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Abstract Fibrosis is defined as increased fibroblast pro-

liferation and deposition of extracellular matrix compo-

nents with potential clinical ramifications including organ

dysfunction and failure. Fibrosis is a characteristic finding

of various skin diseases which can have life-threatening

consequences. These implications call for research into this

topic as only a few treatments targeting fibrosis are avail-

able. In this review, we discuss oxidative stress and its role

in skin fibrosis. Recent studies have implicated the

importance of oxidative stress in a variety of cellular

pathways directly and indirectly involved in the patho-

genesis of skin fibrosis. The cellular pathways by which

oxidative stress affects specific fibrotic skin disorders are

also reviewed. Finally, we also describe various therapeutic

approaches specifically targeting oxidative stress to prevent

skin fibrosis. We believe oxidative stress is a relevant

target, and understanding the role of oxidative stress in skin

fibrosis will enhance knowledge of fibrotic skin diseases

and potentially produce targeted therapeutic options.
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Introduction

Fibrosis is caused by increased tissue remodeling inter-

rupting normal function and is a common cellular response

to long-term inflammation or cell injury [1••]. Though

usually a beneficial tissue response, increased fibrosis can

lead to organ dysfunction and degenerative changes in

vascular illnesses such as diabetes, hypertension, and

chronic kidney disease [2]. The effects of fibrosis are

prominent in dermatological diseases such as scleroderma,

graft-versus-host disease (GVHD), keloids, and other

fibrotic diseases. Fibrotic skin disorders can greatly impact

patient quality of life with organ dysfunction and psycho-

logical sequelae [3••, 4–6]. Despite such serious effects,

mechanisms of fibrosis are still not completely understood,

and the need for anti-fibrotic treatments remains [3••].

Fibrosis is initiated by cellular injury due to prolonged

injury, inflammation, infection, autoimmune reactions,

allergy, radiation, or chemical damage [7, 8]. Subsequent

activation of inflammatory cells, elevations of oxidative

stress, uncontrolled increase in fibroblast number, and

deposition of extracellular matrix (ECM) components

characterizes fibrosis. Oxidative stress, an imbalance of

oxygen- and nitrogen-based free radical production and the

cellular antioxidant defense system, has an important role

in the pathogenesis of fibrosis with effects on cellular

pathways of function and repair [3••, 9]. Consequently,
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there has been increasing research into the role of oxidative

stress in fibrotic skin disease.

In particular, therapeutic modalities targeting these

radicals in fibrotic diseases have been of special interest.

To our knowledge, there are no published reviews that

primarily focus on the role of oxidative stress in skin

fibrosis. In this review, we discuss the mechanisms via

oxidative stress that promote skin fibrosis highlighting

specific fibrotic skin disorders. We also seek to expound on

a variety of potential therapeutics—particularly focusing

on cellular targets and mechanisms of action.

Methods

A search of the published literature from 1 January 2009 to

present on the role of oxidative stress in skin fibrosis was

performed in July 2014. The following fibrotic skin dis-

orders were identified after review of the textbook Der-

matology [10•]: acral fibrokeratoma, amyloidosis, atypical

fibroxanthoma, bleomycin-induced skin fibrosis, cutaneous

angiofibroma, dermatofibroma, dermatofibroma protuber-

ans, eosinophilia–myalgia syndrome (EMS), eosinophilic

fasciitis, epithelioid cell histiocytoma, epithelioid sarcoma,

fibroblastic rheumatism, fibroma of the tendon sheath,

fibrosarcoma, fibrous hamartoma, graft-versus-host dis-

ease, hypertropic scars, infantile digital fibroma, infantile

myofibromatosis, keloids, lipodermatosclerosis, mixed

connective tissue disease, multinucleate cell angiohistio-

cytoma, nephrogenic systemic fibrosis, nodular fasciitis,

porphyria cutanea tarda, restrictive dermopathy, sclere-

dema, scleredema diabeticorum, scleroderma, scleromyx-

edema, sclerotic fibroma of the skin, stiff skin syndrome,

superficial fascial fibromatosis, taxane-induced skin fibro-

sis, toxic oil syndrome (TOS), and Winchester syndrome.

A search of PubMed and EMBASE was conducted using

specific keywords or MeSH terms. ‘‘Fibrosis’’ was com-

bined with (‘‘oxidative stress,’’ ‘‘reactive nitrogen species,’’

or ‘‘reactive oxygen species’’) along with the above listed

disorders. Papers published within the last 5 years were

included. Papers in a language other than English were

excluded. Additional articles were included from the bib-

liography of articles meeting the search criteria.

Results

As outlined in Table 1, our initial search resulted in 131

articles from the Pubmed database. A total of 131 articles

were considered and screened. A title and abstract screen

was conducted, exclusion of articles not in English was

completed, and duplicates removed with a total of 54

articles remaining. Additional articles from the bibliogra-

phy of the articles meeting the search criteria were inclu-

ded with a total of 57 articles in this review.

The Role of Oxidative Stress in Skin Fibrosis

A summary of the general mechanism of fibrosis is

depicted in Fig. 1. Damaged cells recruit multiple regula-

tors of fibrosis such as cytokines, chemokines, angiogenic

factors, growth factors, acute phase proteins, and caspases

[8]. These regulators recruit endogenous cells such as

neutrophils, macrophages, T- and B-lymphocytes that

release profibrotic growth factors such as transforming

growth factor beta (TGF-beta), connective tissue growth

factor (CTGF/CCN2), and platelet-derived growth factor

(PDGF). The activation of these agents causes synthesis of

ECM via activation and differentiation of myofibroblasts

from mesenchymal, epithelial, endothelial, and fibroblast-

like cells [8, 11]. In addition to the increased synthesis and

deposition of ECM, alpha-smooth muscle actin (a-SMA), a

myofibroblast-associated protein which serves to increase

contraction of the matrix, and other profibrotic genes are

expressed [11]. The progression of fibrosis is a complex

process in which oxidative stress is required for

progression.

Table 1 Schematic of literature search strategy and results
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Oxidative stress is thought to play a significant role in

cellular functions involved in skin fibrosis [12]. These

molecules are defined as free radicals and other unstable

oxygen- and nitrogen-containing molecules which have

one or more unpaired electrons allowing the formation of

other radicals [13]. Exogenously, free radicals are gener-

ated by environmental factors including ultraviolet radia-

tion, pollution, cigarette smoke, and other inflammatory

processes [3••]. Endogenously, free radicals are formed by

enzyme systems including the electron transport chain

activity [3••], xanthine oxidase [14], the mitochondrial

respiratory chain [15], lipid peroxidases [16], cytochrome

P450 [17], NO synthase [18], and multicomponent nico-

tinamide adenine dinucleotide phosphate (NADPH) oxi-

dases [19•].

NAPDH Oxidase (NOX) Enzymes

Of interest in fibrosis, NADPH oxidase (Nox) enzyme

complexes [20] are located in different cellular tissues

and are large producers of oxidative stress [3••, 19•]. In

humans, seven Nox enzyme complexes have been iden-

tified [20] and have been shown to play a major role in

generating radicals such as the superoxide anion, hydro-

gen peroxide, and singlet oxygen [13, 19•, 20]. Secondary

reactive species result from the reactions of free radicals

with bystander molecules, proteins, lipids, and nucleic

acids [12]. These secondary reactions delineate oxidative

stress as both anti-pathogenic and cell signaling

molecules.

Oxidative stress has a commonly known protective role

during phagocytosis of pathogens [21]; phagocytes are

activated to increase free radical production via immuno-

globulins, complement proteins, inflammatory cytokines,

and different types of activated receptor classes [13]. After

phagocyte-mediated effects, free radicals interact with

antioxidants such as vitamins, glutathione, or proteins for

inactivation [13]. Enzymes including superoxide dismutase

(SOD), catalase, glutathione peroxidase, and peroxiredox-

ins also decrease oxidative stress [13]. Although the link

between phagocyte radical production and fibrosis is not

well defined, we anticipate this is an important area of

future research.

Extracellular signaling is necessary to augment oxida-

tive stress to facilitate their interaction with proteins, DNA,

lipids, and carbohydrates. These signals act via three main

intracellular signaling pathways, which cause an intracel-

lular increase in oxidative stress along with other down-

stream actions. These pathways include inhibition of

protein tyrosine phosphatases (PTP), activation of MAPK

cascades or other kinases, and activation of specific tran-

scription factors [22••].

Interaction of cytokines or growth factors with cell

receptors allows for augmentation of oxidative effects.

Specific cytokines and signaling molecules such as angio-

tensin II, PDGF, and TGF-beta have been implicated for

their pro-oxidative roles [23]. Once Nox1 and Nox2 are

activated via PDGF or Nox4 via TGF-beta, oxidative stress

is increased and ECM protein synthesis is modulated via

subsequent activation of PTP’s and activation of specific

kinases such as JNK, MAPKs, JAKs, c-Src, or extracellular

Fig. 1 Mechanism of Fibrosis:

Damaged endothelial cells

secrete chemokines that attract

various immune cells. In

conjunction with mediators such

as reactive oxygen species and

other free radicals, these

immune cells increase levels

of profibrotic growth factors

(TGF-beta, PDGF, and CTCF).

These growth factors activate

fibroblast proliferation and

differentiation into

myofibroblasts eventually

increasing ECM deposition
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signal-regulated kinase (ERK) [3••]. This results in signal

cascade phosphorylation and increased expression of

transcription factors as well as fibrotic genes that increase

expression of TGF-beta, CTGF (CCN2), and PDGF [1••,

24•]. Thus, oxidative stress has been shown to stimulate

expression and secretion of these cytokines and growth

factors, influencing differentiation of fibroblasts [25],

profibrotic actions [26], and epithelial–mesenchymal tran-

sition (EMT) [27]. Additionally, oxidative stress has been

associated with aging [28], fibrosis, and scar formation [13,

29–31]. Hence, oxidative stress is necessary for various

cellular functions.

Oxidative stress acts to influence cellular fibrosis via a

multitude of different cellular signaling actions within the

cell. For instance, oxidative stress has been shown to affect

profibrotic cytokines and pathways such as TGF-beta and

mTOR, cell cycle regulation, EMT, and collagen produc-

tion. Understanding the mechanisms of oxidative stress

interaction with cellular fibrotic actors allows for recogni-

tion of additional anti-fibrotic therapeutic targets.

Oxidative Stress and TGF-beta

Oxidative stress is also influenced by TGF-beta. TGF-beta,

a profibrotic cytokine, has been shown to regulate cellular

proliferation, differentiation, and ECM production.

Research demonstrates that TGF-beta activates NADPH

oxidases such as Nox4, augmenting fibroblast recruitment

and differentiation [1••, 25, 32, 33•]. Increased Nox

expression augments free radical levels, activates the

mitochondrial respiratory chain, and represses cellular

antioxidant systems [1••]. TGF-beta binding to cell surface

receptors causing phosphorylation of Smad transcription

factors allows for gene expression of histone acetyltrans-

ferases [34].

Mitochondrial free radicals, also increased by TGF-beta

signaling, are necessary for TGF-beta-mediated gene

transcription in the Smad3 pathways [34]. Within the

Smad3 pathways, plasminogen activator inhibitor-1 (PAI-

1), a potent profibrotic matricellular protein, is important in

TGF-beta1 signaling and is involved in inflammatory and

fibrotic pathways [1••, 35–40] via suppression of ECM

degradation and increased matrix remodeling [1••, 37].

TGF-beta1 also acts via free radicals on non-Smad path-

ways including the c-Src-EGFR-MEK-ERK cascade. Smad

and non-Smad pathways are influenced by oxidative stress

within the cell and interact to increase PAI-1 expression.

These pathways suggest a positive feedback loop [34] and

highlight the role of oxidative stress in fibrosis. Overall,

TGF-beta1 is responsible for activation of multiple oxida-

tive stress-related genes involved in profibrotic pathways

[1••, 41–44].

Oxidative Stress and the Cell Cycle

Free radicals modulate G0, G1, S, G2, and M phases of the

cell cycle [45•]. Cells can be influenced to transition from

the quiescent (G0) to proliferative (G1, S, G2, and M)

stages by free radicals acting as signaling molecules [45•].

For example, a temporary increase in pro-oxidant activity

has been shown to be required in mammalian cells during

the transition from G1 to S phase [45•]. Antioxidants, such

as N-acetyl-L-cysteine (NAC) and caffeine inhibit this

progression [46, 47]. Additionally, increased SOD activity

promotes proliferation with increased hydrogen peroxide

activity promoting quiescence in a purported mitochondrial

‘‘ROS switch’’ [45•, 48]. Finally, redox regulation is

thought to influence cell cycle proteins such as p21, Rb,

cyclin D1/CDK4-6 kinase, and CDC25 [45•].

In fibroblasts, mild elevations in free radicals have

been shown to increase proliferation [45•]. However, we

have also found that slight increases in oxidative stress

are associated with reduced cell counts (unpublished

data). Oxidative stress influences insulin-like growth

factors (IGFs), AKT/PKB, and phosphoinositide 3-kinase

(PI3K) pathways to activate mammalian target of rapa-

mycin (mTOR), which is purported to be responsible for

continued translation and cell growth. Influencing con-

tinued translation causes mitochondrial oxidative phos-

phorylation augmenting free radical production within the

cell, inherently linking mTOR and free radical generation

[49]. As outlined above, oxidative stress effects can be

variable with seemingly antagonistic actions on both cell

cycle progression and inhibition. Oxidative signaling

effects on cellular apoptosis further illustrate this antag-

onistic phenomenon.

Oxidative Signaling and Apoptosis

Oxidative stress plays a role in regulating apoptotic pro-

teins and pathways. P53, a tumor suppressing protein

demonstrated to be sensitive to free radicals, is important in

cell cycle and apoptosis regulation [50]. Generally, stressed

cells are inhibited from proceeding through cellular

checkpoints. These checkpoints are regulated by p53 which

remains activated if cells cannot repair the causative cel-

lular damage. During cellular stress, free radicals can

trigger p53 to induce apoptosis. Finally, p53 downregulates

manganese superoxide dismutase (MnSOD), an antioxidant

enzyme, thereby increasing oxidative stress [51]. Addi-

tionally, apoptosis signal-regulating kinase-1 (ASK-1),

modulates apoptosis and is a serine/threonine protein

kinase causing activation of the p38 and JNK pathways

[52–54]. Oxidative stress inhibits caspases and proteases

involved in cell death [23].
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The counterintuitive roles of oxidative stress in both cell

cycle progression and apoptosis seem to present a quandary

in terms of understanding cellular responses to oxidative

signaling. In actuality, cell cycle signaling initiation and

cellular responses to this signaling are complex processes

dependent on the free radical cellular levels, with lethal

doses signaling for apoptosis while smaller amounts nee-

ded to maintain cellular function. Moreover, oxidative

changes are also influenced by a myriad of other extra-

cellular and intracellular signals and pathways all co-

interacting and enforcing the cell as a complex and

dynamic environment.

Oxidative Stress and Fibroblast Differentiation

The epithelial to mesenchymal transition (EMT) of fibro-

blasts is required for ECM deposition. Extracellular signals

can be generated by various molecules and proteins

including collagen, PDGF, TGF-beta, and fibroblast growth

factor (FGF) to initiate EMT [22••]. Oxidative stress

influences this transition in fibrotic diseases of the lung and

kidney [55–57]. Matrix metalloproteinases (MMPs) expo-

sure increases oxidative stress also stimulating differenti-

ation [56]. Differentiated cells, called myofibroblasts,

originate from fibroblasts and facilitate wound repair,

smooth muscle cell actin expression, and growth factor

secretion [24•, 58–60]. With chronic Nox activation and

dysregulation of related signaling pathways, activated

myofibroblasts, with TGF-beta signaling, differentiate

causing a chronic fibrotic state. Further regulation of

myofibroblast differentiation is thought to occur secondary

to potential interplay between NO/cGMP and Nox4-

derived free radicals. Moreover, oxidative signaling with

growth factors such as TGF-beta can potentially cause de-

differentiation of myofibroblasts into fibroblasts [24•].

Hence, oxidative stress induces myofibroblast differentia-

tion and seems to play a regulatory role.

Oxidative Stress and Cellular Migration and Adhesion

Oxidative stress plays a large role in fibroblastic migration

to sites of inflammation and wound healing. Via oxidative

stress, Nox4 has been particularly noted to influence cel-

lular migration [61]. Cellular oxidative stress has been

shown to increase IKK (IkB kinase)/NF-jB and JNK/AP-1

(activator protein 1) signaling with consequences on

fibroblast migration in cardiac tissue [62]. Increased

adhesion is also required for fibrosis. Free radicals are

implicated as signaling molecules after integrin attachment

during fibroblast adhesion and spreading [63]. Integrins,

transmembrane receptors that mediate cell-to-cell

attachment within the ECM, have been shown in some

studies to increase oxidative stress [63].

Oxidative Stress and Collagen Production

Increased oxidative stress influences collagen production, a

key feature of skin fibrosis. Integrins also mediate collagen

production via free radical modulated pathways. Signaling

by integrinb1 activates FAK, allowing for downstream

activation of the rac1 protein leading to increased pro-

duction of collagen and other profibrotic actors such as

CTGF(CCN2) and aSMA [64]. CTGF(CCN2) is induced

by TGF-beta1 to promote adhesion and fibrosis [65].

Oxidative stress also causes inhibition of the ‘‘cysteine

switch’’ which modulates MMPs, proteins responsible for

ECM degradation [23, 66, 67]. Hence, studies show oxi-

dative stress plays an essential role in the pathogenesis of

ECM deposition including initiation, perpetuation, and

regulation of fibrosis.

Oxidative Stress in Specific Skin Diseases

As outlined above, oxidative stress-mediated actions allow

for excessive collagen deposition, typifying the fibrotic

phenotype. Our understanding of oxidative stress and its

role in cellular signaling in fibrosis continues to expand as

studies further delineate their impact on fibrotic disease

with mechanisms and findings discussed in the remainder

of the paper.

Graft-Versus-Host Disease

Chronic GVHD is a scleroderma-like disease occurring

2–3 months [68] after allogeneic hemopoietic stem cell

transplant. Studies have highlighted the role of CD4? T

cells and plasmacytoid dendritic cells in producing free

radicals which likely play a large role in GVHD develop-

ment [69]. Free radicals increase CCL2, a ligand protein

previously detected in skin fibroblasts, attracting mono-

cytes and T lymphocytes and elevating collagen, MMP-1,

and MMP-2 expression [70]. Additionally, autoantibodies

may stimulate free radical production via phosphorylation

of the PDGFR tyrosine receptor [3••, 71] and an increase in

type I collagen gene expression [69, 71]. Though the role

of these autoantibodies has not been fully elucidated,

research on this topic continues. Additionally, the thera-

peutic potential of arsenic trioxide, a trivalent salt which

causes hydrogen peroxide toxicity and depletes inherent

glutathione levels, showed decreased CD4? T and den-

dritic cells. This was seen to ameliorate symptomatology in
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murine mice; skin and visceral fibrosis as well as other

autoimmune manifestations were greatly improved [69].

Finally, the organotelluride catalyst, (PHTE) [2] NQ, has

been shown to have anti-fibrotic effects via a cytotoxic

oxidative pathway in fibroblasts [72]. These studies help to

clarify the role of oxidative stress and highlight possible

therapeutic modalities which deplete inherent antioxidants

and allow accumulation of lethal levels of oxidative stress

to target specific disease-associated cells.

Hypertrophic Scars

Hypertrophic scars are characterized by increased collagen

deposition usually caused by injuries in the deep dermis

[3••, 73]. They are associated with a change in collagen

cross-linking behavior leading to pyridinoline cross-link

formation associated with hydroxylysine pathway rather

than the usual allysine cross-link formation. This switch

has been associated with increased oxidative stress in

ex vivo human tissue specimens [74], in which pyridinoline

cross-links were also demonstrated to be present in greater

amounts in normal skin subjected to artificial free radical

generating systems. Cross-links were also seen to be

increased in hypertrophic tissues. These findings suggest

free radicals may be linked to more pyridinoline in

hypertrophic tissue [74]. Additionally, other studies have

shown the association between oxidative stress and the

apoptosis associated protein, p53, with an interest in

increasing apoptotic signaling in myofibroblasts to

decrease scar formation [75]. Finally, studies have exam-

ined treatment options which target oxidative stress in

efforts to decrease scarring [73]. For example, a recent

study of essential oil (EO) from rhizomes of Ligusticum

chuanxiong showed increased free radical production and

decreased MMP [76] in human dermal fibroblasts which

induced apoptosis. Another compound with positive effects

on wound healing includes curcumin, a polyphenol [77,

78]. Curcumin was able to induce apoptosis in human

dermal fibroblasts and inhibit fibroblast-mediated contrac-

tion, all via oxidative pathways [79]. In vitro findings

demonstrate that resveratrol is capable of inhibiting fibro-

blast function, and it may prove effective in the treatment

of hypertrophic scars or keloids in vivo [80, 81]. These

compounds call for further research into the potential

oxidative-associated clinical sequelae.

Nephrogenic Systemic Fibrosis

Nephrogenic systemic fibrosis (NSF) is characterized by

increased skin fibrosis subsequent to magnetic resonance

imaging contrast agents in patients with renal impairment

[3••]. This potentially fatal condition usually presents with

joint stiffness, tightness, swelling, pain, and joint contrac-

tion with limited treatment options [82, 83]. A recent study

in murine models has demonstrated free radical involve-

ment in the pathophysiology of this disorder. Additionally,

increased Nox4 expression, secondary to TGF-beta1 sig-

naling, led to increased ECM deposition. This study dem-

onstrates a new oxidative therapeutic target for potential

treatment options.

Systemic Sclerosis and Scleroderma

Scleroderma is a connective tissue disorder with immu-

nological, vascular, and fibrotic skin/organ sequelae sec-

ondary to increased ECM deposition. At the cellular level,

much of the pathogenesis is thought to be due to increased

oxidative stress [84]. Free radical production is thought to

be secondary to ischemic–reperfusion injury, generation

via fibroblasts and leukocytes by the Nox system, and

impaired NO metabolism [85–90].

Recent studies show various new signaling pathways in

scleroderma including those linking free radicals, Ras, and

ERK1–2 which increased the expression of cytokines,

growth factors, and their receptors [23]. One study of

dermal fibroblasts from scleroderma patients asserted

decreased ECM deposition and contraction after fibroblast

exposure to antioxidants with oxidative stress suppression,

ERK1–2, and NF-kB activity [23, 91]. Understanding these

pathways helps to elucidate possible targets for future

treatments. Other articles focus on new uses of existing

medications such as simvastatin or propylthiouracil, which

have been tentatively shown to prevent skin fibrosis and

myofibroblast differentiation [92, 93]. Newer studies have

also purported arsenic trioxide and (PHTE)(2)NQ, an or-

ganotelluride catalyst, which has been shown to prevent

both skin and lung fibrosis in murine models of sclero-

derma via cytotoxic effects on fibroblasts [72, 94], further

strengthening the role of oxidative stress in the pathogen-

esis and therapy of skin fibrosis.

Therapeutic Intervention in Skin Fibrosis

Oxidative stress can be harnessed for anti-fibrotic therapy

by: (1) suppressing free radical production and hindering

fibrotic pathways or (2) stimulating oxidative pathways to

alter biologic function or reach lethal levels and induce

cellular apoptosis. As outlined in Table 2, compounds such

as NAC and edaravone execute their effects via the former

mechanism with reductions in oxidative stress effects

[95, 96]. Conversely, compounds such as EO, arsenic tri-

oxide, and PHTE use the latter mechanism and promote
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apoptosis via cytotoxicity. Interestingly, some compounds

such as trivalent chromium only partially use these meth-

ods to decrease fibrosis with activation of caspase-3 via

oxidative stress-related apoptotic pathways seen only on

initial exposure to the compound with a later switch to

cellular necrosis pathways [97]. Finally, concomitant use

of both of these mechanisms may fine-tune therapy. For

example, curcumin, a polyphenol, was used to induce

apoptosis in fibroblasts with antioxidants such as NAC

used to moderate its effects [79]. In addition to these

compounds, we discuss here the additional studies sup-

porting the use of oxidative stress-associated therapeutics.

Previous studies on antioxidants such as vitamins C and

E have shown little therapeutic impact on skin disorders

such as scleroderma [3••, 98, 99]. In addition to NAC,

edaravone, and EO as discussed above, studies have sug-

gested a variety of compounds such as berberine, Vitamin

D3, and resveratrol, and aspirin effective at reducing oxi-

dative stress [49]. The pathways by which these com-

pounds decrease oxidative stress and attenuate oxidative

damage warrant further investigation.

More targeted approaches to treatment on specific sig-

naling pathways have also been proposed. For example,

berberine, a natural alkaloid used in Chinese and Ayurve-

dic medicine, has been shown to suppress mTOR signaling

along with metformin, the commonly used diabetic

treatment [49]. Fibroblastic EMT has also been suggested

as a potential therapeutic target with antioxidants such as

BMP-7, rapamycin, GDP, and TGF-beta1 as potential

mediators [1••, 100].

Targeting gene expression downstream of the TGF-

beta1 signaling pathway could also be an option. Genes

which are known to be targets of oxidative stress with

downstream profibrotic consequences such as p53, EGFR,

Nox4, and Smad3 are also of interest [1••]. Additionally,

oxidative stress-dependent genes such as PAI-1,

CCN2(CTGF), angiotensinogen, and TGF-beta1 could be

used to decrease downstream ECM molecules and other

associated genes [1••]. Other potential therapeutic agents

which have been shown to reduce lung and kidney fibrosis

are ebselen, apocynin, and DPI in murine models [1••]. In

fact, simvastatin has been purported to reduce skin thick-

ness along with its beneficial effects on pulmonary fibrosis

[92]. Finally, arsenic trioxide has been asserted to improve

both skin and lung fibrosis via oxidative stress-mediated

killing of activated fibroblasts.

Interestingly, multiple studies in scleroderma, hyper-

trophic scars, and chronic GVHD have highlighted the

therapeutic potential of pro-oxidative compounds. These

compounds increase oxidative stress to toxic levels causing

cytotoxicity and apoptosis to occur in fibroblasts. Hence,

fibrotic activity is controlled and decreased. However,

Table 2 Summary of oxidative stress-associated therapies

Oxidative stress mediating therapeutics

Oxidative stress-mediated anti-fibrotic

therapeutics

Mechanism of action

Simvastatin, propylthiouracil Prevention of skin fibrosis and myofibroblast differentiation

Arsenic trioxide Fibroblast cytotoxicity via increased oxidative stress such as H2O2, depletion of glutathione

(PHTE)(2)NQ Fibroblast cytotoxicity via increased oxidative stress

Essential oil (EO) from rhizomes of

Ligusticum chuanxiong

Increased oxidative stress, increased caspase-3 activity, & decreased MMP all inducing

apoptosis

Curcumin Oxidative stress-related fibroblast apoptosis and inhibition of fibroblast-mediated contraction

N-acetyl-L-cysteine Increased SOD activity causing decreased oxidative stress

Edaravone Attenuation of fibrotic proteins and cytokines such as interleukin-6 & TGF-b1

Alpha-MSH Increased SOD2 expression causing decreased oxidative stress

Trivalent chromium Initial activation of caspase-3 with oxidative stress-related apoptosis pathways with subsequent

cellular necrosis pathways

2-deoxy-D-glucose, rapamycin Decreased oxidative DNA stress-associated proteins

Berberine, vitamin D3, & aspirin Decreased oxidative stress

Berberine & metformin Suppression of mTOR signaling

Celecoxib Antioxidant activity via targeting of DNA oxidative damage

3-bromopyruvate Suppression of normal cellular metabolic activity and oxidative phosphorylation via inhibition

of glycolysis

Hyaluronate Protective effects on oxidative DNA damage

BMP-7 & rapamycin Targeting of fibroblastic EMT

Irbesartan Reduced fibrosis via effects on collagen synthesis
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there may be benefit with combined treatments of antiox-

idants with other therapeutic modalities.

Conclusion

Oxidative stress has classically been known to play a major

regulatory role against pathogens in the phagocytic envi-

ronment. Recent studies have shown free radicals to play an

important role in skin fibrosis. Continued interest in oxida-

tive stress and its processes is necessary to fully elucidate

and better treat fibrosis in fibrotic disorders such as sclero-

derma, GVHD, hypertrophic scars, NSF, and other skin

pathologies. Antioxidant therapy continues to be of interest

along with new indications for well-known medications. We

believe that these and other disorders would greatly benefit

from further investigation into oxidative stress signaling

pathways and their role in fibrosis, with the potential to

transform treatment of skin fibrosis by dermatologists.
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