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Abstract
Purpose of Review Massive blood loss secondary tomajor trauma is a leading cause of death worldwide. In recent years, multiple
different strategies have evolved to counteract this life-threatening condition. In this review, we will review our understanding of
trauma-induced coagulopathy and summarize current clinical transfusion regimes utilized in military and civilian settings. We
will review currently available blood products used to rectify the coherent disturbances of haemostasis by outlining the charac-
teristics of the different products.
Recent Findings Current evidence suggests that fresh frozen plasma and fibrinogen components play a fundamental role in
trauma resuscitation with recent studies suggesting pre-hospital plasma and fibrinogen administration might also be beneficial in
counteracting trauma-induced coagulopathy. Based on experience out of combat zones, whole blood transfusion might experi-
ence a renaissance in the future.
Summary Multiple different plasma-based products are available to treat and prevent trauma-induced coagulation disturbances.
As randomized controlled trials in trauma population are difficult to conduct, most of the evidence is currently based on relatively
small studies.While the overarching result of our review suggests the early use of plasma and fibrinogen products in combination
with packed red blood cells will prevent trauma-induced coagulopathy, large, multi-centre studies are warranted to evaluate the
long-term effects on patients’ outcome.
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Introduction

Massive haemorrhage secondary to trauma is a leading cause
of death worldwide necessitating blood component resuscita-
tion. Military and civilian studies have shown an associated
survival and morbidity benefit in trauma patients resuscitated
with a high ratio of fresh frozen plasma (FFP) to packed red
blood cell (PRBC) [1–5] and both European [6•] and North

American [7] guidelines recommend an equal ratio of FFP to
PRBC (and platelets). Some European authors have strongly
recommended the initial use of factor concentrates for resus-
citation in these casualties, although study results have not
been conc lus ive [7 , 8 ] . The p re sence o f ea r ly
hypofibrinogenemia in trauma patients is associated with an
increased mortality [9], and the administration of fibrinogen
concentrate (FC) has been shown to address this aspect of
coagulopathy in trauma patients [10, 11]. Its use has subse-
quently gained favour in mainland European practice.

The initial acute traumatic coagulopathy (ATC) is a patho-
physiological process that has been investigated extensively
over the past two decades and is commonly described to in-
clude predominantly low fibrinogen and hyperfibrinolysis
[12, 13]. The role of activated protein C (aPC) has been found
to be a key element in this process [14], the activation of
which lies at the site of the vascular endothelium [15] second-
ary to endothelial glycocalyx destruction [16]. FFP has been
shown to have the ability to preserve the endothelial glycoca-
lyx and consequently potentially improve survival. Despite
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evidence of the benefit of other components [17] and pharma-
cological adjuncts [18] in the resuscitation of bleeding trauma
casualties, there is a strong argument that the continued use of
FFP is a crucial element to a comprehensive resuscitation
regime and remains a necessity in the management of coagu-
lopathy in these patients.

Acute Traumatic Coagulopathy

The presence of reduced coagulation in trauma casualties or
ATC has been known since before the VietnamWar [19]. One
aspect of trauma-induced coagulopathy (TIC), defined by the
“lethal triad” of hypothermia, acidosis and dilution, is under-
stood to be potentially present later in a patient’s pathway, and
is generally understood to be a predominantly iatrogenic phe-
nomenon, termed by some as resuscitation-associated coagu-
lopathy [20] (Fig. 1). A separate pathological coagulation ab-
normality, ATC, has been identified that is found much earlier
in the trauma process and temporally seems to be important on
admission or in the pre-hospital environment.

In the last two decades, studies in Europe and the United
States of America (USA) have found that some trauma casu-
alties on admission to hospital are coagulopathic despite little
or no haemodilution, no excessive acidosis and minimal re-
duction in temperature [21–23]. In civilian trauma casualties,
the incidence of ATC is 24 to 34%, while in military ballistic
casualties, ATC is present in up to 50% of patients [24–26]
and is strongly correlated with mortality [27]. Other charac-
teristics of ATC include low platelet counts, low clotting fac-
tors (factor V predominantly), low fibrinogen, fibrinolysis and
reduced protein C levels [10, 28–30].

Activated Protein C

Hypovolaemia in casualties leads to tissue hypoperfusion and
a hypoxic microcirculation, the main driver for ATC [31–33].
Tissue hypoperfusion produces a pathological amplification
of protein C activation [34] which in turn has a negative feed-
back on thrombin production in addition to increasing fibri-
nolysis through removal of tissue plasminogen activator (tPA)
inhibition [21, 34–38]. Increased injury severity and hypoper-
fusion increase the level of coagulopathy. An elevated
level of APC is associated with an increased mortality
[34, 39], and if inhibited experimentally in mice, coag-
ulopathy is prevented [40].

Endothelial Glycocalyx

The endothelium has a vital role in the control and initiation of
clotting. The surface of the endothelium is lined by a group of
proteins linked with glycosaminoglycan chains termed the gly-
cocalyx [41]. The glycocalyx, or rather its destruction, is an
important intercessor for ATC development, and hypoperfusion
is a crucial initiator of glycocalyx destruction. Syndecan-1 has
been used in several studies as marker of glycocalyx destruction
and damage. The glycocalyx has a key role in the pathophysiol-
ogy of ATC with a number of theories linking the importance of
the endothelium and coagulopathy. This is sometimes referred to
as the “endotheliopathy of trauma” [42–44] or “shock-induced
endotheliopathy” [45]. Trauma is not the only cause of endothe-
lial pathology, however, with a number of factors being shown to
produce evidence of glycocalyx disruption including hypoxia
[46], sepsis [47] and traumatic sympathoadrenal activation [48].
Elements of all these are seen in hypo-perfused trauma patients
so this response is not entirely unexpected.

Fig. 1 Trauma-induced
coagulopathies and treatment
options
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More recently, four different types of shock-induced
endotheliopathy phenotypes have been identified with very dif-
ferent responses to trauma-induced endothelial damage [49••].
These data suggest an important role of individual genetic back-
ground in contributing to the endothelial response to trauma.

This review will elucidate our current understanding on
trauma resuscitation regarding transfusion of plasma and plas-
ma products (Fig. 1). We will also discuss the differences and
advantages of component and whole blood transfusion re-
gimes in trauma patients.

Component Therapy—Plasma and Other
Therapeutics

Fresh Frozen Plasma

Fresh frozen plasma (FFP) is prepared from a single unit of
whole blood or plasma collected by apheresis into a citrate-
containing anticoagulant solution. It needs to be ABO com-
patible with AB being the universal donor type.

Once thawed, it requires transfusion within 4 h, or if that is
to be delayed, it can be kept at 4 °C for up to 24 h; however,
factor VIII (FVIII) activity will decline at 24 h by up to 28%
[50]. Use can be extended up to 72 h with a decline in FVIII
activity of 40%, although the activities of all other factors
(including factors II (FII) and V (FV)) remain almost normal
[51]. After 5 days, FVIII has lost 60% activity, FV 34% ac-
tivity and the remainder less than 30% of activity [50, 52].

Risks of transfusion are similar to PRBC and include in-
fectious disease transmission (ranging from 1:7.8 million for
HIV to 1:153,000 for hepatitis B [53]), transfusion-associated
cardiac overload, transfusion-related acute lung injury, acute
haemolytic reactions and anaphylaxis [54–56].

FFP is a blood component that has been available since
World War II [57]. It was initially used as a volume expander
but is now primarily used in the management of haemorrhage
and prevention of haemostatic abnormalities in bleeding and
coagulopathic patients. The proof of its efficacy in the man-
agement of massive haemorrhage in a trauma casualty is dis-
appointingly lacking [58]. Although it has been used to treat
trauma haemorrhage for many years, there is surprisingly lim-
ited knowledge of its utility and application in this role.
Inadequate transfusion is potentially associated with poor out-
comes and undoubtedly blind over-transfusion can result in
volume overload as well as additional donor exposure with
increased rates of sepsis and multi-organ failure [59, 60].

Despite this lack of data, FFP has been widely recommend-
ed for use in major haemorrhage simultaneously with PRBC
[1] at either specific doses of 10–15mL/kg [61] or to achieve a
lab coagulation level of no more than 1.5 times normal pro-
thrombin time (PT) and activated partial thromboplastin time
(aPTT) [62]. Other guidelines and recommendations counsel

that it should be transfused in a specified ratio to PRBC. These
vary according to continent as well as military or civilian use.
However, some key guidelines from noteworthy international
bodies do not specify a particular ratio. [63–67].

Lyophilised Plasma

Freeze-dried human plasma (FDP), otherwise known as
lyophilised plasma (LP), was first introduced in World War
II for use in resuscitation. Plasma was converted into a fine,
lightweight powder in significant quantities to answer the high
demand under difficult logistical. Disappointingly, there were
high rates of viral disease transmission secondary to pooling
of plasma units and inadequate screening so the concept was
abandoned [68]. Modern screening methods have significant-
ly reduced the risk of virus transmission and the concept of
lyophilised plasma has re-emerged as a logistically superior
alternative to FFP.

How does LP coagulation capacity compare to FFP?
Investigations after World War II demonstrated its
haemostatic function was similar as measured by PT [69].
In vitro assays of dried porcine plasma and FFP show similar
coagulation profiles (FII, FVII and FIX, PT, aPTT and fibrin-
ogen in addition to thromboelastographic assessments) [70,
71]. In vivo studies using swine models of polytrauma and
haemorrhage demonstrate that FDP clotting factor levels are
comparable with FFP with only a 14% drop in coagulation
factor activity [70, 72]. Subsequent animal trauma models
show LP is equally effective as FFP in reversing coagulopathy
and improving physiological markers as well as survival [71].
In addition to coagulation benefits, Spoerke and colleagues
[70] suggested LP might lower the inflammatory response as
indicated by reduced IL-6 levels suggesting this secondary
effect (to the use of ascorbic acid in its manufacturing process)
was contributing to the advantage offered by LP during trau-
ma resuscitation [73].

Although there is very little evidence of the efficacy of LP
or FDP in humans, the military has been using LP and FDP
justified by preclinical animal studies to meet the logistical
demands of treating remote combat casualties. Currently,
Dutch, French, Israeli, German and the United Kingdom
(UK) armed forces use LP or FDP with US forces having just
received FDA approval (personal communications).

The French military has the most experience and regularly
advocate for LP based on its significant shelf life (2 years),
speed of reconstitution (3 min to rehydrate), and similar
clotting factor and fibrinogen activity compared with FFP
[74, 75]. Two recently published studies by the French mili-
tary report their experience at a Role 3 hospital in Kabul,
Afghanistan: In the first study, they used LP in 87 military
and civilian casualties and observed an overall mortality of
10% among patients receiving LP despite two-thirds of these
patients being in haemorrhagic shock at treatment initiation
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[76]. The second study looked at 72 transfusion episodes of
which 63 received LP (average of 3 units) [77]. Like the first
study, the authors noted a significant decrease in PT after LP
administration. Though these studies are small and many pa-
tients were lost to follow-up, there were no reported compli-
cations attributable to LP administration.

Based on the combat data, several retrospective studies
have examined the use of LP in the civilian pre-hospital envi-
ronment. Data from Israel on 109 casualties over a 3-year
period (83% penetrating, 50%multiple severe injuries) receiv-
ing FDP showed that it was both easy and feasible to use [78].
A French study demonstrated quicker delivery of blood prod-
ucts to trauma patients in a 1:1 ratio if LP is used instead of
FFP [79] while a small dataset from Norway emphasizes the
safety of use by pre-hospital helicopter emergency medical
services (HEMS) [80].

The Freeze-dried Plasma in the Initial Management of
Coagulopathy in Trauma Patients (TrauCC) trial was a pro-
spective, randomized trial comparing the incidence of coagu-
lopathy and fibrinogen levels in trauma patients receiving ei-
ther French lyophilised plasma (FLyP) to FFP in a French
hospital [81•]. The investigators found in the 48 patients en-
rolled that those in receipt of FLyP had higher fibrinogen
concentrations and a more rapid improvement in their coagu-
lopathy compared with FFP. Like previous studies, they also
noted that FLyP patients received plasma quicker (15 min
compared with more than 90 min) resulting in more rapid
achievement of the target 1:1 FFP to PRBC ratio.

Despite the logistic advantages (i.e. lightweight, easily
transportable, long shelf life), its limited availability and cost
currently restrict ready access. These latter reasons are the
principle rationalisation for its use only in austere situations
in the British military—in the pre-hospital environment or
with units who provide small surgical teams to areas that are
more difficult to reach and support. Nevertheless, the small
number of patients and the retrospective nature of most
of these studies warrant future prospective randomized
trials to evaluate clinical effectiveness and outcomes
following LP transfusion.

Fibrinogen Concentrate

Fibrinogen depletion is considered a major challenge in trau-
ma patients. Schlimp and colleagues found that patients with
major trauma and an admission haemoglobin concentration
lower than 100 g/L and base excess lower than − 6 commonly
present with fibrinogen levels lower than 1.5 g/L [82].
Similarly, Rourke and colleagues found low fibrinogen levels
in 41% of the patients with hypotension on admission, in-
creased shock severity and high degree of injury (injury se-
verity score, ISS ≥ 25) [10]. Specific fibrinogen replacement is
arguably a key factor in trauma casualty resuscitation.

Fibrinogen concentrate (FC) is produced from pooled hu-
man plasma and stored as a lyophilised powder at room tem-
perature [83]. It can be reconstituted rapidly with sterile water
for immediate administration [84]. Viral infection risk is mini-
mal as viral inactivation by exposure to solvent or
pasteurisation occurs in the manufacturing process [85].
Unlike cryoprecipitate, the concentration of fibrinogen is stan-
dardized and there is no requirement for cross matching [84].
One study showed that 2 g of FC would increase plasma fibrin-
ogen by 0.44 g/L, compared with only 0.26 g/L after 10 units of
cryoprecipitate infusion (~ 1.8–2.2 g of fibrinogen), suggesting
a superiority over cryoprecipitate; some have even reported a
reduction of fibrinogen after infusion of cryoprecipitate [86].

Fibrinogen supplementation in cases of severe bleeding
demonstrate an improvement in coagulation parameters
[87–89], increased plasma fibrinogen levels and survival
[87, 88, 90], and reduced transfusion requirements [88, 89].
However, a recent meta-analysis found no improvement of
mortality in trauma patients by administration of FC, although
recognizing the poor quality of included studies [91].

Subsequent trials aimed to overcome this limitation: In the
Fibrinogen in the Initial Resuscitation of Severe Trauma
(FiiRST) trial, FC was given within an hour of hospital arrival
[92]. Despite fibrinogen levels being higher (up to 12 h), mortal-
ity did not differ between the groups. This may have been due to
a lack of difference in transfused blood products with both
groups receiving similar amounts of cryoprecipitate. The
Reversal of Trauma Induced Coagulopathy Using Coagulation
Factor Concentrates or Fresh Frozen Plasma (RETIC) trial [8]
investigated the use of FFP versus coagulation factor concen-
trates. They used fibrinogen concentrate predominantly but the
trial was abandoned due to the need for significant rescue therapy
in the FFP group. Just over half of the FFP group needed rescue
compared with 4% receiving FC with the number needing mas-
sive transfusion also greater in the FFP group (30% vs. 12%).
Despite this study being stopped early, their findings suggest that
FC should be looked at in a favourable light.

One more recent trial undertook a retrospective look at giving
FC pre-emptively in trauma patients with higher ISS rather than
waiting for threshold results [93]. Nearly 60% of the patients
with an ISS of greater than 26 received 10 units of PRBC and
found to have low serum fibrinogen. The 48-h mortality rate of
those with ISS greater than 26 was 8.6% in the pre-emptive FC
group compared with 22.9% in the standard treatment group.
When ranking patients according to the ISS, the authors found
that pre-emptive administration reduced mortality from 50 to
20% in patients with an ISS of greater than 41.

Similar results were presented by Itagaki and colleagues
[94] in a recent study. Although limited by its retrospective
nature, this study illustrates a mortality benefit when FC is
given early and most definitely leads to the question of wheth-
er it should be taken into the pre-hospital environment (both
civilian and military).
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Prothrombin Complex Concentrate

Prothrombin complex concentrates (PCC) are intermediate
purity pooled plasma products containing a mixture of vitamin
K-dependent coagulation factors [95, 96] produced by ion-
exchange chromatography of either three- (II, IX and X) or
four-factors (addition of VII). The concentration of coagula-
tion factors results in a 25 times higher clotting potential than
normal plasma [97]. Although developed for the treat-
ment of haemophilia B, PCC are now frequently used to
treat congenital and acquired deficiency of vitamin K-
dependent clotting factors [95].

The use of PCC in the treatment of trauma casualties has
gained popularity in Europe with several studies comparing it
with FFP in casualty resuscitation. In a porcine trauma model,
the use of PCC leads to reduced time to haemostasis and
number of blood products transfused [98]. Translational hu-
man studies have had similar findings with the use of PCC
reducing time to correction of coagulopathy [99], reduced
blood use [99] and reduced mortality. Unfortunately, the ma-
jority of these studies compare PCC and FFP with FFP alone
rather than PCC alone [99, 100]. There remains no evidence of
mortality benefit with PCC use. The reported morbidity ben-
efit of normalization of haemostasis was measured in conven-
tional laboratory coagulation measures and remained
prolonged in all groups, although a difference between them
was evident.

Whole Blood Transfusion

Although used by the military since World War I [101], both
stored and fresh whole blood (FWB) are seeing increased
usage in some trauma settings because these products may
be logistically easier and less wasteful compared with classical
multi-component transfusion strategies. Thereby, low-titre
group O whole blood (LTOWB) has to be distinguished from
leukoreduced, and leukoreduced whole blood using a platelet-
sparing filter products provided by the American Red Cross
(ARC) [102, 103]. Evaluated in regard to clotting factor ac-
tivity in the presence of PRBCs, Huish and colleagues dem-
onstrated that the factor activity remained above 50% despite
prolonged storage (i.e. up to 35 days) and the presence of
platelets [104]. Leukoreduced blood transfusions have be-
come standard in most trauma centres, and therefore, transfu-
sion of LTOWB through leukoreduction filters have been
evaluated in regard to its haemostatic properties.
Importantly, despite the fact that platelet count decreased dur-
i ng co l d s t o r age , h a emos t a s i s a s a s s e s s ed by
thrombelastography and PFA-100 tests was not diminished
over a 2-week storage period [102]. Praised by the military
[105], whole blood products remain to be evaluated for its
suitability during civilian trauma resuscitation.

Resuscitation in Trauma

The arguably pivotal study and a critical report for military
resuscitation was from Borgman et al. based in Iraq [1] who
looked at massive transfusions in 246military combatants. All
casualties had received more than 10 units of components in
24 h with FFP to PRBC ratios divided into 1:8, 1:2.5, and
1:1.4, respectively. The highest ratio resulted in both a 55%
absolute reduction in mortality and increased survival time
compared with the lowest FFP to PRBC ratio. Despite these
dramatic results, concern about survivor bias tempered these
findings and has led to further work.

The most recognized study investigating blood compound
therapy is the Pragmatic, Randomized Optimal Platelet and
Plasma Ratios (PROPPR) trial [5], studying 680 trauma casu-
alties suffering (or suspected to be suffering) from massive
haemorrhage. The authors compared transfusion of FFP,
platelets and PRBC in a 1:1:1 ratio compared with a 1:1:2
ratio. Although no long-term survival benefits were found
between the two groups, the 1:1:1 group achieved haemostasis
and had fewer deaths due to exsanguination at the 24-h mark.
It should be noted that deaths primarily due to haemorrhage
most commonly occur in the first 24 h. After 24 h, the propor-
tion dying due to other causes—multi-organ failure, head in-
jury and others—becomes more prevalent.

A number of the authors have investigated civilian
trauma in their home trauma centres on return from
their military deployment [3]. They found a similar sur-
vival advantage in the high ratio group, but a markedly
dissimilar time to death (35 h compared with 4 h).
Although the work by Borgman et al. was used as sup-
port for the fixed ratio resuscitation of military ballistic
casualties, the authors disclosed that there was a survi-
vorship bias. The patients, who died early, did so before
they were able to get more FFP, and hence, their ratios
were high. In contrast, a patient with less shock and
less physiologically challenged by their injuries survived
long enough to get more FFP, and as a result of having
lesser injuries, their FFP to PRBC ratio was higher
[106], suggesting injury severity was the cause of mor-
tality difference, not the specific ratio of transfused
blood products.

Interestingly, while initial studies suggested that prolonged
storage time of PRBC may negatively impact patients out-
come [107], more recent data suggested that storage time does
not impact patients’ outcome in severely injured patients [108,
109]. In summary, a wide range of both military and civilian
retrospective studies on early empirical ratio haemostatic re-
suscitation are available [2, 110–120], with the majority sug-
gesting that higher ratios of FFP to PRBC will significantly
reduce the mortality of bleeding trauma casualties. These mor-
tality reductions ranged from 15 to 62% and originated mainly
from civilian trauma centres in the USA and Europe.
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PRO Plasma—Resuscitation with Plasma Products

As the glycocalyx is particularly sensitive to injury during ATC,
the administration of FFP has been proved to be beneficial for its
function. A prospective, observational study in severely injured
patients with haemorrhagic shock demonstrated that resuscitation
with FFP resulted in a 3-fold decrease of circulating syndecan-1
[121]. Although the levels were higher than normal healthy pa-
tients, this significant decrease illustrates the potential of FFP to
protect and even restore the glycocalyx.

Plasma-based resuscitation of trauma patients in
haemorrhagic shock certainly reduces mortality [1, 3, 120].
Recently, these data have been extended to the preclinical appli-
cation of FFP. The Prehospital Air Medical Plasma (PAMPer)
trial demonstrated that patients receiving FFP-only resuscitation
in the pre-hospital environment had a significantly lower mortal-
ity with minimal adverse effects compared with conventional
resuscitation regimes [122, 123]. By administering 2 units of
FFP before any resuscitation fluid, 30-day mortality decreased
by 10%. Importantly, transfusion of FFP did not delay the trans-
port time to the trauma centre (42 vs. 40 min).

A paucity of evidence of the detrimental effect of plasma in
conjunction with good evidence that it is beneficial for treating
the pathophysiological origin of ATC intimates that FFP is
crucial in managing and resuscitating trauma casualties with
ATC. Considering the impaired coagulation cascade, FFP and
plasma products constitute one of the main components of a
multiple-component transfusion strategy.

CONTRA Plasma—Whole Blood Transfusion or NO
Plasma

In a recent review, Spinella suggested that transfusion of FWB in
haemorrhage may result in favourable outcome [17] according to
recent studies on combat casualties in Iraq [124] and Afghanistan
[125]. The advantage of refrigerated storage for stored FWB com-
pared with multiple storage options for components, including
agitation requirements for stand-alone platelets, means FWB has

a significant logistical advantage [126]. Concerns over infection
and grouping mismatch are valid, with 2 infections and one
transfusion-associated graft versus host fatality in 10,000 FWB
transfusions on US personnel [127]. Nevertheless, FWB has been
more frequently usedwith at least 5 trauma centres in theUSAand
Norway studying LTOWB for trauma resuscitation [128].
Simultaneously, a number of larger studies (LITES Network,
NCT03402035) are beginning to investigate the feasibility and
potential advantages of LTOWB in trauma resuscitation (Table 1).

The UK military experience so far has been sporadic and
has centred on emergency donor panel provision in response
to patient extremis or when platelet provision was inadequate
or non-existent. FWB has considerable potential, particularly
in the pre-hospital environment and in austere military envi-
ronments. Unfortunately, within the UK at present, National
Health Service (NHS) Blood and Transplant does not supply
FWB as standard. Despite this, requests from the UK military
and other agencies have had recent impact, and the London
helicopter emergency medical service are currently undertak-
ing a study on its use for pre-hospital trauma resuscitation
(RABBIT trial, NCT03522636).

A recent survey by the ARC demonstrated an increased
acceptance of FWB transfusion in trauma patients [129••].
Although 80% of responding trauma centres reported using
component therapy without laboratory guidance for the man-
agement of massive blood transfusion, 10% of the respon-
dents mainly from hospitals of less than 550 beds confirmed
using FWB as part of their transfusion regime [129••].
Furthermore, most responders preferred low-titre WB over
leukoreduced FWB using platelet-sparing filters.

As the fibrinolysis and lack of fibrinogen appear to be
major features of ATC [31], balancing these deficits by fibrin-
ogen replacement appears clearly beneficial for mortality [10,
93]. This strategy would not be sufficient alone since success-
ful resuscitation requires replacement of volume and therefore
alternatives to excessive crystalloid [130] or colloid solutions
[131] might only be available through transfusion of FWB or
single components.

Table 1 Advances and disadvantages of different transfusion regimens in acute traumatic resuscitation

Plasma-based component therapy Whole blood transfusion

Pro • Individualized
• Available in many hospitals
• More easily achievable in pre-hospital/austere environments with caveats
• Corporate memory
• Designed to prolong storage time

• Easy transfusable
• All aspects of fluid resuscitation included

Contra • High maintenance costs
• Does not reflect natural component ratios
• Some uncertainty of best ratio to use
• Usual time delay to get platelets and cryoprecipitate

• Short storage time
• Decrease in some clotting factors over time
• Not widely established yet
• Probable higher infection risk
• Majority of clinicians have not used
• Potential greater wastage
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Therefore, the first report of using FWB for civilian trauma
resuscitation might be considered as guidance for future pa-
tient care in this particular setting [132].

Conclusion

A number of potential alternatives to plasma have been inves-
tigated but none have yet proven to be a realistic option. PCC
and FC have proven benefits and are key additions in trauma
resuscitation of patients with ATC. FWB is probably one of
the more realistic alternatives; however, the universal lack of
availability and clinical evidence limits its current use despite
the excitement of some institutions (i.e. ARC. For the time
being, plasma resuscitation at ratios approaching 1:1:1 with
PRBC and platelets appears to be the most appropriate resus-
citation regime in treatment of ATC (Table 1).

Abbreviations aPC, Activated protein C; aPTT, Activated partial throm-
boplastin time; ARC, American Red Cross; ATC, Acute traumatic coagulop-
athy; FC, Fibrinogen concentrate; FDA, US Food and Drug Administration;
FDP, Freeze-dried human plasma; FFP, Fresh frozen plasma; FLyP, French
lyophilised plasma; FVIII, Coagulation factorVIII; FWB, Freshwhole blood;
ISS, Injury severity score; LP, Lyophilised plasma; LTOWB,Low-titre group
O whole blood; PCC, Prothrombin complex concentrate; PRBC, Packed red
blood cell; PT, Prothrombin time; PT, prothrombin time; tPA, Tissue plas-
minogen activator
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