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Abstract Malignant tumors are characterized by their

ability to metastasize, which is the main cause of cancer-

related mortality. Besides intrinsic alternations in cancer

cells, the tumor microenvironment plays a pivotal role in

tumor growth and metastasis. Ample evidence suggests

that the perioperative period and the excision of the pri-

mary tumor can promote the development of metastases

and can influence long-term cancer patient outcomes. The

role of cancer biology and its impact on the perioperative

period are of increasing interest. This review will present

evidence regarding fundamental principles of cancer biol-

ogy, especially tumor microenvironment, and discuss new

therapeutic opportunities in the perioperative timeframe.

We will also discuss the regulatory signaling that could be

relevant to various aspects of surgery and surgical

responses, which could facilitate the metastatic process by

directly or indirectly affecting malignant tissues and the

tumor microenvironment. We address the influences of

surgery-related stress, anesthetic and analgesic agents,

blood transfusion, hypothermia, and b-adrenergic blockade
administration on tumor growth and metastasis. Through

an improved understanding of these processes, we will

provide suggestions for potential new perioperative

approaches aimed at improving treatment outcomes of

cancer patients.
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Introduction

Cancer is known to be highly complex and characterized

several hallmarks including unrelenting proliferation,

avoidance of growth suppressive signals, apoptotic resis-

tance, neovascularization, and acquired capabilities for

invasion and metastasis. Conceptual advances over the past

several years have resulted in the addition of two additional

hallmarks which include reprogramming of cellular energy

metabolism and immune escape [1, 2••]. The ‘‘normal’’

neighboring cells (e.g., fibroblasts, endothelial, nerve, and

immune cells) comprise the tumor microenvironment,

which contribute to the acquisition of hallmarks of cancer

[1]. Among each of these, the two felt to be most signifi-

cant in the perioperative period, include induction of

angiogenesis and immune escape, both of which are

mediated by the surgical stress response. The influence of

the non-malignant, stromal cells of tumor microenviron-

ment is now widely appreciated, with these cells becoming

increasingly recognized as major determinants of cancer

biology. The critical cell lineages in this context are tumor-

associated macrophages (TAM), fibroblasts, and inflam-

matory cells, all which commonly interact with the tumor

cells through a variety of secreted factors. In addition to

their impact on tumor growth, the tumor microenvironment

has also been shown to affect tumor initiation, metastasis,
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and tumor therapy [3]. Decades of research has suggested

that the perioperative period and surgical excision of the

primary tumor can have an impact on the metastatic pro-

cess and even on patient survival [4••]. Here, we review

contemporary knowledge of the tumor microenvironment

and how the events during perioperative care can influence

the microenvironment. On the basis of recent discoveries,

we will also discuss new opportunities for therapeutic

applications in the perioperative timeframe.

Tumor Microenvironment

Characteristics of the Tumor Microenvironment

The interplay between cancer cells and their local envi-

ronment is crucial for regulating the malignant features of

cancer cells. The tumor microenvironment is composed of

tumor, immune, endothelial, fibroblast, nerve, and other

cells, which collectively orchestrate tumor growth, inva-

sion, and metastasis. We will first briefly describe the

contributions of some of these cell types in the tumor

microenvironment to malignant biology and also discuss

the regulatory signaling that controls their individual and

collective functions.

Tumor-Associated Macrophages (TAMs)

Macrophages are among the more prevalent cell types in

the tumor microenvironment. Macrophages arise from

peripheral blood monocytes, which are derived from bone

marrow progenitors and then enter circulation. Macro-

phages have several subtypes and their phenotype can vary

depending on the microenvironment. Two states for

polarized macrophages have been described including M1

(type I or classically activated) and M2 (type II or alter-

natively activated) subsets [5]; these are likely part of a

continuum rather than absolute discreet classifications. In

general, TAMs have properties of M2-activated cells

through the influence of multiple cytokines (interleukin-4,

interleukin-10, etc.) in the tumor microenvironment. Given

that there is likely a continuum of activation, newer clas-

sification refers to macrophages as pro-inflammatory or

pro-angiogenic [6]. Macrophages have been shown to play

key roles in solid tumor development via a vast array of

cytokines, chemokines, and inflammatory mediators that

can directly influence the behavior of tumor cells [7].

Although there are few reported exceptions, it should be

recognized that the clinical and experimental data largely

support the hypothesis that macrophages promote malig-

nancy. Clinical studies make a strong case that increased

macrophage density in tumor stroma correlates with poor

clinical outcomes in different types of solid tumors [8–10].

Moreover, recent studies have revealed that TAMs promote

malignant progression based on their capacity to enhance

angiogenic, invasive, and metastatic programming of neo-

plastic tissues [11–15].

Tumor-Infiltrating Lymphocytes

Tumor-infiltrating lymphocytes (TILs) in tumor microen-

vironment were described about 30 years ago. As a tumor

develops, the body elicits an immune response where

lymphocytes migrate to the tumor in an attempt to fight the

cancer. Studies with large cohorts of human tumors have

established that TILs are found in tumors with varying

frequency, and TILs are strongly associated with disease

free and overall survival for many cancer types, which

suggests that TILs likely play biologically critical roles in

restricting tumor growth [1, 16–19]. It is important to

distinguish that there are different types of T lymphocytes,

which have different functions in the tumor microenvi-

ronment. T cells are fully differentiated immune cells

presented in tumor stroma. Among them

• CD8? cytotoxic T lymphocytes (CTLs) are directly

capable of killing tumor cells [20],

• CD4? T helper lymphocytes (Th) are a heterogeneous

cytokine-secreting class of T lymphocytes: T helper

type 1 lymphocytes (Th1) have a crucial role in

activating CTLs and T helper type 2 lymphocytes

(Th2) stimulate humoral immunity.

• Natural killer (NK) cells have a critical role in tumor

cell destruction and in the restriction of tumor growth,

and reduced NK cell activity has been shown to be

associated with higher cancer mortality in patients with

cancer [21].

Tumor infiltration by Th1 and CTL cells, together with the

presence of cytokines such as IFN-c and tumor necrosis

factor-a (TNF-a), has been associated with improved

prognosis of patients with many different cancers [22].

In addition to the effector immune cells, multiple cell

types are known to contribute to tumor-mediated immune

suppression, including regulatory T cells (Treg), type 2 NK

T cells, TAMs, and myeloid-derived suppressor cells

(MDSCs). In cancer patients and animal tumor models,

these suppressor cells (e.g., Tregs and MDSCs) accumulate

in the tumor microenvironment and suppress innate and

adaptive anticancer immunity, which foster disease devel-

opment and metastasis [8]. CD4?CD25?FoxP3? Tregs

are a subpopulation of T cells characterized by the

expression of FoxP3, which is essential for their develop-

ment and function. Tregs control immune responses by

suppressing conventional effector T lymphocytes, NK

cells, dendritic cells (DCs), or macrophages [23]. Tregs are
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also critical for the maintenance of self-tolerance. Evidence

shows that Tregs play a central role in immune tolerance by

inhibiting effector cytotoxic T cell lymphocytes. In the

tumor microenvironment, a large number of Tregs accu-

mulate by several possible mechanisms, including recruit-

ment of naive FoxP3? Tregs and induction of CD4? T

helper cells to Tregs [24, 25]. MDSCs are a variety of

partially differentiated myeloid progenitors that have been

identified in tumors, which have been shown to antagonize

tumor senescence and suppress CTL activity [26, 27].

Tumor- and host-secreted factors can induce and promote

the accumulation of MDSCs that down-regulate immune

surveillance and antitumor immunity, thereby facilitating

tumor growth [28].

Endothelial Cells

Tumor vascularization is a critical step for tumor growth

and progression. Endothelial cells (ECs) are a major

component of the angiogenic process and modulate a

diverse spectrum of pathophysiologic processes in normal

and hyperplastic tissues. Tumor-associated ECs form

angiogenic vessels to provide nutritional support to the

growing tumor [29, 30]. Tumor-associated ECs play a

central role in controlling leukocyte recruitment, tumor cell

behavior, and metastasis formation because they are the

interface for circulating blood cells, tumor cells, and the

extracellular matrix. In the tumor microenvironment, tumor

cells produce a variety of pro-angiogenic factors, including

VEGF, to promote tumor angiogenesis, tumor cell motility,

and metastasis.

Cancer-Associated Fibroblasts

Fibroblasts are the most abundant cell type in connective

tissues and they form the structural framework by secreting

extracellular matrix components [31]. Cancer-associated

fibroblasts (CAFs) are abundant in the stroma of many

tumors, and serve as one of the most crucial components of

the tumor microenvironment. CAFs are mainly responsible

for the production of extracellular matrix proteins and

retain a major role in extracellular matrix remodeling.

CAFs secrete growth factors and cytokines that produce

oncogenic signals. Compared to normal fibroblasts, CAFs

promote tumor growth and angiogenesis through elevated

SDF-1/CXCL12 secretion [32]. An understanding of this

mutual relationship would enable us to treat cancer patients

by targeting CAFs.

The ability to modify the environment is an important

property of cancer cells that likely allows acquisition of

some of the hallmarks required for tumor growth and

metastasis. A better understanding of these processes

should lead to innovative strategies for disrupting the

complex crosstalk between the cancer cells and host cells.

Factors Influencing Loco-Regional and Distant
Metastatic Disease

Metastasis is the dominant cause of morbidity and death in

cancer patients. Increased evidence from animal and

human studies has showed that surgery and other periop-

erative processes can promote metastasis. Recently,

researchers have increasingly identified several underlying

perioperative factors that play a pivotal role in influencing

loco-regional and distant site metastatic disease.

Surgical Aspects Affecting Metastasis

While surgery is a major component of cancer care, the

perioperative period is also a time of intense stress that

could actually lead to undesired tumor growth and pro-

gression. Such concerns have prompted investigation of

underlying mechanisms and for innovative therapeutic

opportunities to maximize patient benefit. Here, we will

summarize the potential impact of various aspects of

perioperative care.

Anesthetic Approaches

Studies indicate that the anesthetic and/or analgesic

approach used during surgery and the perioperative period

may influence cancer recurrence [33, 34]. Certain periop-

erative anesthetics and analgesics have the potential to

impact cancer outcomes [35–38]. Anesthetic agents such as

ketamine, thiopental, and halothane have been shown to

suppress NK cell activity, increasing the likelihood of

tumor metastases [39]. Both nitrous oxide and halothane

can accelerate postoperative progression of spontaneous

lung metastases in pre-clinical lung and melanoma models

[40]. The mechanism of action for tumor growth has been

postulated to be both direct and indirect effects of the

anesthetic agents themselves. The indirect effects include

impact on the neuroendocrine pathways and modulators of

cell-mediated immunity. In contrast, direct effects include

upregulation of hypoxia-inducible factor-1 (HIF-1) gene

expression by inhalational anesthetics. Both pathways

contribute to cancer recurrence [41].

In many surgical settings, regional and general anes-

thesia are used jointly. Using a combined modality

approach would be expected to reduce the requirement for

inhaled general anesthetics. Regional anesthesia dampens

the neuroendocrine stress response and decreases periop-

erative immune suppression by impacting NK cell activity

[38]. Pre-clinical studies indicate that regional anesthesia
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in combination with optimal postoperative analgesia yields

reduced metastatic burden post-operatively. Retrospective

clinical studies confirm that regional analgesia may reduce

recurrence risk after cancer surgery [42]. Meta-analyses

demonstrate that inhalation anesthetics such as ketamine,

thiopental, and halothane might influence tumor progres-

sion by promoting cancer cell proliferation and angiogen-

esis [35].

Surgical Approach

During the perioperative period, different surgical tech-

niques may influence the oncological results, especially the

laparoscopic versus open approaches. Surgical trauma at the

time of cancer resection elicits an acute phase response [43].

The acute phase response is a transient reaction to surgery

that accompanies a period of release of tumor cells,

increased angiogenesis, an imbalance of growth stimulatory

and inhibitory factors, and suppression of the host cell-me-

diated immunity [44]. Collectively, this response to surgery

can leave the host vulnerable to the propagation of metas-

tases. The extent of the acute phase response is directly

proportional to the degree of surgical trauma [45, 46].

Surgical oncologic delivery of care has been revolu-

tionized with the introduction of minimally invasive surgi-

cal techniques. Minimally invasive surgery is known to

reduce the degree of surgical trauma that occurs during the

postoperative period. For example, colorectal resection via

conventional laparotomy or mini-laparotomy approach was

compared for potential impact on host immune function

[47]. Longitudinal blood collections pre- and post-opera-

tively were obtained to evaluate for differences in immune

mediators and inflammatory cytokines. Lymphocyte counts

remained lower in the conventional and mini-laparotomy

groups but had returned to baseline in the laparoscopy group

5 days post-operatively. Furthermore, postoperative

inflammatory cytokines serum concentrations were signifi-

cantly lower in the laparoscopic compared to conventional

patients. The down-stream impact of a singular periopera-

tive event on risk of disease metastases and recurrences

remains to be fully elucidated clinically; however, pre-

clinical data point to a biologically meaningful impact. Tai

et al. utilized an animal model of spontaneously metasta-

sizing tumors and surgical stress to demonstrate the poten-

tial impact of surgical stress on tumor growth. In this model,

4T1 breast cancer cells were inoculated into the mammary

fat pad of mice. Fourteen days post-tumor implantation,

complete resection of the primary tumor was performed and

a subset of mice were exposed to abdominal nephrectomy.

Numbers of lung nodules were then quantified. When

oncolytic virus immune stimulation is administered pre-

operatively, prevention of lung metastases was noted sug-

gesting a correlation between immune suppression and

tumor growth and metastases in the perioperative period

[48]. Direct clinical translation remains to be determined.

Surgery has been shown to promote the formation of fibrin

and platelet clots, thereby impairing NK cell-mediated

tumor cell clearance, with a resultant increase in metastases

[49]. Work done in our own laboratory has demonstrated the

impact of surgery on tumor growth in an orthotopic model

of ovarian cancer. Mice inoculated with tumor cells and

then exposed to mastectomy or laparotomy had significantly

increased tumor growth compared to those treated with

anesthesia alone with a mechanism of action found to be

mediated via adrenergic receptors and increased angiogen-

esis [37]. However, clinical evidence for an improved

endocrine and immune profile following laparoscopy has

been less convincing in several large randomized clinical

trials. Although these studies have demonstrated lower

levels of IL-6, the alterations in other key cytokines, number

of circulating NK cells, and the hormonal stress response are

less clear and may be related to the complex nature of

advanced laparoscopic procedures in oncology [4••, 50–52].

The Surgical Stress Response

The stress response is defined by the hormonal and meta-

bolic changes that follow surgery including activation of

the sympathetic nervous system, the endocrine ‘‘stress

response,’’ and the subsequent immunological and hema-

tological changes [53]. Collectively, this response after

surgery can augment the healing process, but over-activity

or under-activity of host defense mechanisms may lead to

unintended consequences [21]. Numerous studies indicate

that stress is considered a contributor to cancer develop-

ment [54]. Levels of stress biomarkers, primarily epi-

nephrine and norepinephrine, are elevated in the

perioperative period [55]. In the perioperative period, the

persistent activation of the hypothalamic–pituitary–adrenal

axis can contribute to the progression of cancer [54]. The

surgical stress response may provide the optimal milieu for

persistence of minimal residual disease post-operatively.

Furthermore, surgery has been suggested to accelerate the

growth of preexisting micro-metastases and to promote the

establishment of new metastases [56]. Both pre-clinical and

clinical studies have shown that surgery induces suppres-

sion of anti-metastatic cell-mediated immunity at a critical

period, which may lead to immune escape of micro-

metastatic disease [57]. The release of catecholamines and

pro-inflammatory cytokines as a result of surgical stress is

believed to promote cancer progression [58]. The depres-

sion of the immune system occurs within hours of surgery,

lasts for several days, and is proportional to the extent of

surgical trauma [59]. The underlying mechanisms of

postoperative immune suppression have not been com-

pletely established. The surgical stress response with
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associated immune shifts towards NK suppression, as well

as Th2 and TAM dominance, may provide optimal con-

ditions for the persistence of residual disease and recur-

rence [36]. However, there is limited understanding of the

longer-term impact of perioperative immune alterations on

patients’ cancer and survival outcomes.

Perioperative Factors that Influence Tumor Growth

Other factors such as blood transfusion, pain, and

hypothermia are also potentially important perioperative

factors to consider when evaluating the impact of surgery

on tumor growth and metastases [21, 60, 61]. Retrospective

studies implicate neuroendocrine mediators, such as cate-

cholamines and prostaglandins. Many different malignan-

cies express receptors for catecholamines [62] and

prostaglandins [63] exerting a direct tumoral effect, which

includes promotion of tumor cell proliferation [64], adhe-

sion [65], migration [66] and invasion [64], resistance to

apoptosis and anoikis [67, 68], as well as secretion of pro-

angiogenic factors such as vascular endothelial growth

factor [69]. Again the indirect mechanism of suppression of

perioperative anti-metastatic immunity exists [44]. Peri-

operative pain management may also have an effect on

patient outcomes due to its interplay with this component

of perioperative tumor growth in that pain and nociception

are associated with catecholamine secretion [70].

A meta-analysis aimed at evaluating the role of periop-

erative blood transfusion on colorectal cancer recurrence

demonstrated that perioperative blood transfusions have a

detrimental effect on curable colorectal cancers [60, 71].

Direct causal relationships are difficult to draw due to dif-

ferences in disease site and stages of disease included in this

analysis. Nevertheless, it is important to carefully consider

the indications for perioperative blood transfusions.

Surgery commonly results in mild perioperative

hypothermia, which has immunosuppressive effects, and

has been shown to delay healing and predispose patients to

wound infections [72]. Hypothermia also causes increased

blood loss and predisposes patients to transfusion of blood

products [73]. Additionally, hypothermia in combination

with surgery and general anesthesia has been shown to lead

to a reduction in NK cell activity, and an increase in lung

tumor retention and metastasis [74]. Therefore, maintain-

ing normothermia is important for perioperative care of

cancer patients.

Interventions Directed at Improving Perioperative

Outcomes

As noted above, excess catecholamine and prostaglandin

release in the perioperative period results in significant

impairment of immune responses. Blockade of

catecholamines and prostaglandins could be an effective

therapeutic approach targeted at improving patient outcomes.

Preclinically, the use of nonselective b-adrenergic blockers

and selective COX2-inhibitors has resulted in reduced endo-

crine and angiogenic perturbations, improved immune pro-

files, and an attenuated surgical stress response [4••].

Furthermore, some studies suggest that regional anesthesia

can reduce the sympathetic response and improve oncologic

outcomes.

Statins are commonly used as lipid-lowering drugs. Sev-

eral of these drugs function by inhibiting the enzyme HMG-

CoA, which plays a role in cholesterol formation in the liver.

Omega-3 fatty acids may have cancer chemo-preventative

and anti-inflammatory properties. Both of these drugs, in

some studies, are associated with reduced cancer-related

mortality, reduced postoperative immune suppression and

infection (omega 3-fatty acids), and decreased tumor prolif-

eration and increased apoptotic markers (statins) [75].

Given the noted benefits regarding modifications in the

delivery of post-surgical care, results from numerous

studies have been integrated into enhanced recovery after

surgery (ERAS) guidelines in various surgical subspe-

cialties [76]. ERAS is an evidenced-based multidisci-

plinary approach to perioperative care delivery aimed at

improving early recovery of patients undergoing major

surgery. Components of ERAS programs include multi-

modal analgesia and anesthesia in the perioperative period,

early feeding and ambulation, goal-directed fluid therapy,

as well as avoidance of routine drain or nasogastric tube

placement. Although the oncologic benefits of such a

program remain to be realized, initial studies have

demonstrated a 50 % reduction in postoperative compli-

cations and a 30 % reduction in hospital length of stay

[4••]. This per se helps keep patients on their cancer jour-

ney with timely return to intended adjuvant therapies, and

may thereby indirectly improve cancer outcomes by this

mechanism.

Conclusions

Growing evidence suggests that events and care in the

perioperative period can influence tumor biology and the

microenvironment. As such, long-term oncological out-

comes may be impacted. Therapies directed at the peri-

operative period (e.g., b-adrenergic blockade and/or COX2
inhibitors) may represent opportunities to reduce the risk of

metastasis and/or growth of minimal residual disease.

Furthermore, perioperative interventions that work towards

mediating the immune and neuro-hormonal milieu of the

perioperative period should be the focus of perioperative

care teams. These include careful selection of anesthetic

agents, avoidance of hypothermia, restrictive blood
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management policies, and adequate pain management. The

possibility that perioperative management may alter the

rate or incidence of cancer recurrence represents another

important component of care during the entire cancer

continuum.
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