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Abstract

Purpose of Review Anemia is a frequent complication in

patients suffering from traumatic brain injury (TBI) or

subarachnoid hemorrhage (SAH) and has been associated

with poor outcome. Interestingly, red blood cell transfusion

(RBCT), which is the most common therapeutic interven-

tion in anemic brain-injured patients, was also reported as

an independent predictor of mortality in several studies.

The aim of this review was to summarize the current lit-

erature on the use of RBCT in brain-injured patients and to

provide some insights on how to optimize their use in this

setting.

Recent Findings In moderately anemic TBI/SAH patients,

RBCT could increase hemoglobin (Hb) levels while the

effects on cerebral oxygenation were modest and incon-

sistent, raising serious concerns about the effectiveness and

the risk/benefit ratio of this intervention. The optimal Hb

level to trigger RBCT in TBI and SAH patients has not

been defined yet. Thus, in those patients who are awake

and without any further neurological deterioration, RBCT

should be initiated as in other critically ill patients, e.g., for

Hb levels below 7 g/dL. In case of poor-grade clinical

status, the use of indicators of inadequate systemic oxygen

delivery (e.g., low venous hemoglobin saturation or high

lactate levels) or of brain hypoxia (e.g., low regional

hemoglobin saturation or brain oxygen pressure) may be

helpful to guide RBCT. Nevertheless, there is no evidence

to provide strong recommendations based on this strategy

to initiate transfusions in this patients’ population.

Summary Few good quality data exist about the effects of

RBCT on the outcome of TBI and SAH patients. While

randomized trials will be initiated, the optimal Hb level to

trigger RBCT in these patients may be related to the

clinical status or on systemic and/or cerebral monitoring

values.

Keywords Anemia � Brain injury � Outcome � Practice

Introduction

Acute brain injury, which is mainly represented by trau-

matic brain injury (TBI), subarachnoid hemorrhage (SAH),

and ischemic/hemorrhagic stroke, is a frequent condition

among patients admitted to the intensive care unit (ICU)

[1–3]. Patients suffering from acute brain injury are vul-

nerable to secondary brain damages following the primary

injury, such as hyperthermia, arterial hypotension, hypo-

glycemia, or hypoxemia, which will contribute to neuronal

death and poor functional recovery [4]. Given the increased

susceptibility of the injured brain to secondary insults,

avoiding ischemia is of major concern when dealing with
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neurocritically ill patients. Hemoglobin concentration is

one of the determinants of brain oxygen delivery according

to the following equation:

DO2 ¼ 1:39� Hb½ � � SaO2 þ 0:0031� PaO2ð Þ � CBF;

where DO2 is the oxygen delivery to brain, [Hb] is the

concentration of hemoglobin, SaO2 is the oxygen satura-

tion of hemoglobin, PaO2 is the oxygen partial pressure,

and CBF is the cerebral blood flow. Hence, according to

this equation, a significant reduction of Hb concentrations

may lead to decreased brain DO2 and eventually tissue

hypoxia, if the compensatory mechanisms aiming to keep a

constant tissue oxygenation fail [5].

About two-thirds of patients admitted to a general ICU

are anemic on admission; almost one-third of them have

hemoglobin level below 10 g/dL [6, 7]. In this setting,

many factors can contribute to the development of anemia,

such as frequent blood sampling, blood losses (clinically

apparent or occult) (10), hemodilution, shortened red blood

cells survival, and impaired erythropoiesis [8]. Anemia has

been shown to be an independent predictor of poor out-

come in many ICU populations [9]. Nevertheless, blood

transfusions, which is the most common therapy given to

correct anemia to increase Hb levels and is required in

almost half of critically ill patients [6], are also associated

with several complications and have been associated with

poor outcome in several studies, including neurocritically

ill patients [10]. Reasons for this ‘‘paradox’’ are complex

and may include, among all, the association of red blood

cells transfusions (RBCT) with the occurrence of oxidative

injuries, arterial hypoxemia due to transfusion-associated

circulatory overload (TACO), or transfusion-related acute

lung injury (TRALI) or the so-called ‘‘TRIM’’ (transfusion-

related immune modulation) effects, which increase the

risk of hospital-acquired infections [10–12]. In this review,

we summarized current knowledge about transfusion

practices in patients with acute brain injury, with particular

attention to TBI and SAH. A practical approach to trans-

fusion therapy in those patients has also been suggested.

The Effects of Red Blood Cells Transfusions
on Critically Ill Patients

Transfusion practices in the critically ill patients are based

on a number of prospective and retrospective studies con-

ducted in the last 15 years in different patient settings. In

the landmark ‘‘TRICC’’ (Transfusion Requirements In

Critical Care) trial, ICU patients assigned to a restrictive

transfusion strategy (transfusion if Hb level was below 7 g/

dL) had similar 30-day mortality rates (and even lower

mortality in subgroups with APACHE II\20 and patients

younger than age 55 years) than patients transfused

according to a more liberal strategy (if Hb level\10 g/dL)

[13]. The safety of a ‘‘restrictive’’ transfusion policy was

confirmed in other studies evaluating septic shock, gas-

trointestinal bleeding, or elderly patients with cardiovas-

cular disease undergoing hip surgery [14–16]. Even in

stable pediatric critically ill patients, an Hb threshold of

7 g/dL to initiate RBCT could decrease transfusion

requirements without increasing adverse outcomes [17].

Results are more conflicting in cardiac surgery patients; as

such, a recent randomized trial showed that the occurrence

of infection (primary outcome) was similar between

patients in the ‘‘restrictive-threshold group’’ (e.g., transfu-

sion if Hb\ 7.5 g/dL) and those in the ‘‘liberal-threshold

group’’ (e.g., transfusion if Hb\ 10.0 g/dL); however,

mortality was higher in the ‘‘restrictive’’ group (4.2 vs.

2.6 %; p = 0.045) [18].

The Effects of Red Blood Cells Transfusions
on Brain-Injured Patients

In the case of brain injury, the adaptive mechanisms (e.g.,

cerebral vasodilation, decreased viscosity, increased car-

diac output, and oxygen extraction) to maintain an ade-

quate DO2 during anemia are altered and may result in

cerebral hypoxia at higher Hb thresholds than in other ICU

populations [5]. In a retrospective study on TBI patients,

patients with Hb\ 10 g/dL during their ICU stay (anemic

group—2 % on admission and 48 % during the first week)

had a higher in-hospital mortality than nonanemic patients

(25 % vs. 6 %, p = 0.01); nevertheless, only RBCT, and

not anemia, was an independent predictor of poor outcome

[19]. Similarly, mean 7-day Hb levels below 9 g/dL were

independently associated with an increased risk of hospital

mortality in a retrospective cohort of 273 TBI patients

[20•]. In another retrospective study on TBI patients

(n = 116), an increased time during which Hb levels

exceeded the threshold of 9 g/dL was associated with

improved neurological outcome [21•]. On the opposite,

Salim et al. showed that anemia (Hb B 9 g/dL on 3 con-

secutive blood draws) was associated with poor outcome

after TBI; however, in a multivariable analysis, only RBCT

independently predicted mortality and an increased risk of

complications [22]. Finally, Okoye et al. showed that

anemia (Hb B 8 g/dL) was not associated with an increase

in mortality or other complications in isolated TBI [23].

In patients suffering from SAH, the occurrence of

symptomatic vasospasm was significantly associated with

Hb levels below 11 g/dL in the postoperative period [24•].

These findings were confirmed in another retrospective

study on 130 patients suffering from aneurysmal SAH,

where lower mean Hb levels were found in patients with

cerebral vasospasm and was an independent predictor of
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poor outcome [25]. In another study, low mean Hb levels

were associated with unfavorable outcome after SAH

(n = 702), with the best Hb cut-off to predict outcome at

11.1 g/dL [26]. In a retrospective study, Naidech et al.

showed that Hb levels remained significantly lower in

nonsurvivors when compared to survivors during the first

week after SAH (n = 103); also, low Hb levels remained

associated with poor outcome even after adjustment for

several confounders, including Hunt and Hess grade and

the occurrence of vasospasm [27]. These results suggest

that the impact of anemia may be dependent on the

underlying brain disease; if in TBI patients, data suggest a

controversial association of poor outcome with Hb con-

centrations below 9 g/dL, in SAH patients, in particular in

case of vasospasm, the cut-off of Hb independently asso-

ciated with mortality appeared much higher, around 11

g/dL. However, most of clinical studies were retrospective

and potentially presented significant selection biases. Fur-

thermore, the impact of length of exposition to anemia,

timing of anemia development (early vs. late), and the

relationship of anemia with RBCT needs to be clarified yet.

Importantly, taken these considerations all together, one

may argue that current recommendations on the use of a

restrictive transfusion strategy in ICU patients (e.g., when

Hb levels are below 7 g/dL in the absence of significant

heart disease) [28] may not apply to patients with TBI or

SAH. Nevertheless, it remains unclear whether increasing

Hb levels to 9–10 g/dL using RBCT would be a logical

therapeutic decision to improve cerebral oxygenation and

neurological recovery. In patients with TBI, the increase in

brain oxygen pressure (PbtO2) after RBCT was generally

limited. In one study, an increase in PbtO2 was observed in

26/35 (74 %) patients; the mean increase in PbtO2 was

around 3 mmHg from baseline at 1 h after RBCT admin-

istration [29•]. In another study (n = 30), 57 % of them

experienced an increase in PbtO2 after RBCT, with change

in Hb levels being significantly associated with change in

PbtO2 [30]. More recently, Yamal et al. showed brain tis-

sue hypoxia (e.g., PbtO2\ 20 mmHg) events were not

significantly different between patients receiving RBCT at

two Hb thresholds (7 g/dL vs. 10 g/dL) [31•]. Moreover, in

these studies, there were no clear factors predicting ‘‘re-

sponders’’ and ‘‘nonresponders’’ (on the basis of PbtO2

changes) to RBCT. Few studies evaluated the impact of

RBCT on brain oxygenation in poor-grade SAH; Kurtz

et al. showed that each 1.0 g/dL increase in Hb levels after

RBCT in such patients was associated with an increase in

PbtO2 of 1.39 mmHg, without significant effects on cere-

bral metabolism (e.g., the lactate to pyruvate ratio—LPR—

as a marker of anaerobic metabolism) [32•]. In a prospec-

tive study on anemic (Hb\ 9 g/dL) SAH patients, the

administration of one RBCT pack resulted in a significant

improvement in cerebral DO2, which was assessed using

positron emission tomography (PET) imaging [33]. Inter-

estingly, these effects resulted in a reduction of oxygen

extraction in those cerebral territories with the lowest

baseline DO2. In a second study, the same authors com-

pared the effects of 3 different interventions (e.g., fluid

expansion, vasopressors, or RBCT) on brain DO2 in three

different subgroups of poor-grade SAH patients [34••];

regional DO2 significantly increased in the three groups,

but the effects were more important in patients receiving

RBCT.

Studies evaluating RBCT as a predictor of outcome after

TBI or SAH have also found conflicting results. In a large

retrospective study in TBI patients (n = 1150), Salim et al.

found that RBCT were given in almost half of them during

the ICU stay and that RBCT were associated with

increased hospital mortality in a multivariable analysis

[22]. In another retrospective study in the same population,

RBCT were also found as an independent risk factor for

poor long-term neurological outcome [35]. On the oppo-

site, in a smaller cohort (n = 82), there was no association

between RBCT and poor neurological outcome after TBI

[36]. In SAH patients, several studies on patients found an

association between RBCT and worse neurological out-

come, the occurrence of delayed cerebral ischemia or even

increased mortality [37, 38]. However, these findings were

not confirmed in all studies; Broessner et al. found no

association between RBCT and neurological recovery in a

multivariate analysis conducted on 292 SAH patients [39].

Optimal Hemoglobin Concentrations in TBI
and SAH: Results from Randomized Trials
and Common Practice

Only few studies compared the effects of a restrictive or a

liberal transfusions strategy on the outcome of patients

with TBI or SAH. In a post hoc analysis performed in the

67 TBI patients included in the TRICC trial, patients ran-

domized to the ‘‘restrictive’’ RBCT policy (e.g., transfusion

if Hb\ 7.0 g/dL; n = 29) received less RBC units than

those included in the ‘‘liberal’’ strategy (e.g., transfusion if

Hb\ 10.0 g/dL; n = 38), with a similar 30-day mortality

(17 % vs. 13 %, p = 0.64), hospital length of stay, and the

occurrence of organ dysfunction [13]. In a prospective

randomized trial including 44 SAH patients, Naidech et al.

evaluated the effects of RBCT initiated at Hb of 10 or

11.5 g/dL in those subjects at high risk of developing

cerebral vasospasm [40••]; patients randomized to the

higher Hb threshold received more transfusions than others

but safety endpoints (e.g., infections and thromboembolic

events) were not different between groups. The number of

cerebral infarctions on brain imaging (6/20 vs. 9/22) and of

patients showing a poor neurological recovery was lower,
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although not statistically significant, in the higher Hb

threshold group. In a more recent study, Robertson et al.

investigated the effects of two different thresholds of Hb to

guide RBCT (7 vs. 10 g/dL) in TBI patients [41••]. On a

total of 200 patients, favorable outcome was similar

between patients included in the 7 g/dL (37/87) or in the

10 g/dL group (31/94); moreover, thromboembolic events

were significantly more frequent in the group transfused at

10 g/dL than others (22/101 [22 %] vs. 8/99 [8 %];

p = 0.009). These studies, although underpowered and

with significant methodological issues, showed no partic-

ular benefit in maintaining high Hb levels in patients suf-

fering from severe TBI or SAH. Two surveys, evaluating

either TBI or SAH patients, were conducted in North

America and evaluated the factors that could influence

transfusion threshold in this setting. In the first study, two

clinical scenarios (a TBI comatose patients either with or

without intracranial hypertension) were proposed to trauma

surgeons, neurosurgeons, and ICU physicians from the US

trauma centers (n = 187) [42•]. Interestingly, neurosur-

geons used a greater mean Hb threshold to initiate RBCT

than trauma surgeons and ICU physicians, independently

from the presence of intracranial hypertension. Moreover,

neurosurgeons used less indicators of poor anemia toler-

ance, such as increased lactate, low mixed venous satura-

tion, or PbtO2, than others to decide for RBCT. In a second

study conducted in North America, physicians taking care

of SAH patients in academic hospitals were inquired on the

common triggers to initiate RBCT in SAH patients [43•].

Mean Hb concentrations at which clinicians administered

RBCT progressively increased from an uncomplicated case

to a poor-grade patient (7.8 vs. 8.2 g/dL), in particular in

case of cerebral vasospasm and delayed cerebral ischemia.

Again, neurosurgeons expressed the highest minimum Hb

to initiate RBCT among all responders. The presence of

low PbtO2 (\15 mmHg) and high LPR ([40) were also

important triggers to administer RBCT in this setting.

How to Optimize Blood Transfusion

Currently, there are few alternatives to RBCT for anemic

brain-injured patients. Although recent studies suggested

some benefits from erythropoiesis-stimulating agents in

TBI patients [44], there is an urgent need to optimize the

use of RBCT in such patients and physicians should con-

sider the potential benefits on avoiding secondary brain

hypoxia as well as the detrimental effects on the develop-

ment of complications when correcting anemia in this

setting. If patients are awake and could be repeatedly

examined, Hb levels could be titrated according to the

occurrence of neuroworsening (NW) and only when NW is

suspected to be secondary to tissue hypoxia. In all

comatose or poor-grade patients, the use of advanced sys-

temic and cerebral monitoring could help to better titrate

the decision to administer RBCT (Fig. 1).

Systemic indicators of poorly tolerated anemia could be

used in clinical practice to decide for RBCT administration.

As such, in case of inadequate oxygen delivery, as suggested

by a mixed (SvO2) or superior vena cava (ScvO2) oxygen

saturation\65–70 %, RBCT could be useful to improve tis-

sue oxygenation, if hypovolemia has been previously exclu-

ded, as shown in patients with sepsis [45]. Although there are

no studies showing that this approach would provide some

benefits inpatientswithTBIorSAH, two retrospective studies

have shown that early hemodynamic optimization (EHO)

using a target ScvO2 of C65 % was associated with a trend

toward reduced mortality and better neurological outcome in

patients suffering from postanoxic brain injury [46, 47].

Importantly, the amount of RBCT and mean Hb levels were

similar between patients receiving EHO when compared to

controls, suggesting that the role of blood transfusion in this

therapeutic strategy remains to be further clarified. Other

indicators of impaired oxygen delivery may be lactate levels

and altered peripheral microcirculation. In one study, Mazza

et al. showed that, in septic patients receivingRBCT for anHb

threshold of 7 g/dL, blood transfusions could improve ScvO2

and concomitantly reduce lactate (from 2.4 to 2.2 mmol/L,

p = 0.005) [48]. Similarly, Sakr et al. showed that, in septic

patients with a critical reduction of capillary density in the

sublingual area, RBCT could significantly improve

microvascular flow [49]. Unfortunately, no data are available

on the effects of RBCT on lactate levels and microcirculation

in TBI and SAH patients. Thus, further studies are needed to

validate such approach based on biomarkers of impaired DO2

to guide RBCT in this setting.

Monitoring of cerebral oxygenation and metabolism

could also be helpful to titrate RBCT in TBI and SAH

patients. Cerebral regional oxygen saturation (rSO2)

assessed using near-infrared spectrometry (NIRS) devices

is effective to evaluate the brain effects of anemia during

elective heart surgery [50]. In preterms infants with

symptomatic anemia (n = 23), RBCT improved cerebral

oxygenation independently from the transfusion duration

[51]. Similar results were found in patients suffering from

sickle-cells disease or undergoing major abdominal surgery

when RBCT was given [52, 53]. Venous saturation in the

jugular vein (SvjO2) can also provide relevant information

on the adequacy of CBF in patients with SAH or TBI

[54, 55]. In one study, hemodilutional anemia (Hb between

5 and 7 g/dL) accentuated hypoxic cerebral injury fol-

lowing TBI in rats, although SvjO2 remained unaffected

[56]. Furthermore, we lack of clinical studies evaluating

the impact of RBCT on rSO2 and SvjO2 in TBI and SAH

patients. Moreover, these two techniques present several

pitfalls, in particular, the contamination from extracranial

Curr Anesthesiol Rep (2016) 6:250–256 253

123



blood for the rSO2 measurement and the poor sensitivity of

SvjO2 desaturation to detect regional brain hypoxia in these

patients [57, 58].

Direct monitoring of tissue hypoxia via PbtO2 catheters

has shown that only patients with anemia (Hb\ 9 g/dL) and

concomitant tissue hypoxia (e.g., PbtO2\ 20 mmHg) were

at high risk of poor outcome after TBI [59•] and should be

potentially considered as candidate for RBCT. The main

limitation of such approach is that PbtO2 catheters are not

available in all centers and give information only for a very

limited area of the brain. Also, other possible causes for

cerebral hypoxia, such as increased intracranial hyperten-

sion, severe hypocapnia, seizures, hyperthermia, and arterial

hypoxemia, should be excluded before considering RBCT in

the management of such patients.

Conclusions

Optimizing RBCT in TBI and SAH patients remains a

significant challenge for clinicians. According to recom-

mendations for other critically ill patients, a ‘‘restrictive’’

transfusion practice (e.g., RBCT for Hb\ 7 g/dL) should

be considered safe for brain-injured patients, at least for

those who are awake and do not present worsening of their

clinical status during repeated neurological examination.

For those with poor-grade clinical status, the use of ‘‘sys-

temic’’ (low SvO2/ScvO2, high lactate levels or impaired

microcirculation) or ‘‘cerebral’’ (low rSO2, SvjO2 and

PbtO2) indicators of cerebral hypoxia may be helpful to

guide RBCT in this setting. However, this approach needs

to be validated in large prospective studies.
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