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Abstract Various extrinsic stresses, including hypoxia

and oxidative stress, trigger the progression of diseases

associated with inflammation and fibrosis via the patho-

genic alteration of these stress signals.They include the HIF

pathway, induced by hypoxia, and the Nrf2 pathway,

induced by oxidative stress. Recent evidence emphasizes

that the extrinsic stress-induced phenotypic changes are

widely associated with endoplasmic reticulum (ER) stress

and induction of the ER stress signal, unfolded protein

response. This issue focuses on the recent insights dem-

onstrating the link between molecular mechanisms leading

to fibrosis and stress signals. In particular, we summarized

the contribution of hypoxia, oxidative stress, and ER stress

signals, all of which are common pathogenic pathways for

the progression of chronic renal disease, to fibrotic chan-

ges, as well as the future aspects of therapeutic approaches

targeting these stress pathways to fibrosis in various

organs.

Keywords Chronic kidney disease (CKD) � Hypoxia-

inducible factor (HIF) � Nuclear factor-erythroid-2-related

factor 2 (Nrf2) � Unfolded protein response (UPR) �
Chronic inflammation � Epigenomics

Introduction

Tissue damage triggers both inflammatory and repair

responses that, in the case of repeated or chronic injury,

result in fibrosis, an excess deposition of extracellular

matrices in an organ or tissue. Fibrosis is the common

pathological feature of a variety of diseases, including

tubulointerstitial fibrosis in the kidney, cirrhosis in the

liver, pulmonary fibrosis in the lung, and myocardial

fibrosis in the heart. The processes of fibrosis consists of

injury to the tissue, recruitment of inflammatory cells,

release of fibrogenic cytokines, and activation of collagen-

producing cells. Here, we focus on the pathogenesis and

potential therapeutic approaches against fibrosis in the

kidney, which is the common final outcome of almost all

progressive chronic kidney disease (CKD).

Effecter Cells in Kidney Fibrosis

Independently of the initial insult, any kind of repeated

inflammation and tissue damage results in eventual kidney

fibrosis. The effecter cells in fibrosis are myofibroblasts. The

source of myofibroblasts has been a focus of intensive

research, with candidates including tubular cells (epithelial–

mesenchymal transition, EMT) and circulating cells (fibro-

cytes). However, accumulating evidence of fate-mapping

suggests that pericytes are the main source of myofibroblasts

in the kidney [1]. Molecular pathways that regulate detach-

ment and transdifferentiation of pericytes into pathological

myofibroblasts include Wingless/Int, ephrin, transforming

growth factor (TGF)-b, platelet-derived growth factor

(PDGF), and Hedgehog signaling pathways [1, 2]. When

pericytes become myofibroblasts, they lose pericyte func-

tions and capillaries become unstable with deleterious
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consequences for the kidney, including aggravation of

inflammation and fibrosis. Interestingly, renal erythropoietin

(EPO) producing cells, which are also localized in the

interstitium, also become myofibroblasts and then lose their

EPO-producing activity in the progression of fibrosis [3].

The decline of renal EPO production significantly acceler-

ates the vicious cycle of loss of renal oxygen supply and

hypoxic and oxidative stress, indicating the effects of EPO-

producing cells in an increase in myofibroblasts.

The Link of Stress Signals and the Development

and Progression of Fibrosis

The development and progression of kidney fibrosis sig-

nificantly occur when the kidney is exposed to repeated or

chronic stress, not only inflammatory conditions, but also

hypoxia or oxidative stress (Fig. 1). We summarize the

recent reports demonstrating the link between kidney

fibrosis and their stress signal pathway, as follows.

Hypoxic Stress of the Kidney

Fibrosis results in a decrease in the number of peritubular

capillaries to deliver oxygen and a decrease in oxygen

diffusion efficiency that is associated with the increased

distance between the remaining capillaries and resident

kidney cells needing oxygen, leading to hypoxia of the

kidney. Hypoxia leads to aggravation of tubulointerstitial

injury and fibrosis, making a vicious cycle to end-stage

kidney disease (ESKD) [4, 5]. Studies utilizing blood

oxygen level-dependent (BOLD)-MRI and diffusion-

weighted (DW)-MRI have showed the correlation of

hypoxia and fibrosis in human kidney [6].

Cells are endowed with a defensive mechanism against

hypoxia, and the master regulator of adaptive responses to

hypoxia is hypoxia-inducible factor (HIF). Pharmacologi-

cal activation of HIF ameliorates fibrosis of the kidney in

various models, including the remnant kidney and chronic

progressive anti-Thy1 nephritis [7–9]. HIF activation also

improves fibrosis in other organs. HIF activation promoted

repair of mouse airway allograft microvasculature and

attenuated fibrosis of the lung associated with chronic

rejection [10]. Cardiac-specific overexpression of HIF

ameliorated cardiac fibrosis associated with remodeling in

diabetic mice [11].

In order to elucidate the downstream effectors of HIF

in detail, we have performed studies utilizing transcri-

ptomics, proteomics, siRNA library screening, and

ChIP-seq analysis. One of the HIF target genes we

identified was cytoglobin [12, 13]. Cytoglobin is a novel

member of the globin superfamily and is expressed in

interstitial fibroblasts of the kidney. Expression levels of

cytoglobin show a compensatory increase as fibrosis of

the kidney progresses. We found that cytoglobin protects

the kidney against fibrosis via its anti-oxidative mech-

anism that is mediated by the heme domain of the

molecule.

Acute kidney injury (AKI) leads to fibrosis of the kidney

in the long term (for details, see ‘‘Epigenetic Changes and

Fibrosis’’ below). Pharmacological HIF activation before

AKI ameliorated fibrosis of the kidney [14]. Although

fibrosis and inflammation are associated with each other in

most cases, recent studies delineated a specific role of HIF

in fibrosis and inflammation. Global activation of HIF

suppressed inflammation and fibrogenesis in mice sub-

jected to unilateral ureteral obstruction (UUO), whereas

activation of HIF in myeloid cells suppressed inflammation

of the kidney only [15]. Conversely, global deletion or

myeloid-specific inactivation of HIF promoted inflamma-

tion. Studies utilizing deletion of the VEGF-A gene, a

representative HIF target, in myeloid cells showed that

myeloid cell-derived VEGF is essential for the prevention

of fibrotic damage in the lung [16]. In contrast, studies

utilizing myeloid cell-specific HIF-1 knockout mice

showed that HIF activation in macrophages may promote

fibrosis by regulating the production of PDGF-B in a model

of liver fibrosis due to bile duct ligation [17]. Thus, a role

of HIF in inflammatory cells may depend on the target

organ of HIF.

Fig. 1 The cross talk of stress signals in the fibrotic process. It is

known that fibrosis is induced by repeated or chronic inflammation.

The stress signals contributing to the pathophysiology of CKD,

including hypoxic, oxidative, and ER stresses, act as defensive

mechanisms at an early stage of disease development. However, the

recent accumulating evidence emphasizes that prolonged or over-

whelming activation of these stress signals causes them to mutually

affect each other, and thereby aggravate the fibrosis leading to CKD

progression. Thus, HIF, Nrf2, or UPR molecules might be highlighted

as novel targets for therapeutic approaches of fibrosis. CKD chronic

kidney disease, ER endoplasmic reticulum, HIF hypoxia-inducible

factor, Nrf2 nuclear factor-erythroid-2-related factor 2, UPR unfolded

protein response
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Oxidative Stress of the Kidney

In CKD patients, oxidative stress is induced by multiple

factors, including uremia and chronic inflammation.

Priming of peripheral polymorphonuclear leukocytes is a

key mediator of chronic inflammation and oxidative stress

in CKD patients, occurring before the onset of renal

replacement therapy and further augmented in chronic

hemodialysis [18]. Intravenous administration of iron,

which many CKD patients receive, also provokes the

generation of bioactive iron, which enhances oxidative

stress [19]. The study of 87 CKD patients with levels of

plasma 8-isoprostanes (8-epiPGF2a) and serum total

antioxidant status as markers of oxidative stress showed

that oxidative stress increases as CKD progresses and

correlates significantly with level of renal function [20].

There is growing consensus that the state of oxidative

stress in CKD is correlated with the progression state of

fibrosis as described below.

Nuclear factor-erythroid-2-related factor 2 (Nrf2) is the

master regulator of genes that encode many antioxidant and

detoxifying enzymes. Recent studies utilizing the adenine

model and the remnant kidney model showed that CKD is

associated with impaired Nrf2 activity, which contributes

to the pathogenesis of oxidative stress, inflammation, and

fibrosis [21].

To support a pathogenic role of oxidative stress in CKD,

a systematic review of the Cochrane database also sug-

gested that antioxidant therapy in pre-dialysis CKD

patients may prevent progression to ESKD [22].

Oxidative stress also induces hypoxia due to a decrease

in bioavailability of nitric oxide, mitochondrial uncoupling,

and reduced efficiency of mitochondrial respiration [23].

Hypoxia also leads to the aggravation of oxidative stress.

These two factors synergistically enhance tissue fibrosis.

Indoxyl sulfate, a representative uremic toxin, induces

oxidative stress and aggravates hypoxia of the kidney.

Absorbents of uremic toxins ameliorate hypoxia and

fibrosis of the kidney [24•]. Uremic toxins also enhance

cardiac fibrosis via enhanced oxidative stress in hyperten-

sive rats [25].

Nlandu Khodo et al. [26] demonstrated that deletion of

NADPH-oxidase 4 (NOX4) is associated with increased

kidney fibrosis in obstructed kidneys. This effect was

associated with enhanced tubular cell apoptosis, as well as

defective HIF-1 oxygen sensing and Nrf2 antioxidant

pathways. Although NOX4 has been suspected to partici-

pate in kidney fibrosis, NOX4, which is expressed in

tubular cells at much higher rates than podocytes or myo-

fibroblasts, might play a different function in tubular cells

and may be crucial for tubular cell survival under stressed

conditions.

ER Stress at the Center of Various Stress Signals

in Fibrosis

Current evidence suggests a prominent role for ER stress and

activation of the UPR pathway in fibrosis. ER stress

enhances fibrotic remodeling through the activation of

multiple pathways, including pro-apoptotic pathways and

inflammatory responses. The ER stress-inducing factors

include hypoxia, oxidative stress, and inflammatory condi-

tions [27•]. This section summarizes the impact of ER stress

as well as oxidative stress in the pathophysiology of fibrosis.

The Cross talk of the Stress Signals of Hypoxia,

Oxidative, and ER Stress

The ER maintains the quality of proteins by regulating the

capacity for protein synthesis and folding. Under the path-

ogenic conditions, including oxidative stress and hypoxia,

the imbalance of protein synthesis/folding capacity occurred

in association with the unfolded protein accumulation in the

ER, in turn leading to ER stress. The ER stress induces the

stress signal, UPR. It is established that the UPR pathway

links with other stress signals induced by hypoxia (HIF

pathway) or oxidative stress (Nrf2 pathway), and contributes

to the development/progression of various diseases, includ-

ing glomerular and tubular injury leading to CKD [27•, 28].

Previous studies implicate important roles for HIF and

UPR pathways in adaption to hypoxia. Interestingly, these

pathways are also critical for tumor survival. HIF and eIF2a
signaling of UPR contribute to the survival of hypoxic cells

in vitro and in vivo [29]: eIF2a signaling induces protection

against reactive oxygen species produced by hypoxia.

These findings suggest that interaction between HIF and

UPR under hypoxic conditions is implicated in the induc-

tion of phenotypic alteration, such as fibrosis, by hypoxia.

From the view point that Nrf2 inhibits fibrosis via sup-

pression of both oxidative stress and inflammation, Nrf2

activation by the UPR pathway might be beneficial for the

prevention of fibrosis. In particular, ER membrane-bound

stress sensors, such as IRE1 and PERK, activate Nrf2.

PERK phosphorylates Nrf2 and disrupts its association with

Keap1, resulting in its nuclear translocation. JNK, which is

activated by the IRE1 axis of UPR, also induces Nrf2–

Keap1 dissociation and Nrf2 stabilization. In the nucleus,

Nrf2 also upregulates genes related to the ER-associated

degradation (ERAD) pathway, which eliminates the unfol-

ded proteins from the ER and maintains ER function [30].

Evidence of the Contribution of ER Stress to Fibrosis

Due to the cross talk of stress signals described above,

there is growing consensus that not only hypoxia and
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oxidative stress signals but also ER stress—namely, the

UPR pathway—contributes to fibrosis [31, 32]. In lung

fibrosis, it was demonstrated the UPR pathway depends on

TGF-b induction, especially the contribution of the IRE1 or

ATF6 axis on TGF-b expression [33]. Myofibroblastic

differentiation of lung fibroblasts induced by TGF-b was

associated with UPR activation, and a chemical chaperone,

4-phenylbutyric acid (4-PBA), suppressed TGF-b-induced

UPR and profibrotic gene expression [34].

UPR activation was also observed in the tubular lesion of

animal models and patients with renal fibrosis: profibrotic

cytokines, TGF-b or PDGF, impaired ER function, and

thereby activated the UPR pathway, i.e., activation of ER

stress sensors, IRE1, ATF6, or PERK. These stress sensors

aggravated ECM accumulation in the tubulointerstitium

through the enhancement of the correct folding of ECM

proteins by ERP57, a protein disulfide isomerase that forms

a disulfide bridge for protein folding [35]. Another fibrotic

phenotypic change in tubular epithelial cells, EMT, was

also accelerated by UPR activation [36]. In UUO fibrosis-

model rats, tubular cell apoptosis and interstitial fibrosis

developed in association with proapoptotic UPR activation,

and the attenuation of the overwhelming UPR activation by

candesartan, which is known to modulate proapoptotic

UPR, mitigated the tubulointerstitial damages [37].

Epigenetic Changes and Fibrosis

Recent epidemiological studies showed that AKI, once

believed to be transient and to recover completely, often

leads to development of CKD and ESKD. Mechanisms of

fibrosis that develop long after an initial insult are hot

topics that are intensively investigated. Renal ischemia/

reperfusion of rats induced an imbalance of angiopoeitin-2/

angiopoeitin-1 accompanied by the proliferation of peri-

cytes, loss of endothelial cells and development of fibrosis

9 weeks after the initial insult [38].

An important concept for understanding the course of

CKD after AKI is that the fibrotic change occurs via pro-

cesses that are independent of the original insult, and it is

likely that epigenetic changes of resident kidney cells

induced by oxidative stress, hypoxic stress, and ER stress

favor a fibrotic phenotype. These epigenetic changes

include histone modifications and miRNA expressions. For

example, Kato et al. [39••] reported that TGF-b, a major

profibrotic molecule, increased miR-192 expression

through the epigenetic modification of the miR-192 pro-

moter region, and thereby induced renal fibrosis, such as

mesangial matrix expansion in glomeruli. Overexpression

of smad7 suppressed renal fibrosis via altering the renal

tubular expression of not only miR-192, but also miR-21

and miR-29b in obstructive nephropathy mice [40].

We performed chromatin immunoprecipitation (ChIP)

with deep sequencing (ChIP-seq) of endothelial cells

exposed to hypoxia and found that HIF-1 functions as an

enhancer of GLUT3 (SLC2A3) by interaction with lysine

(K)-specific demethylase 3A (KDM3A). KDM3A is

recruited to the GLUT3 locus in an HIF-1-dependent

manner and removes a suppressive histone mark to

enhance gene expression [41].

We also assessed changes in miRNA expression in the

renal tubular cell line HK-2 under oxidative stress or ER

stress using miRNA microarray assay. Expression of miR-

205 was markedly decreased in both stress conditions, and

functional analysis revealed that decreased miR-205 led to

an increase in cell susceptibility to oxidative and ER

stresses, and that this increase was associated with the

induction of intracellular ROS and suppression of antiox-

idant enzymes. We found that prolyl hydroxylase 1

(PHD1), which downregulates HIF and antioxidant

enzymes downstream, is a novel target of miR-205 [42].

Novel Approaches for Drug Development to Tissue

Fibrosis

Therapeutic approaches that have been tried against fibro-

sis include pirfenidone, anti-TGF-b antibody, anti-CTGF

antibody, and PAI-1 inhibitor [43, 44]. However, as

described above, we have a number of potential and

promising targets against fibrosis. Experimental therapies

of HIF activation and ER stress-related reagents have been

successful, and antioxidant treatments have been successful

in humans to some extent.

Nrf2 Activators

There is growing consensus that the amelioration of path-

ogenic oxidative stress status by activation of the Nrf2

pathway protects the cells from fibrotic stimuli. Bardoxo-

lone methyl, a potent inducer of Nrf2-regulated antioxidant

and anti-inflammatory processes, demonstrated great

promise for the therapeutic management of CKD in dia-

betic patients [45]. However, a larger trial in patients with

CKD and type 2 diabetes was suspended in October 2012,

owing to serious adverse events in the treatment arm of the

investigation. Publication of more details about the adverse

events is on hold because the compound received signifi-

cant attention by a number of doctors and patients.

Other Nrf2 activators, which are structurally different

from bardoxolone methyl, might also be promising in the

prevention of not only CKD but also fibrosis-related diseases

[46]. Young broccoli sprouts as a functional food contain

many bioactive compounds, especially sulforaphane, which

activates Nrf2; these compounds are considered as
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supplementary treatments in diabetes-induced fibrosis [47].

Oral sulforaphane also increased antioxidant enzymes in

nasal lavage cells in humans [48]. Curcumin, a substance in

turmeric, alleviates oxidative stress, inflammation, and renal

fibrosis in CKD model rats by Nrf2 activation [49]. Of note,

dimethyl fumarate (BG-12), another Nrf2 activator with a

completely different structure from bardoxolone methyl,

was shown to reduce relapse rates in patients with multiple

sclerosis [50, 51].

Epigenetic Drugs

Epigenetic modification of DNA and histone play an

important role in fibrosis of the lung, liver, and kidney, as

described above [52–54]. Therefore, epigenetic interven-

tions are the novel focus of intensive research, and recent

studies screening for small molecules to accelerate recov-

ery after AKI have identified the histone deacetylase

(HDAC) inhibitor, methyl-4-(phenylthio)butanoate, as a

promising therapeutic candidate [55]. In contrast, Sirt1,

which is also an HDAC, plays a key role in the prevention

of advanced glycation end product (AGE)-induced diabetic

renal fibrosis. Sirt1 suppressed AGE-induced profibrotic

gene expressions via activation of the Nrf2 pathway, fol-

lowed by upregulation of antioxidant gene expressions in

glomerular mesangial cells [56]. Of note, it was also

demonstrated that advanced glycation caused alteration of

Sirt1 expression [57] and epigenetic modification [58, 59],

suggesting a critical role of AGE-Sirt1 interaction in dia-

betes-induced fibrosis via epigenetic alteration. Further

investigation will open a new avenue for the development

of therapeutic strategies targeting epigenetics to fibrosis.

ER Stress Modulators

Recent accumulating reports highlight the benefits of

therapeutic approaches that target ER stress together with

oxidative stress in kidney injury leading to fibrosis [27, 60].

Chemical chaperons, including 4-PBA and tauroursode-

oxycholic acid (TUDCA), enhance protein folding capacity

and restore ER function, resulting in mitigation of fibrosis

in the lung and liver [34, 61, 62]. The novel effect of

angiotensin II receptor blockers (ARBs; candesartan or

almesartan) or anti-inflammatory drugs (mizolibine, [63])

as ER stress modulators may also be promising in pre-

vention of fibrotic phenotypes.

ER stress is also induced by advanced glycation of pro-

tein and DNA, namely glycative stress, which is also known

as the pathogenesis of glomerular sclerosis in diabetic

nephropathy, and vice versa [60, 64, 65]. It establishes the

vicious cycle of glycative stress and ER stress under certain

pathogenic conditions, such as hyperglycemia and oxidative

stress. Thus, some anti-glycation compounds can ameliorate

pathogenic UPR activation, and thereby maintain cell

homeostasis. The previous evidence demonstrating the

renoprotective effects of ER stress modulators in glomerular

and tubulointerstitial injury might support the effect of these

modulators on kidney fibrosis. However, further investiga-

tions demonstrating the molecular mechanism of kidney

fibrosis aggravated by ER stress are necessary for the

development of novel therapeutic approaches targeting ER

stress.

Conclusions

Fibrosis is a key and common phenotype for the progres-

sion of various diseases including CKD, suggesting the

importance of developing more effective therapies against

fibrosis to prevent disease progression. It is established that

repeated or chronic inflammation triggers fibrosis. Further,

hypoxic stress, oxidative stress, and ER stress also signif-

icantly trigger fibrosis by an increase in profibrotic gene

expressions in various organs. The stress signal pathways,

such as HIF, Nrf2, and UPR, demonstrate cross talk with

each other, and some compounds used to regulate these

stress pathways have already been successful in human

clinical trials. HIF, Nrf2, and UPR are important targets of

future therapeutic approaches against fibrotic diseases.
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