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Abstract The liver has the amazing capacity to repair

itself after injury; however, the same processes that are

involved in liver regeneration after acute injury can cause

serious consequences during chronic liver injury. In an

effort to repair damage, activated hepatic stellate cells

trigger a cascade of events that lead to deposition and

accumulation of extracellular matrix components causing

the progressive replacement of the liver parenchyma by

scar tissue, thus resulting in fibrosis. Although fibrosis

occurs as a result of many chronic liver diseases, the

molecular mechanisms involved depend on the underlying

etiology. Since studying liver fibrosis in human subjects is

complicated by many factors, mouse models of liver

fibrosis that mimic the human conditions fill this void. This

review summarizes the general mouse models of liver

fibrosis and mouse models that mimic specific human

disease conditions that result in liver fibrosis. Additionally,

recent progress that has been made in understanding the

molecular mechanisms involved in the fibrogenic processes

of each of the human disease conditions is highlighted.
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Introduction

The repeated insult that occurs during the progression of

many chronic liver diseases continuously activates the

wound healing response; it is this chronic activation of the

wound healing response that causes liver fibrosis [1, 2].

The activation of hepatic stellate cells (HSCs), which are

the main collagen-producing cell in the liver, is a pivotal

event during liver fibrogenesis. Provoked by chronic liver

injury, activated HSCs display a myofibroblast phenotype

and exhibit fibrogenic potential [1–3]. Activated HSCs set

in motion a cascade of molecular, cellular, and tissue

events that lead to the deposition and accumulation of

extracellular matrix (ECM) components, especially colla-

gen, to limit hepatic damage observed in chronic liver

diseases [3–6]. However, the accumulation of collagen and

other ECM components that occurs in chronic hepatic

injury results in the progressive replacement of the liver

parenchyma by scar tissue, thus resulting in fibrosis [1].

While liver fibrosis is the outcome of many different

chronic liver diseases including chronic hepatitis C virus

(HCV) infection, alcoholic steatohepatitis (ASH),
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nonalcoholic steatohepatitis (NASH), and autoimmune

liver diseases, the pathogenesis of liver fibrosis depends on

the underlying etiology [1, 2]. Therefore, liver fibrogenesis

must be studied in the context of each of the chronic liver

diseases that result in fibrosis. Mouse models of liver

fibrosis that mimic human liver fibrosis have contributed to

this need and have greatly enhanced the study of liver

fibrosis [7, 8].

Rodent models can address specific questions that are

difficult to address in human studies. Due to the lack of an

early diagnosis of liver fibrosis in human subjects and the

invasive nature of liver biopsies, which is the standard for

liver fibrosis assessment, multiple sampling at different

stages of liver fibrogenesis in humans is challenging.

However, mouse models provide researchers with the

opportunity to conduct studies using multiple samples and

at different stages of liver fibrogenesis [8]. The use of mice

has the advantage that the whole organ and organism is

intact, which is one of the limitations of in vitro studies

with human tissues or cell lines [8]. Finally, genetic studies

using knockout mice or the ability to knockdown specific

genes can be used to determine the role of these genes in

the progression of liver fibrosis [8].

Although the use of mouse models in the study of liver

fibrosis is a powerful tool, these models are not without

their disadvantages. Most notably, there is a lack of an

appropriate mouse model for liver fibrosis caused by

alcohol abuse and chronic HCV infection [8]. Also, there

are species differences between humans and mice in the

immune response, gene regulation, and metabolic, phar-

macological, and tissue responses [8].

Despite these limitations, liver fibrosis research using

both human subjects and mouse models has seen countless

advancements in recent years. The purpose of this review

article is to discuss some of the most recent advances in the

study of liver fibrosis and to specifically parallel the

advancements in mouse models of liver fibrosis to their

human liver fibrosis counterparts.

General Mouse Models of Liver Fibrosis

Repetitive Toxic Insults

Carbon Tetrachloride

Carbon tetrachloride (CCl4) is a hepatic toxin that is

commonly used to induce toxic liver injury in mice. CCl4 is

converted to a free radical by reductive dehalogenation

catalyzed by cytochrome p450 2E1 (CYP2E1) in hepato-

cytes, which induces lipid peroxidation and membrane

damage that causes centralobular necrosis [9–11]. CCl4 is a

fast acting toxin with morphological changes appearing at

15 min [12]. Acute administration (single dose) of CCl4
results in centralobular necrosis and reversible injury that

triggers a wound healing response [13, 14•]. In addition to

hepatocyte necrosis, acute administration of CCl4 triggers

apoptosis of large cholangiocytes, which is followed by the

activation of proliferation and compensatory de novo

expression of secretin receptor in small cholangiocytes [15,

16]. Liver fibrosis develops progressively during repetitive

administration of CCl4 [17–19]. Fibrosis appears initially

in pericentral areas, which then progresses to bridging

fibrosis, cirrhosis, and eventually hepatocellular carcinoma

[17–20]. CCl4 has been administered to mice via different

routes including intraperitoneal [18], subcutaneous [19],

and oral gavage [19]. Each route has distinct advantages

and disadvantages that have been reviewed elsewhere [8,

19, 21]. In addition to the progression of fibrosis and cir-

rhosis, the CCl4 model has been used to study the mech-

anisms regulating the reversibility/resolution of fibrosis

[22, 23•].

Thioacetamide

Thioacetamide (TAA) is an organosulfur compound that

has metabolic intermediates that are toxic to the liver. One

intermediate, thioacetamide-S-oxidase, is a reactive oxygen

species (ROS) that covalently bind to hepatic macromole-

cules resulting in necrosis of hepatocytes [21]. CPY2E1

has been shown to mediate TAA-induce hepatoxicity in

mice [24, 25]. Chronic treatment of mice with TAA

induces liver damage, fibrosis, and eventually cirrhosis,

which is associated with elevated oxidative stress and

activation of hepatic stellate cells [26–28•]. TAA can be

administered by intraperitoneal injections or in the drinking

water. The disadvantage of TAA is that it takes a relatively

long time to induce liver fibrosis and there is the potential

for the development of hepatocellular carcinoma [28–30•].

Dimethyl or Diethylnitrosamine

Dimethyl or diethylnitrosamine (DMN and DEN) are

highly toxic to the liver and are hydroxylated by CYP2E1

to form bioactive diazonium ions that react with nucleic

acids to form alkylation products [31, 32]. DMN and DEN

models are characterized by centrilobular and periportal

liver damage with the subsequent development of liver

fibrosis and cirrhosis [33–35•]. These models provide a

unique opportunity to study the pathogenesis of liver

fibrosis to hepatocellular carcinoma [33–35•].
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Bile Duct Ligation (BDL)

Model of Secondary Biliary Fibrosis

Ligation of the common bile duct (BDL) stimulates the

proliferation of biliary epithelial cells (BEC) (i.e., cholan-

giocytes) that line the bile ducts along with cholestasis,

portal inflammation, and subsequently portal fibrosis [36].

Although the model is characterized by extensive ductular

proliferation, portal myofibroblasts have been proposed to

be an important contributor to the progression of biliary

fibrosis [37, 38•]. Rats are more suitable for the model due

to a lack of a gall bladder. However, despite higher surgical

complications and mortality the model is commonly used

in mice [8].

Abcb4-/-

The ATP-binding cassette subfamily B member 4

(ABCB4) is a gene that encodes the multidrug resistance 3

(MDR3) protein (MDR2 in mice), which is a canalicular

translocator for phosphatidylcholine [39]. A mutation in

the ABCB4 gene can cause progressive familial intrahe-

patic cholestasis (PFIC3) and primary biliary cirrhosis

(PBC). Due to the lack of protection against bile acids [40–

42], these individuals experience increased damage of the

biliary epithelium, ductular proliferation, and potential

progressive portal fibrosis [43]. ABCB4 knockout mice

(Abcb4-/-) have been used to study the pathophysiology

of PFIC3 and PBC, and their potential therapies. Abcb-/-

mouse models have also been used to study cholestasis of

pregnancy and drug-induced cholestasis [44].

Recent studies using Abcb-/- mice have provided

insight into the pathophysiology behind chronic cholestatic

liver disease and have explored new therapeutic options for

the treatment of these diseases. Alterations in lipid

metabolism and in the expression of canalicular trans-

porters that regulate bile composition contribute to the

progression of cholestatic liver disease in Abcb-/- mice

[45••, 46]. Recently, a derivative of ursodeoxycholic acid

(UDCA), norUDCA, has been found to decrease hepatob-

iliary injury in BDL mice, raising the possibility that nor-

UDCA could be used as a therapeutic in the treatment of

cholestatic liver disease [47•].

D-galactosamine (D-GalN)

D-galactosamine (D-GalN) is a hepatotoxin, which causes

acute hepatic injury and has been a good model for mon-

itoring the progression of chronic biliary diseases. D-GalN

causes UDP glucose and UDP galactose deficiency, loss of

intracellular calcium homeostasis, inhibition of energy

metabolism of hepatocytes, and injuries of the

mitochondrial enzymes affecting lipoprotein interactions

[48–50]. To understand the inflammation-induced pathway

in hepatocytes, D-GalN/Lipopolysaccharide treatment was

performed to show that hepatic injury is facilitated by

TNF-a. For therapeutic purposes, S-adenosyl-L-methionine

(SAMe) was found to have protective effects in vivo and

in vitro on liver cell damage caused by D-GalN [51],

including enhanced bile secretion, improved liver function

tests, and amelioration of symptoms of D-GalN-induced

hepatotoxic mice [52, 53]. Glucuronidation was found to

be an important step in the pathogenesis of ethinylestradiol

(EE)-induced cholestasis. When administered with D-GalN,

there was an improvement in cholestasis because D-GalN

decreases the UDP-GA availability required by EE 17 b-

glucuronide, thus showing that these molecules are

involved in cholestasis [54]. Hepatoxins, such as D-GalN,

can cause inhibition of mature hepatocytes. When this

occurs, a regenerative process occurs where hepatic stem/

progenitor cells become activated eventually forming

hepatocytes or BEC [55–60]. Using the D-GalN injury

model, the Thy 1? cells would differentiate into hepato-

cytes and cholangiocytes on day 2 and 3 of hepatic injury

to aid in the recovery process [61].

Methione and Choline Deficient (MCD) and Choline-

Deficient L-Amino Acid Defined Diet (CDAA)

The methionine and choline deficient diet (MCD) is a

common dietary mouse model that is used for studying the

pathophysiology of NASH [21]. The diet contains about

40 % of high sucrose and 10 % of high fat. This diet lacks

methionine and choline, which are required in mitochon-

drial b-oxidation and synthesis of low-density lipoprotein

(LDL) [62]. It can cause more ROS, mitochondrial DNA

damage, and apoptosis compared to other NASH models

[63]. Wistar rats are more susceptible to this diet, but Long-

Evans and Sprague–Dawley rats are also used in presenting

steatosis [64]. The disadvantage regarding this model is

that the metabolic profile has differences compared to

human NASH [65–67].

Recent studies using the MCD diet model have eluci-

dated factors involved in the progression or reduction of

NASH. Mesenchymal epithelial transition factor (c-met)

receptor signaling has been shown to activate anti-apop-

totic pathways in hepatocytes (74). Caspases, most recently

Caspase 3, have been shown to be involved in the proa-

poptotic and proinflammatory processes in NASH (75).

Finally, a therapeutic study was done regarding Sitaglipin

in MCD fed mice. Sitagliptin showed attenuation of hepatic

steatosis, inflammation, and fibrosis insinuating future

therapy application [68•]. However, the next step would be

to check long-term side effect profiles of Sitagliptin in

NASH mouse models.
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Choline-deficient L-amino-acid-defined (CDAA) is a

well-known dietary model that induces pathogenesis related

to NASH. During continuous consumption of a CDAA diet,

animal models have shown induction of steatosis, lobular

inflammation, and fibrosis [69, 70]. In one study, CDAA fed

Wistar rats continued to have fibrosis even after reverting

back to a choline sufficient diet, but the steatosis and lobular

inflammation improved. The persistent fibrosis was likely

due to the hypoxic damage and oxidative stress the CDAA

diet caused (79). Choline is an essential nutrient that is

involved in VLDL production via phosphatidylcholine.

Without choline, hepatic lipidosis can occur causing a

decrease in lipid and cholesterol excretion [71–73].

Choline deficiency can also cause oxidative stress,

mitochondrial dysfunction, and endoplasmic reticulum

stress. Consequently, the animal model is more susceptible

to hypoxic damage resulting in significant hepatocellular

death [71, 74, 75]. Lack of choline can also cause induction

of a proinflammatory cascade that eventually activates

HSC causing fibrosis [76, 77].

Mouse Models that Mimic Specific Human Diseases

Autoimmune Fibrosis

Primary Biliary Cirrhosis (PBC)

PBC is a chronic cholestatic liver disease that predomi-

nantly affects middle age women [78]. Intrahepatic small

bile ducts are progressively destroyed by an immune-

mediated attack and the disease may slowly progress until

liver cirrhosis. PBC is considered an autoimmune disease.

Antimitochondrial antibodies (AMAs) directed against the

E2 component of the pyruvate dehydrogenase complex

(PDC-E2) are present in the sera of about 95 % of the

patients, and are detectable years before the appearance of

clinical symptoms [78–80].

Animal models of PBC aim to specifically recapitulate

the complex pathophysiological characteristics of the

human disease. Despite remarkable advances in the last

decade, to date none of the proposed models can perfectly

resemble the complexity of the human disease.

Murine models of PBC can be divided into spontaneous

models, if biliary alterations appear in genetically modified

animals without additional interventions, and induced

models, in which biliary damage appears after breakdown

of tolerance to PDC.

Koarada et al. described the NOD.c3c4 congenic mouse

as the first spontaneous model for autoimmune biliary

diseases [81, 82]. NOD.c3c4 mice develop lymphocytic

peribiliary infiltrates, autoantibodies, and progressive cho-

lestasis [81]. The full-blown disease is present in 50 % of

the females and in 25 % of male within 1 year of age [83].

Moreover, 55 % of the NOD.c3c4 mice develop antibodies

against the PDC-E2 complex before the biliary lesions are

completely formed. The microscopic alterations in the liver

include the infiltration of CD3?, CD4?, and CD8? T

cells with sporadic formation of granulomas [83]. Despite

the fact that NOD.c3c4 mice recapitulate several features

of the human disease, the appearance of alterations that are

not found in PBC patients is reported too. Biliary cysts in

the intrahepatic bile ducts develop in the majority of the

animals, and seem related to a B cells response [84].

Moreover, unlike PBC, common bile duct dilatation is also

present in NOD.c3c4 mice [83].

An alternative model for PBC is the dominant-negative

TGF-b receptor II (dnTGF-bRII) mouse [85]. CD4? and

CD8? T cells of dnTGF-bRII mice over-express a mutated

form of the TGF-bRII that is incapable of signal trans-

duction. As a result, the immune homeostasis is altered and

clusters of immune cells infiltrate the liver parenchyma

[86]. Gershwin and coworkers showed that dnTGF-bRII

mice develop several features of human PBC, including

spontaneous production of antimitocondrial antibodies to

PDC-E2, CD4?, and CD8? T cells infiltration within the

portal tract of 6- to 7-month-old mice, and increased levels

of IFN-c, TNF-a, IL-6, and IL-12p40 [85, 87]. However,

the general dysregulation of self-tolerance in dnTGF-bRII

mice should not be overlooked. In fact, starting from 3 to

4 months of age, dnTGF-bRII mice develop a wasting

syndrome associated with diarrhea due to marked to severe

inflammatory bowel disease, with infiltration of lympho-

cytes, macrophages, and plasma cells in the gut [86]. Mild

inflammatory infiltrates appear also in the lungs, stomach,

duodenum, pancreas, and kidney [86]. The development of

cholangitis in dnTGF-bRII mice does not seem to be

related to abnormalities of the biliary tree. Indeed, bile duct

inflammation occurs also if splenocytes of dnTGF-bRII

mice are transferred into recombinase-deficient (Rag1-/-)

mice, which lack a diversified B and T cell receptor rep-

ertoire [88]. In addition, CD8? T cells seem to be the

primary effectors of the inflammation [88].

The importance of immune regulation in the pathogenesis

of PBC has been further emphasized in a subsequent murine

model, the IL-2Ra-/- mouse. Wakabayashi et al. reported

the development of autoimmune cholangitis and AMAs in

IL-2Ra-/- mice [89]. However, severe anemia, lympho-

proliferative disorders, and inflammatory bowel disease are

prevalent in these mice, especially after 2 months of age

[90]. Similar to dnTGF-bRII mice, CD8? T cells have been

involved in the pathogenesis of the biliary injury, while

CD4? T cells are responsible for the colitis [91].

The AE2-/- mouse is considered an additional mouse

model of PBC [92]. The anion exchanger (AE) 2 is a Cl-/

HCO3
- exchanger expressed in different cells, where it
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regulates the intracellular pH [93]. In cholangiocytes, AE2 is

located at the apical membrane and is the main trans-

porter responsible for bicarbonate secretion in bile [94]. At

15 months of age, most of AE2-/- mice develop AMAs

against the PDC-E2 inner lipoyl domain, increased alkaline

phosphatase levels in plasma and different degrees of portal

inflammation. However, the liver damage is not progressive,

a slight fibrosis is reported only in mice with florid portal

infiltrates, and there are no gender differences [92]. Together

with the liver phenotype, AE2-/- mice develop alterations in

the immune system. Enlarged spleen, reduced CD4?/CD8?

ratio, and altered cytokine production have been described in

AE2-/- mice, possibly as a consequence of defective pH

regulation in immune cells [92, 95]. Interestingly, natural

regulatory T cells (Tregs) are also reduced in this mouse

model. This finding is in accordance with what has been

described in PBC patients [96] and in dnTGF-bRII and IL-

2Ra-/- models [85, 89], underlying an important pathogenic

role of loss of tolerance in PBC.

The induced mouse models of PBC rely on the breakdown

of tolerance to PDC, the mitochondrial autoantigen against

which AMA are directed. Jones et al. reported that immu-

nization of SJL/L mice with intraperitoneal injections of

bovine PDC-E2 emulsified in complete Freund’s adjuvant

containing 10 mg/ml of Mycobacterium tuberculosis is able

to induce AMA formation and non-suppurative destructive

cholangitis [97, 98]. Some authors have, however, ques-

tioned the specificity of the immune response in SJL/L mice

[99, 100]. Recently, an additional model for PBC has been

successfully induced by the immunization of mice with

2-octynoic acid (2OA) coupled to bovine serum albumin

[101]. Immunized mice manifest typical autoantibody for-

mation and cholangitis but fail to develop fibrosis. 2OA is a

chemically synthetized compound which is widely present in

cosmetic products. This model offers, therefore, an intrigu-

ing conceptual support to an environmental origin of PBC

[101]. To this extent, previous work showed that xenobiotic

modification of PDC-E2 is able to generate new antigens that

react with the autoantibodies present in PBC sera [102].

In conclusion, considerable advances in the understand-

ing of PBC pathophysiology have been made in recent years

through the study of animal models [103]. Since UDCA still

represent the only recommended medical treatment for PBC,

murine models offer also the possibility to evaluate potential

new drugs. Different compounds have indeed shown prom-

ising effects in attenuating the biliary damage in a number of

PBC models, suggesting new therapeutic approaches that

deserve further studies [104•, 105].

Primary Sclerosing Cholangitis (PSC)

Primary sclerosing cholangitis (PSC), first described in the

mid-1850s is characterized grossly by chronic cholestasis

accompanied by inflammation of the biliary epithelium

resulting in multifocal biliary strictures. PSC is asymp-

tomatic in 50 % of the diagnosed patients [106].

Diagnosis of PSC is made through liver enzyme

assessment where the most commonly dysregulated can-

didate is alkaline phosphatase. Total bilirubin remains

normal in most of the cases, whereas the level of amino

transferases is elevated in a very small number of patients

[107]. One of the major risk factors contributing to the

development of PSC is inflammatory bowel disease [108].

A multitude of factors have been deemed responsible for

the development and progression of this disease. Consid-

ering the heterogeneity of PSC and all the variable factors

contributing to this disease, a single animal model mim-

icking human PSC is hard to develop. Hence, there are a

few different models that are used to study the mechanisms

involved PSC pathogenesis.

MDR2-/-

Liver cirrhosis resulting from chronic cholangiopathies

such as PSC is marked by a massive increase in liver

fibrosis. The MDR2-/- mice develop severe biliary fibro-

sis, and thus have been used has a model of liver fibro-

genesis in PSC [109].

Decreased phosphatidylcholine in the bile of MDR2-/-

mice might potentiate the toxicity of other bile acids. It is a

multistep process where there is leakage of bile (from

disrupted tight junctions and basement membranes of bile

ducts) into portal tracts causing inflammation and fibrosis

[110]. Fibrosis in MDR2-/- mice is caused by a time-

dependent alteration in expression of pro- and anti-fibrotic

genes [109, 110]. The inflammatory response in MDR2-/-

mice varies according to the age of the animal, although

there is over-expression of at least some factors such as

TNF-a, IL-1b, Il-6, TGF-b1, and IFN-c when compared to

MDR2?/? control mice. The MDR2-/- animals can thus

serve as a good model to intervene for developing treat-

ment strategies to tackle the fibrotic response in PSC.

norUDCA or UDCA treatment has already proved to

ameliorate fibrosis in PSC models, though controversies

exist in regard to their applicability in human subjects

[111].

CFTR Mutation

Mouse models with mutations in the exon 10 of the cystic

fibrosis (CF) transmembrane conductance regulator

(CFTR) gene have been shown to develop focal cholangitis

and biliary cirrhosis [112]. Specifically, loss of function of

the CFTR gene in BEC results in decreased bile flow and

alkalinization in subjects with CF. In a study to evaluate

the role of CFTR gene in development of cholangitis, mice
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with disrupted CFTR gene (cftr-/-) were fed Dextran

sodium sulfate (DSS) to induce colitis. DSS caused biliary

damage and portal inflammation as displayed by enhanced

ductular reaction and high reactivity of cholangiocytes

(isolated from the cftr-/- mice) toward LPS treatment

[113]. After DSS treatment, intestinal permeability to

microbial products as well as endotoxins is increased

which reach the liver via portal circulation resulting in

inflammation and fibrosis [114, 115]. Taken together, these

results suggest that the CFTR mutation is not the only

cause for biliary cirrhosis and portal hypertension. This is

statistically supported by patient data where it is found that

among patients with CF disorder, about 40 % display

abnormal hepatic imaging and biochemistry and among

which only 5–10 % develop focal biliary cirrhosis and

portal hypertension [116]. This is an indication that CFTR

dysfunction predisposes to liver diseases.

3,5-Diethoxycarbonyl-1,4-Dihydrocholine (DDC)

To study the pathological alterations occurring in the ear-

lier phases of PBC and PSC, a slowly progressing model is

essential. Fickert and colleagues have demonstrated that

continuous feeding of 3,5-diethoxycarbonyl-1,4-dihydro-

cholidine (DDC) induced chronic cholangiopathy that

progressed slowly over a period of time. Mice fed with this

xenobiotic agent for a week showed ductal proliferation,

which progressed slowly over time, and by 4 weeks post

treatment the bile ducts contained pigment plugs. The

intraductal plugs showed autofluorescence generated from

biliary protoporphyrin secretion [117]. Infiltration of neu-

trophils around both large and small bile ducts, an increase

in serum transaminases and an induction of reactive phe-

notype of the BEC was also observed in the DDC fed mice.

Recently, morphological studies confirmed hepatocellular

necrosis and phagocytosis of these necrotic cells by

Kupffer cells and showed compensatory hepatocyte pro-

liferation in response to DDC-induced injury. This study

also revealed that bile canalicular abnormalities occur prior

to ductular reactions and periductal fibrosis in this novel

xenobiotic-induced model of primary sclerosing cholangi-

tis [118••]. This was the first study showing these charac-

teristics associated with progression of PSC.

Autoimmune Hepatitis (AIH)

Autoimmune hepatitis (AIH) is a form of chronic hepatitis.

It is characterized by histological findings (most commonly

interface hepatitis), elevated serum aminotransferases,

hypergammaglobulinemia, and seropositivity for ANA,

anti-LKM-1, and SMA, after the exclusion of other causes

of chronic hepatitis [119]. It is important to exclude other

causes of chronic hepatitis by checking viral serologies,

obtaining a good history for substance abuse including

alcohol, and ruling out biliary sources of chronic hepatitis.

Disease severity can range from asymptomatic hepatitis

[120] to severe, fulminant hepatic failure [121]. Although

the cause of AIH remains unknown, the working model of

pathogenesis is recognition of self-antigen or autoantibody/

antigen complexes by CD4? T cells [122] resulting in loss

of tolerance and progressive necroinflammation and fibro-

sis in a host with genetic pre-disposition [123]. HLA genes

have increasingly been implicated in the genetic link of

AIH [123].

Cytokines, specifically TGF-b, have been shown in

murine models to play a large role in immune tolerance.

TGF-b is secreted by phagocytes that are exposed to

apoptotic T cells. This contributes to immune tolerance by

inducing CD4 ? Foxp3 ? regulatory T cells via CD3-

specific antibody [124]. Additionally, TGF-b is found to

have increased expression in hepatic inflammation. This

overexpression is thought to play a role in the suppression

of an autoimmune response. Impairment of this signaling

pathway has been shown to increase susceptibility of AIH

based on histological findings in murine models [125]. This

pathway has, therefore, been used to produce animal

models of AIH. TGF-b1-/- mice spontaneously develop

necroinflammatory hepatitis recapitulating human aspects

of AIH [126, 127].

Conclusion

Liver fibrosis is the consequence of many chronic liver

diseases and regardless of the etiology is the result of a

highly coordinated process. Murine models of liver fibrosis

recapitulating fibrogenesis in human liver disease condi-

tions are valuable tools for studying the fibrogenic process

of specific diseases. Although recent advances have been

made in understanding the molecular mechanisms involved

in fibrogenesis and in discovering novel tools that can aid

in the diagnosis and treatment of liver fibrosis, additional

studies are still needed. Specifically, the efficacy of these

diagnostics and therapeutics in human patients still needs

to be explored.
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