasting
aftereffects [6], increasing stimulation intensity can increase
the magnitude and improve the consistency of aftereffects [2,
28], and consecutively repeated sessions of stimulation can
have cumulative effects [83, 165–167]. However, linearly in-
creasing each of these parameters does not necessarily in-
crease their effects in a linear way. In some cases, increasing
intensity, duration, and number of sessions and session spac-
ing can engage homeostatic mechanisms that shift or even
reverse the direction of their effects [28, 167, 168], mecha-
nisms that may even further interact with biological factors as
well.

A third critical factor is the timing of stimulation and time
of stimulation relative to the time of injury. Studies have var-
ied application of tDCS, and here timing will pertain to two
independent dimensions: timing of stimulation relative to mo-
tor training and timing of stimulation relative to acuity of
injury. With motor training, studies have varied application
of tDCS to either occur prior to motor training (as a priming
effect) [34, 35, 89, 93, 105, 169, 170], immediately following
motor training (to target consolidation) [171], concurrently [2,
31, 68, 164, 172–174], or in the absence of any motor training
[104, 175]. However, evidence in humans indicates that time-
ly co-application of tDCS with motor training is associated
with the largest and most consistent behavioral gains [104,
176]. Similarly, in animal studies, applying DCS over M1
with concurrent activity was crucial to induce LTP [11••],
and a lack of concurrent activity resulted in no aftereffects.
With regard to the time of injury, most studies have focused
on studying brain injury patients in a chronic state of recovery,
though there is evidence to suggest that tDCS applied during
more acute stages of injurymay bemore effective for recovery
[92, 120, 177–179]. Special caution is needed to avoid use of
tDCS too early in the recovery process as there is the possi-
bility it could aggravate the injury. In an animal model of
stroke, tDCS applied 1 week following the injury was associ-
ated with better recovery than when applied only 1 day after
injury [180].

A final critical experimental factor is the variability of end-
point measures across the literature which limits direct com-
parisons across studies. To efficiently move the field forward,
a consensus on specific and appropriate endpoint measures
that span the model of disability (including metrics assessing
recovery at the level of body function, activity, and
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participation) is needed. Having a comprehensive combina-
tion of appropriate endpoint measures will help identify which
experimental factors are most relevant for neurorehabilitation
and what biological factors may preclude certain individuals
from benefiting from tDCS as a treatment.

Modeling techniques that use a patient’s MRI to simulate
current flow offer one effective approach to improve and in-
dividualize the use of tDCS in neurorehabilitation. For one,
modeling techniques can be used to optimize electrode place-
ment and intensity to improve uniformity of current flow
across individuals [181, 182]. Second, current distribution
models can be applied to past data sets and can identify study
confounds and distribution patterns that are associated with
better behavioral outcomes.

Conclusions

Substantial evidence supports that tDCS can induce both func-
tional and structural changes of the cells it targets depending
on their orientation and type, and these effects are linked to
LTP-like and LTD-like mechanisms. Similar to motor learn-
ing, motor recovery is associated with increased corticomotor
excitability and other types of cortical reorganization, mecha-
nisms that can enable functional restoration following brain
injury. In some cases, neurophysiological and behavioral res-
toration following motor training has been boosted with con-
current application of tDCS. Despite promising evidence that
tDCS can improve motor syndromes following brain injury
(e.g., hemiparesis, hemineglect, and dysphagia), meta-
analysis studies have largely failed to find conclusive support
for tDCS as a viable treatment. Variability in biological and
experimental factors between studies explains, in part, these
inconsistencies in the literature. Nonetheless, some patterns of
“best practice” have begun to emerge: (1) pairing tDCS con-
currently with high-intensity motor training, (2) repeating ses-
sions of stimulation in close succession over a single admin-
istration, (3) administration during more acute periods of re-
covery, and (4) tailoring electrode placement with modeling
techniques to optimize electrical distribution patterns.
Properly designed smart clinical studies are needed to deter-
mine the optimal stimulation parameters and combinations
(i.e., with medications, behavior, etc.) of tDCS to verify its
true efficacy in clinical settings.
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