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Abstract

Purpose of Review Risk prediction models hold enormous

potential for assessing surgical risk in a standardized,

objective manner. Despite the vast number of risk predic-

tion models developed, they have not lived up to their

potential. The aim of this paper is to provide an overview

of the methodological issues that should be considered

when developing and validating a risk prediction model to

ensure a useful, accurate model.

Recent Findings Systematic reviews examining the

methodological and reporting quality of these models have

found widespread deficiencies that limit their usefulness.

Summary Risk prediction modelling is a growing field that

is gaining huge interest in the era of personalized medicine.

Although there are no shortcuts and many challenges are

faced when developing and validating accurate, useful

prediction models, these challenges are surmountable, if

the abundant methodological and practical guidance

available is used correctly and efficiently.

Keywords Risk prediction � Discrimination � Calibration �
Multivariable � Statistical methods

Introduction

Risk prediction models hold enormous potential for

assessing surgical risk in a standardized, objective manner

[1]. They can be used to guide clinical decision making and

perioperative management, enable informed consent,

stratify risk for inclusion into randomized controlled trials,

and audit, monitor, assess, and compare surgical outcomes

in different healthcare providers [2, 3]. Regardless of the

reasons for using a particular risk prediction model, it is

important that it is appropriately developed and validated

[2, 4, 5].

The last 10–15 years have seen an explosion in risk

scores predicting surgical outcomes, such as mortality [6],

complications [7], morbidities [8], and bleeding [9]. More

widely, risk prediction models have proliferated in the

medical literature, resulting in many competing models for

the same outcome or target population. For example, there

are nearly 800 models for patients with cardiovascular

disease [10], over 360 models for predicting incident
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cardiovascular disease [11], 263 models in obstetrics (with

69 predicting the risk of preeclampsia) [12], over 100

models for patients with prostate cancer [13], and 20

models for predicting prolonged intensive care stay fol-

lowing cardiac surgery [14].

Despite the vast number of risk prediction models

developed, they have not lived up to their potential. Sys-

tematic reviews examining the methodological and

reporting quality of these models have found widespread

deficiencies that limit their usefulness [12, 14–15, 16•,

17–21]. The aim of this paper is to provide an overview of

the methodological issues that should be considered when

developing and validating a risk prediction model to ensure

a useful, accurate model. We use the EuroSCORE model as

our case study [1]. The development of the original

EuroSCORE was described in two separate articles, one

identifying the risk factors [22] and one to construct the

model [23].

Assessing the Need for a New Risk Prediction
Model

Before deciding to build a new risk prediction model, it is

useful to check whether there are any existing models that

predict similar outcomes in your target population and

clinical setting to avoid duplication of effort. If such

models do already exist, then you should first evaluate and

compare their predictive performance on your data [24]. If

they show promising performance, then recalibration or

updating may produce the model that you need [25, 26]. A

new model should only be developed from scratch if a

similar model does not exist or if similar models cannot be

recalibrated to meet the needs of your particular target

population and clinical setting. The CHARMS checklist

provides guidance on how to conduct systematic reviews of

risk prediction models, including how to search, what

information to extract, and how to assess study quality and

risk of bias [27•].

Overview of Steps in Developing and Validating
a Risk Prediction Model

If you have access to an existing dataset and do not have to

prospectively collect data, then developing a risk predic-

tion model is easy. You can load the data into your sta-

tistical software package, click a few buttons, and churn

out yet another new model [28]. However, just because you

can easily develop a model, it does not mean you should.

The resulting model may add an extra line to your list of

publications, but it is (hopefully) highly unlikely that an ill-

thought-out model will ever be used on an actual patient.

As with any research study, there should be a clear

rationale for why a new risk prediction model is needed. A

detailed protocol describing every step needed to develop

and validate the model should be written and, if possible,

published (for example, in diagnprognres.biomedcentral.-

com) [29•]. The abundant methodological and practical

guidance now available to investigators wishing to develop

or validate a risk prediction model leaves little excuse for

producing unusable models [4, 5, 30–38, 39••, 40, 41•].

Table 1 gives a brief overview of the main issues which are

discussed in more detail throughout the article.

Design

An appropriate study design is the key for developing or

validating risk prediction models. The preferred design for

both development and validation studies is a prospective

longitudinal cohort study. This design gives the investigator

full control to ensure all relevant predictors and outcomes are

measured and collected, thereby minimizing missing values

and loss to follow-up. However, risk predictionmodels often

have to be developed and validated using existing data col-

lected for a different purpose. Although using existing data is

cost efficient and convenient, these datasets have clear

problems. They are often small, include too few outcome

events, have missing values, do not include important pre-

dictors, or use inaccurate methods for measuring important

predictors. Data from randomized clinical trials can be used,

but trials’ strict eligibility criteria can often limit their gen-

eralizability, and the issue of how to handle treatment

assignment needs to be addressed [42, 43]. Case–control

studies are generally not appropriate for developing predic-

tion models as the correct baseline risk or hazard cannot be

estimated from the data [44] unless a nested case–control or

case-cohort design is used [44, 45].

EuroSCORE was developed using a prospective cohort

study, involving 132 centres from 8 European countries

[22, 23]. All patients (n = 20,014) undergoing cardiac

surgery between September and December 1995 were

included, with 984 (with approximately 5 % of the cohort

omitted after error checking and quality control), leaving

19,030 for analysis [22]. Using a prospective cohort design

enabled efficient collection of 97 preoperative and opera-

tive risk factors that were deemed credible, objective, and

reliable.

Sample Size

Sample size recommendations for studies developing new

risk prediction models are generally based on the concept

of events-per-variable (EPV). What this means is that to
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reduce the risk of overfitting, whereby the model performs

optimistically well on the dataset used to develop the

model, but poorly on other data, the investigator should

control the ratio of number of outcome events to the

number of variables examined. More appropriately, it is the

number of coefficients estimated, for example, a categori-

cal predictor with k categories, this would require k-1

regression coefficients to be estimated. Furthermore, it is

the number of variables examined prior to any variable

selection, including any univariate screening of individual

variables, which should be avoided [46].

A minimum value of 10 EPV is widely used [47, 48] as

the value to avoid overfitting in development studies,

although the regression coefficients may then need

shrinking. However, much larger EPV values are prefer-

able [49, 50]. The minimum sample size recommended for

validation studies is 100 outcome events. Two hundred

outcome events are preferred to ensure accurate estimation

of model performance [51–53].

To develop the EuroSCORE model, the authors ran-

domly split the dataset into two cohorts, in a seemingly

90:10 ratio for the development and validation cohorts. The

development dataset therefore comprised 13,302 patients,

whilst the validation cohort comprised 1479 patients [23].

Neither the number of deaths nor the mortality rate was

reported separately for both cohorts but only overall (698

deaths); thus, we assume there were 628 and 79 deaths,

respectively (assuming a 90:10 random split). The authors

should clearly describe the number of events for each

separate analysis.

Missing Data

Although almost all studies are missing information in their

predictors or their outcomes, missing data are often han-

dled inadequately [54]. Missing data are often handled

using a ‘complete-case’ analysis, which only includes cases

with complete information on all predictors and outcomes

in the analysis. However, simply excluding individuals

with any missing values can lead to biased estimates and

standard errors if the missing data are related to the out-

come (missing at random; MAR) [55, 56]. This approach

also makes the strong assumption that the reason for the

missing data is not related to the outcome, which is rarely

met.

Imputation approaches are more effective than complete

case analysis. These approaches replace missing values

Table 1 Considerations for developing a multivariable risk prediction model

Issue Comment

Systematic

review

Before developing a new model, carry out a systematic review to identify any existing models. Evaluate these models first to

see if any are of use

Study design Ideally use a prospective cohort study

Study

population

Ensure the data used to derive the model are representative of the target population

Outcome Logistic regression is useful for short-term outcomes (e.g., 30-day mortality). Cox regression should be used for long-term

outcomes (e.g., 5-year risk)

Predictors Only include predictors that are known or are plausibly related to the outcome that is to be predicted. Avoid screening

variables on their univariate association with the outcome. Do not categorize continuous predictors. Examine nonlinearity

using fractional polynomials or restricted cubic splines

Sample size For model development, aim for a minimum of 10 events-per-variable. More events-per-variable is preferable, if possible. For

model validation, aim for a minimum of 100 outcome events

Missing data A prospective cohort design can minimize missing data. If you cannot use such a design, examine missingness and consider

multiple imputation

Model

presentation

Present the full model, all of the regression coefficients, and the intercept or baseline survival at one or more time points so

others can use and evaluate the model and make individual predictions

Internal

validation

Avoid randomly splitting data into development and validation datasets. Use bootstrapping or cross-validation to quantify and

adjust for any optimism bias

External

validation

Evaluate the final, published prediction model on an independent dataset

Performance Assess both calibration and discrimination. Consider clinical utility using decision curve analysis

Comparison Compare the prediction model with any existing models

Reporting Follow the TRIPOD statement when writing any publications to ensure all key details of the development and validation are

clearly reported
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from an estimate of the distribution of the observed data

and assume the MAR mechanism. Single or multiple

imputation can be conducted [57, 58]. Single imputation

uses only one estimate (e.g., overall mean estimation) and

commonly results in an underestimated standard error

[59, 60]. In multiple imputation, several plausible datasets

are created, and an analysis runs on each dataset. The

results are combined into a single estimate with standard

errors reflecting the uncertainty with the missing values.

Multiple imputation leads to more correct standard errors

[59, 61]. Five or 10 imputed datasets are commonly used.

However, recently published rule-of-thumb recommenda-

tions suggest that the number of imputations should be

larger or equal to the fraction (%) of the missing data [58].

Practical guidance for handling missing data when devel-

oping and validating risk prediction models should be

followed [62–64].

In the EuroSCORE study, the handling of missing data is

somewhat unclear. What the observant reader may have

already noticed, is that the original EuroSCORE database

comprised 19,030, yet the development (n = 13,302) and

validation (n = 1497) sample sizewas substantially smaller,

with and unexplained missing 4231 patients (20 % of the

original dataset).With regards to completeness of individual

risk factors, neither publication mentions the presence of the

missing data [22, 23]. Were the 4231 patients omitted due to

missing data? Is there anything special about these omitted

patients? Regardless, omitting such a large proportion of the

data is worrying and little is described as to why and the

implications of doing so. Studies should clearly report the

flow of participants, describing the missingness data at

individual predictor levels as well as overall.

Modelling Continuous Predictors

Predictors are often recorded as continuous measurements,

but are commonly converted into two or more categories

for analysis [65]. This categorization of continuous pre-

dictors has several disadvantages. Categorisation discards

information, a problem at its most severe when the pre-

dictors are dichotomized (divided into two categories).

This information loss can result in a loss of statistical

power and can force an incorrect relationship between the

predictor and outcome. If the cut points to create the cat-

egories are not predefined, but are chosen to find the

smallest P value, then the predictive performance of the

model will be overly optimistic [66, 67•]. Even with a

prespecified cut point, dichotomisation has been shown to

be statistically inefficient [68–72]. Although using more

categories reduces the information loss, this is rarely done

in practice. Regardless of the number of categories, the

statistical power is reduced and precision suffers in

comparison with a continuous modelling approach [73].

Categorizing continuous predictors ultimately leads to poor

models, as it forces an unrealistic, biologically implausible,

incorrect (step) relationship onto the predictor and discards

information.

The most popular approach for maintaining the contin-

uous nature of predictors is to model a simple linear rela-

tionship between the predictor and outcome. This is often,

but not always, sufficient. It may lead to a model that does

not include the relevant predictor or that has an assumed

relationship between the predictor and outcome that is

substantially different from the ‘‘true’’ relationship. A

better fit can be achieved using methods such as fractional

polynomials (FP) or restricted cubic splines [40, 73–75].

Both of these methods allow for a nonlinear, but smooth,

predictor–outcome relationship, and there is little to choose

between them [67•]. Both methods can easily be imple-

mented using standard software. FPs allow simultaneous

model selection and FP specification. The results of both

methods can be graphically presented, although FP results

are particularly easily interpretable. It is possible to cate-

gorize predictors to implement the model if this is deemed

necessary. Importantly, categorizing predictors for imple-

mentation does not require the predictors to be categorized

prior to model development [76].

In the EuroSCORE study, continuous predictors were

categorized using fractional polynomials [23]. It is not

entirely clear what this entailed, fractional polynomials are

used to describe nonlinear associations with a predictor and

the outcome, and not for categorizing [73]. Nevertheless,

categorizing leads to models with lower predictive accu-

racy [67•], and if a simple easy-to-use model is required,

then more methodologically robust approaches are avail-

able [76].

Model Development

More variables are often collected than can reasonably be

included in a prediction model, and therefore a smaller

number of variables must be selected. Variables can be

reduced before modelling by, for example, critically con-

sidering the literature, soliciting input from experts,

examining correlated predictors and only including one of

them, removing variables with high amounts of missing

data (as these will likely be missing at the point of

implementing the model in practice), and removing vari-

ables that are expensive to measure [77]. Variables are

often chosen for inclusion in multivariable modelling using

univariate (unadjusted) associations with the outcome.

However, this common approach should be avoided as

important predictors can be omitted due to confounding by

other predictors [46].
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Data-driven approaches such as stepwise methods (e.g.,

forward or backward) are common and are implemented in

most statistical software. The backward selection approach

is generally preferred as it considers the full model and

allows the effects of all of the candidate predictors to be

judged simultaneously [49]. However, these stepwise

methods all have limitations in small datasets [78, 79].

When datasets are small in relation to the number of pre-

dictors examined, overfitting becomes a nonignorable

concern and predictions from the model can on average be

too extreme (too low or too high). Shrinkage techniques

(e.g., uniform shrinkage and LASSO) can be used to reduce

overfitting. Models are penalized towards simplicity by

shrinking small regression coefficients towards or to zero,

omitting them from the model.

The development of EuroSCORE is slightly opaque, but it

seemed to include a screening of candidate risk factors based

on their univariate association with the outcome (at the

P\ 0.2 level), followed by a fitting of the remaining risk

factors, and their inclusion in the final model was then based

onwhether they improved predictive accuracy [23]. Thefinal

step was a search of first-degree interactions significant at

P\ 0.05, but it is not clear whether all possible interactions

were examined or only a subset comprising those that are

clinically plausible. Given the large number of centres and

different countries, no attempt seems to investigate whether

clustering either at a centre or in a country would have

improved the model [80]. Finally, the investigators exam-

ined 97 risk factors in total; it would seem unlikely that so

many risk factors could actually be plausibly related to the

outcome, particularly as most risk scores only contain a

handful of predictors. The consequence of having such a

large number of predictors is the risk of overfitting; 97 risk

factors would imply a minimum of 970 outcome events are

required in the data to develop the model.

Internal Validation

Deficiencies in the statistical analysis used to develop a

prediction model, such as inappropriate handling of missing

data, small data, many candidate predictors, a poor choice of

predictor selection strategies (including univariate screening

and stepwise regression), and categorization of continuous

predictors, can lead to optimistic model performance [81]. A

model’s performance must therefore be adequately and

unbiasedly evaluated. Evaluation can be done using a so-

called internal validation. Internal validation of a prediction

model refers to evaluating its performance (see the

‘‘Assessing Model Performance’’ section) in patients from

the same population that the sample originated from.

A common approach is to randomly split the dataset into

two smaller datasets. The model is derived using one of

these datasets (often called the training or development

dataset), then its performance is evaluated using the other

dataset (often called the test or validation dataset) [30].

This split-sample approach is common, but inefficient. For

small to moderately sized datasets, this approach does not

use all of the available data to develop the model (making

overfitting more likely) and uses an inadequately small

dataset for performance evaluation [81]. For large datasets,

randomly splitting the data merely creates two identical

datasets, which is hardly a strong test of the model.

The preferred approach for internal validation is to use

bootstrapping to quantify and adjust any optimism in the

predictive performance of the developed model [82]. All

model development studies should include some form of

internal validation, preferably using bootstrapping, particu-

larly if no additional external validation is performed [39••].

As noted earlier, the EuroSCORE developers randomly

split their data into a development cohort and a separate

validation dataset, in a 90:10 split. This approach is weak

and does not constitute a strong test of the model and

unlikely to have the ability to quantify any overfitting.

External Validation

After a predictionmodel has been corrected for optimismwith

internal validation procedures, it is important to establish

whether it is generalizable to similar but different individuals

beyond the data used to derive it. This process is often referred

to as external validation [30]. The more external validation

studies using data from different settings, and thus different

case mixes, the more generalizable the model and the more

likely it will be useful in untested settings. External validation

can be carried out using data from the same centres as the

development data collected at a different time (temporal

validation) or can be carried out using data collected from

different centres (geographic validation).Model evaluationby

independent investigators is a strong test of external valida-

tion. Validation is not refitting themodel on new data, nor is it

repeating all of the steps in the development study. Validation

applies the published model (i.e., all of the regression coeffi-

cients and the intercept of baseline survival at a given time

point) to new data to obtain predictions and quantify model

performance (calibration and discrimination). The recom-

mended sample size for validation studies is a minimum of

100 outcome events, preferably 200 [51–53].

Assessing Model Performance

The aim of both internal and external model validation is to

quantify a model’s predictive performance [17] to indicate

whether it is fit for purpose and better than any existing
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models [24, 83•]. Discrimination and calibration are the

two key characteristics of model performance that must be

assessed [84••]. Discrimination is the model’s ability to

distinguish between individuals with and without the out-

come of interest. It is commonly estimated with the c-

index. The c-index is identical to the area under the

receiver-operating characteristic curve for models predict-

ing binary endpoints (e.g., logistic regression) [85]. It can

be generalized for survival models accounting for censor-

ing (e.g., Cox regression) [86].

Calibration refers to the agreement between predictions

from the model and observed outcomes. That is, if the model

predicts a certain risk to develop a disease, an equivalent

proportion of patients with the disease should be observed in

the validation sample. Calibration is preferably assessed using

calibration plots showing the relationship between the

observed outcomes and predicted probabilities, using a

smoothed lowess line [53, 87]. Perfect calibration therefore

corresponds to a slope of 1 and intercept of 0 [88]. Intercepts

greater than 0 and a slope less than 1 indicate overfitting of the

model [89]. The Hosmer–Lemeshow goodness-of-fit test for

binary outcome models is commonly used to evaluate model

calibration [16•]; however, the test has limited ability to

evaluate for calibration, and is often nonsignificant (e.g.,

calibrated) for small sample sizes and nearly always signifi-

cant for large datasets (e.g., lack of calibration). Furthermore,

the tests fails to indicate magnitude of direction of any mis-

calibration and as such should be avoided, in preference for

calibration plots [39••]. Discrimination and calibration, and

other statisticalmethods to evaluatemodel performance (such

as R-squared, Brier score) [83•] characterize the statistical

properties of a predictionmodel, but donot capture the clinical

consequences. Approaches such as decision curve analysis

and relative utility shouldbe considered togain insight into the

clinical consequences of using the model at specific proba-

bility (treatment) thresholds [90, 91].

The EuroSCORE model was evaluated by assessing

discrimination and calibration. The salient point to high-

light here is the use of the Hosmer–Lemeshow test [23].

Whilst the test produced P-values larger than 0.05 which

the authors indicated as good calibration, this provides no

meaningful indication of how well the model is calibrated.

No calibration plots were presented, and as such it is

unclear whether the model under- or over-predicts, or

whether there are any particular subgroup of patients where

the model appears less accurate.

Reporting

Numerous systematic reviews have shown that studies

describing the development or validation of a risk predic-

tion model are often poorly reported, with key details

frequently omitted from published articles. Critical

appraisal and synthesis are impossible when key details

about the methodology used and the results are not fully

reported, making it difficult for readers to judge whether a

risk prediction model has any value. When a paper presents

the development of a risk prediction model, it is absolutely

vital that the full model, including all regression coeffi-

cients and the intercept/baseline hazard, is either presented

in the paper or in an appendix, or that a link to computer

code is provided, to allow other investigators to evaluate

the model. Whilst this may appear obvious, many pub-

lished articles on risk prediction models deliberately or

unknowingly fail to report the actual model that they have

developed (e.g., FRAX [92]). A nomogram (a graphical

presentation of a risk prediction model [93]) is not a

replacement for presenting the actual risk prediction mode

[94].

In an effort to harmonize and improve the reporting of

studies developing or validating risk prediction models, the

TRIPOD (Transparent Reporting of a multivariable pre-

diction model for Individual Prognosis Or Diagnosis) Ini-

tiative produced the TRIPOD Statement, which is similar

to the CONSORT statement for randomized clinical trials.

Published simultaneously in 11 journals, the TRIPOD

Statement is a checklist of 22 key items that authors should

address in their articles describing the development or

validation or a risk prediction model [39••, 84••].

The brief snippets we have emphasized throughout this

article of specific issues in the publications describing the

development of EuroSCORE highlight the problems with

incomplete reporting. Only with full and transparent

reporting can readers critically appraise the methodology

and interpret the results.

Conclusion

Risk prediction models have great potential to aid in

operative risk assessment. However, for these models to

have any chance of being useful for clinical decision

making, they must be developed using appropriate statis-

tical methods and validated by others in different settings

to determine their predictive accuracy. As studies devel-

oping prediction models are unfortunately rarely prospec-

tive, investigators face challenges such as how to handle

missing data, what to do with continuous predictors, how to

carry out an internal validation, and how to conduct a

meaningful external validation study. They must also

ensure complete and comprehensive reporting of every step

of the study.

The surgical and anaesthesiology literature contains

hundreds, if not thousands, of models developed for

operative risk assessment. Only a very small minority have
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made any kind of impact on clinical practice. Point-and-

click statistical software has arguably contributed to the

plethora of methodologically weak, unusable prediction

models [28]. It is therefore important to engage with a

suitably experienced statistician before developing a new

prediction model, to check whether a suitable model

already exists, and to plan and, if possible, publish a pro-

tocol outlining the necessary steps for model development

[29•].

Prediction models are usually static, reflecting the case

mix in the data used to develop them. However, as mor-

tality following surgery decreases and the case mix evolves

over time, prediction models can become outdated and less

accurate. This process is called calibration drift [95, 96].

Developed in 1999 using data from a 3-month period in

1995, EuroSCORE is a classic example of calibration drift

[97]. The updated EuroSCORE II was therefore developed

in 2012 [1], although still with some methodological con-

cerns [98, 99]. Unless periodic updating is done, it is likely

that this model will also quick become outdated.

In summary, risk prediction modelling is a growing field

that is gaining huge interest in the era of personalized

medicine. Although there are no shortcuts and many

challenges when developing and validating accurate, useful

prediction models, these challenges are surmountable, if

the abundant methodological and practical guidance

available is used correctly and efficiently.
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