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Abstract Inflammation has been closely linked to various

forms of cancer. Less is known about the role of inflam-

mation in glioma, especially at the initiation stage. In this

review, we first describe the unique features of the immune

system in the brain. We then discuss the current under-

standing of the mechanisms by which glioma cells modu-

late the immune system, especially how bi-directional

communications between immune cells and glioma cells

create an immunosuppressed microenvironment that pro-

motes tumor survival and growth. We also address the

potential tumor-initiating roles of inflammation in glioma.

Finally, we describe several immunotherapy approaches

currently being developed to reverse these interactions and

stimulate the immune system to eliminate glioma cells.
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Introduction

Inflammation is a natural immune response to an infection,

tissue injury or malfunction. An acute inflammatory response

begins when tissue-resident macrophages and mast cells

detect an infection or damage. These cells secrete pro-

inflammatory molecules that trigger a localized increase in

blood flow and extravasation of plasma proteins and leuko-

cytes to the affected tissue, leading to the typical swelling and

redness. Once the immune response has neutralized the threat,

pro-inflammatory molecules are replaced with anti-inflam-

matory molecules and the inflammation subsides. However, if

the cause(s) of the initial inflammatory response are not

resolved, an acute inflammation can transition to a chronic

inflammation, lasting weeks, months, or even years. Whereas

acute inflammation is beneficial, helping to eliminate infec-

tious agents and promote tissue repair, chronic inflammation

can have deleterious effects, such as tissue damage, autoim-

mune disease, or even cancer growth.

While immune surveillance blocks tumor formation,

inflammation is known to promote tumorigenesis in many

circumstances [1–4]. For example, cancer can be caused by

inflammation triggered by infections (Hepatitis B/C-asso-

ciated hepatocellular carcinoma, H. pylori-associated gastric

cancer), autoimmune diseases (colitis-associated colorectal

cancer) and even environmental irritants (asbestos-associ-

ated mesothelioma). Inflammation can promote tumorigen-

esis via increased genetic alterations, resulting from

macrophage-secreted reactive oxygen and nitrogen species

or activation-induced cytidine deaminase, a mutagenic

enzyme. In the gut, inflammation strips away protective

mucosal layers, exposing stem cells to environmental car-

cinogens and releasing them from normal homeostatic con-

trols. Additionally, some cytokines secreted during the

inflammatory response promote tumor growth by inducing

angiogenesis, or by triggering signaling cascades that acti-

vate NFjB and STAT3, which in turn activate proliferative

and anti-apoptotic genes [5, 6]. Three interesting themes

emerge from these studies. First, inflammation can either

inhibit or promote tumor growth, depending on the combi-

nation of immune cells present and the signaling factors they
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secrete. Second, the impact of inflammation on mutant cells

could evolve as tumors progress from benign to malignant

stages. Third, the interactions between immune and tumor

cells are bi-directional, which adds another layer of com-

plexity to this problem.

The role of inflammation in glioma is less clear than in

the aforementioned cancer types. Gliomas are a form of

cancer in the central nervous system (CNS) with diverse

pathological and histological properties. The most common

form, glioblastoma multiforme (GBM), is one of the

deadliest of all cancers and has a median survival period of

12–14 months. Epidemiological studies have suggested a

link between inflammation and glioma. Understanding how

the immune system and gliomas interact could lead to

novel therapeutic approaches to combat glioma. In this

review, we will discuss the unique features of immunity in

the CNS, the potential roles of inflammation in causing

gliomagenesis, the known effects of inflammation in

malignant gliomas, and how we could take advantage of

the interactions between immune and tumor cells to more

effectively treat glioma patients.

CNS Immune System

The brain is commonly known as an immune-privileged

organ due to the restrictive nature of the blood–brain bar-

rier (BBB) that prevents immune cells and serum-derived

immune modulators from accessing it [7]. In the absence of

pathological damage, the only cells with immune functions

in the CNS parenchyma are microglia. However, immune

cells from the hematopoietic system play important roles in

the brain when the BBB is compromised by physical

trauma or pathological conditions including multiple scle-

rosis, stroke, and malignant brain tumors.

Microglia

Microglia share a common origin with the hematopoietic

system but segregate into a unique lineage early in devel-

opment. They are generated from primitive myeloid pro-

genitors in the extra-embryonic yolk sac before E8 [8].

After entering the CNS at E10 [8•, 9], microglia appear to

replenish themselves solely through self-renewal without

the involvement of peripheral macrophages, their bone

marrow-derived close relatives.

In a healthy CNS, branched (resting) microglia actively

monitor their environment by constantly extending/retracting

their processes, while maintaining a static cell body [10, 11]. A

resting microglia is activated when it detects pathogen-asso-

ciated molecular patterns (PAMPs; ex. LPS) or damage-

associated molecular patterns (DAMPs; ex. extracellular

matrix molecule fragments) through their binding to pattern

recognition receptors (PRRs) such as Toll-like receptors

(TLRs), nucleotide-binding oligomerization domain (NOD)

proteins, and c-type lectin receptors. Serum proteins and

dysfunctional neurons can also trigger microglial activation

(see below). Activated microglia become amoeboid and can

exist in different states representing different outcomes of the

immune response. Similarly to macrophages, microglia can be

classified under M1 (classic activation) and M2 (includes

alternative activation and acquired deactivation) activation

states [12•]. Classically activated microglia upregulate the

expression of MHCII, thus increasing their antigen-presenting

ability to activate T cells, secrete pro-inflammatory cytokines

including TNFa, IL6 and IL1b, and upregulate nitric oxide

synthase (NOS) to produce NO to destroy pathogens. Mac-

rophage transition from classic to alternative activation is

regulated by T cell-derived IL4 and IL13. Although their

source in the CNS is unclear, IL4 and IL13 can also shift

microglia-mediated immune responses, from pro-inflamma-

tory and destructive to anti-inflammatory and tissue regener-

ating, by downregulating TNFa, IL1b and NOS2 and

upregulating arginase 1, mannose receptor, FIZZ1, and Ym1

[13, 14]. However, it is currently challenging to determine

whether these effects are truly microglia-specific or if they

were observed in macrophages infiltrating the CNS [12, 15].

Acquired deactivation also shifts microglial responses to an

immunosuppressive state, but is mediated by TGFb and/or

IL10. Additionally, acquired deactivation is characterized by

microglial phagocytosis of apoptotic cells, which also acts as a

signal to ‘‘deactivate’’ microglia [12].

Infiltrating Immune Cells Upon BBB Breakdown

Activated microglia secrete pro-inflammatory cytokines

such as IL1b, which modulate the BBB to allow bone mar-

row-derived immune cells into the CNS [16], including

CD8? cytotoxic T cells and CD4? helper T cells. The latter

are subdivided into Th1, Th2, and Th3, which have different

effects on an immune response [17]. Th1 cells promote a pro-

inflammatory state by secreting cytokines such as IFNc and

IL12, activating macrophages and microglia to release toxic

compounds such as NO, and activating cytotoxic CD8? T

cells. On the other hand, Th2 cells secrete anti-inflammatory

cytokines such as IL4, IL10, and IL13, which counteract the

effects of Th1 cells and promote B lymphocyte activation

and antibody production. The main role of Th3 cells is to

suppress the immune response by secreting TGFb. However,

Th1 cells can also produce anti-inflammatory cytokines,

such as IL10 and TGFb, later in an immune response to limit

the length of the cytotoxic, tissue-damaging phase of this

response. Another important type of CD4? T cell is the

regulatory T cell (Treg), which has mainly anti-inflamma-

tory, immunosuppressive roles due to the production of high

levels of IL10 and TGFb as well as other, unknown

20 Curr Pathobiol Rep (2013) 1:19–28

123



mechanisms. These cells play an important role in shutting

down an immune response once the threat to the host has

been eliminated as well as in prevention of autoimmune

disease [18].

Macrophages also enter the CNS upon BBB breakdown.

However, due to similar marker expression and functions

to microglia, and other experimental caveats, it has been

very difficult to study the distinct contributions of infil-

trated macrophages versus resident microglia to CNS

immune activities [19], particularly in pathological cases.

Nonetheless, significant differences have been identified

between these cell types. Compared to macrophages,

microglia have attenuated immune properties, such as poor

antigen-presenting ability (reduced MHCII levels) and

reduced phagocytic ability. Additionally, the BBB shields

microglia from serum proteins including fibrinogen, a

strong activator for both macrophages and microglia [20].

Lastly, healthy neurons signal to microglia through a

variety of receptor/ligand complexes that keep them in a

resting state [21]. Overall, the unique properties of

microglia in the CNS are likely critical to avoid excessive

damage in an organ with limited regenerative ability.

The Impact of Astrocytes on CNS Immunity

Though not part of the immune system, astrocytes also play

a significant role in modulating immune responses in the

CNS [22]. Astrocyte end-feet form the Glia limitans, the

last barrier to immune cell entry into the CNS [23]. Upon

trauma or in autoimmune diseases, reactive astrocytes form

a barrier to the infiltration of the CNS by peripheral leu-

kocytes [24]. Similar to microglia, astrocytes express var-

ious PRR receptors, such as TLR3, and are thus capable of

responding to pathogens and tissue damage. Once acti-

vated, reactive astrocytes can secrete pro-inflammatory

cytokines and chemokines that can activate and recruit

immune cells to the affected CNS region (IL6, CCL2, and

others). Finally, reactive astrocytes can secrete trophic

factors such as CNTF and IGF1 that participate in the

tissue repair phase of inflammation [22]. It has also been

suggested that astrocytes can act as antigen-presenting cells

(APCs), thus directly participating in T cell activation,

though this remains a controversial issue [25].

Inflammation in Glioma

To understand the role of inflammation in gliomagenesis,

we will discuss both the initiation and the malignant stages

since inflammatory cells and molecules are involved in

both stages, though in different ways. We will also discuss

the complex nature of this topic, especially the anti- and

pro-tumor activities of inflammation and the two-way

interactions between immune and tumor cells.

Can Inflammation Cause Glioma?

Epidemiological studies suggest a link between inflam-

mation and gliomagenesis: individuals with a history of

NSAID use, asthma, allergies, or high IgE levels have

decreased risk of developing glioma, whereas use of anti-

histamines (lowers IgE levels, used to treat allergies and

asthma) has the opposite association [26–29]. It has been

hypothesized that allergic reactions and high IgE serum

levels might lead to lower levels of Tregs, a cell type

known to cause chronic, tumor-promoting inflammation

[30]. Additionally, a number of studies have revealed

associations between SNPs on immune-related genes and

risk of glioma [30, 31], including the anti-inflammatory

IL4, IL4R, IL10, and IL13, and the pro-inflammatory Cox2

and IL6. However, functional studies will be needed to

verify such associations. It is interesting to speculate that,

similar to how inflammatory bowel disease can cause

colorectal cancer, autoimmune diseases affecting the CNS

might also contribute to gliomagenesis. In fact, some

multiple sclerosis patients develop glioma in the lesioned

areas years later [32, 33]. A similar link has been suspected

for head trauma [34, 35]. However, these associations are

not highly significant due to the relatively low number of

cases.

One intriguing possibility for how inflammation might

influence gliomagenesis is by affecting the behavior of gli-

oma cells of origin. Recent studies have identified both

neural stem cells (NSCs) and oligodendrocyte precursors

(OPCs) as cell types that, when mutated, can give rise to

malignant gliomas [36•• , 37••, 38••]. Interestingly, mole-

cules produced during inflammation can affect the behavior

of both cell types (Fig. 1). Activated microglia and astro-

cytes secrete MCP1/CCL2 and SDF1 that can promote NSC

migration to the inflamed area [39–42]. Pro-inflammatory

cytokines can also recruit OPCs to promote repair of de-

myelinated lesions, and TNFa in particular can promote

OPC and NSC proliferation [43–45]. Additionally, alterna-

tively-activated microglia upregulate arginase 1, leading to

the production of polyamines, which can promote NSC

proliferation [46]. Conversely, TGFb, which can be secreted

by microglia, has well-known anti-proliferative effects on

many types of CNS progenitors [47]. However, these effects

are highly context-dependent, as microglia in the classic or

alternative activation states can respectively inhibit or pro-

mote neurogenesis [48]. Similarly, high or low levels of

IFNc can inhibit or promote neurogenesis [49–51], and

TNFa signaling through TNFR-I receptor inhibits hippo-

campal progenitor proliferation, whereas signaling through

TNFR-II has the opposite effect, particularly in pathological
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conditions [52]. The study of interactions between neuroglial

progenitors and immune cells is in its infancy, but has the

potential to deliver critical insights into the effect of

inflammation on glioma initiation.

Inflammation in the Malignant Phase: Friend or Foe?

The inflammatory response to a glioma is complex, with

multiple cell types involved in multi-lateral communications

(Fig. 1). Because gliomas cause a breakdown of the BBB,

circulating immune cells not normally found in the CNS now

gain access to tumor areas. This includes various types of T

cells, B cells, macrophages, and myeloid-derived suppressor

cells (MDSCs). Additionally, astrocytes become reactive

and also participate in the response to the tumor. Finally, the

tumor cells themselves secrete a number of factors that

modulate the activity of all the cells mentioned above (as

well as endothelial cells).

It has been estimated that up to 30 % of the glioma mass

is composed of microglia [53]. Though these estimates can

vary [54], the importance of microglia to the glioma

microenvironment is unquestionable. Tumor-derived che-

mokines (MCP1/CCL2, MCP3, CSF1, G-CSF, HGF/SF)

[55–61] attract microglia to gliomas, where they become

activated. However, rather than engaging in cytotoxic or

phagocytic activities, glioma-associated microglia tend to

secrete cytokines and growth factors that promote tumor

cell growth and angiogenesis, such as IL10 [62, 63], EGF

[64], and VEGF [65]. Microglia-derived IL10 can also

inhibit T cell proliferation and confer an immunosup-

pressed state. Glioma-associated microglia express MHCII

and B7 molecules at the cell surface [66, 67]. This would

allow microglia to act as APCs and activate a cytotoxic

T cell response (via Th1 activation). However, glioma-

associated microglia appear to have low APC activity [68],

as they express lower levels of MHCII molecules than

microglia activated in the absence of tumor cells [66, 67,

69] and lack expression of co-stimulatory molecules CD86,

CD80, and CD40 [54]. Data suggest that this inhibition of

microglial antigen-presenting capability is at least partially

due to glioma-derived IL10 and prostaglandins [70]. In

fact, many cytokines secreted by glioma cells can directly

inhibit MHCII production in microglia [71]. Furthermore,

glioma-associated microglia can actively eliminate T cells

via FasL- and B7-H1-mediated apoptosis of CD8? T cells

[72, 73]. Decreased antigen presentation and T cell apop-

tosis are normal microglial negative feedback mechanisms

to avoid destructive inflammation in the CNS, which are

apparently hijacked by glioma cells to avoid elimination by

the immune system.

In fact, the glioma microenvironment is strongly immu-

nosuppressive, reminiscent of the M2 phase of inflammatory

responses. Hao and colleagues [74] characterized the

expression of 53 cytokines and receptors in multiple human

tumors and found that the Th2/3 (immunosuppressive) profile

was dominant over the Th1 (pro-inflammatory) profile. Con-

sistent with this finding, TLR stimulation in glioma-associated

microglia does not trigger classic activation, since these cells

fail to secrete pro-inflammatory cytokines (IL6, IL1b, TNFa)

and are thus incapable of activating a cytotoxic state in CD8?

T cells [54]. This immunosuppressive state is due to multiple

factors secreted by glioma cells themselves. Glioma-derived

M-CSF can drive glioma-associated microglia towards an M2

phenotype [75]. Other factors also increase prostaglandin-E2

(PGE2) production by microglia, which then has an autocrine

effect decreasing microglial production of TNFa [76]. Glioma

cells are known to express IL4 and PGE2 [77••], both of which

can induce microglial alternative activation (see above).

Similarly, TGFb, a strong inducer of acquired deactivation

[12], is also expressed by glioma cells [78, 79]. TGFb plays a

number of roles in the glioma microenvironment, including

Fig. 1 Effects of inflammation on glioma initiation and growth.

While the depicted cellular interactions are known to occur, a link

between inflammation and glioma progression has only been

suspected. Inflammatory molecules can affect immune cells (pro- or

anti-inflammatory) and glioma cells of origin/glioma cells (anti- or

pro-growth). Some inflammatory molecules can be pro- or anti-

growth depending on the circumstances (see text for details; not all

cells or interactions were represented)
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suppression of pro-inflammatory responses from T cells and

microglia, but can also act directly on glioma cells to promote

their growth. Several reports indicate that a subpopulation of

glioma cells with tumor-initiating ability (cancer stem cells)

are direct targets for TGFb pro-tumorigenic effects [80–82].

Interestingly, TGFb signaling has opposite effects in the pre-

malignant and malignant phases of cancer for reasons that are

just beginning to become apparent [47, 83]. In addition to anti-

inflammatory cytokines, glioma cells also secrete IL6 and LIF

[74, 84, 85], which could stimulate microglial classic activa-

tion or act on the glioma cells themselves to promote prolif-

eration [86], and pro-angiogenic VEGF [65, 87], giving the

tumor access to nutrients and oxygen. The glioma immuno-

suppressive environment is further enhanced by elevated

numbers of Treg [54, 88]. These cells are recruited by glioma-

derived chemoattractants (CCL2, CCL22) and can suppress T

cell proliferation and promote an anti-inflammatory profile

[89, 90]. The mechanisms by which Tregs exert these effects

are still unclear, but it appears that expression of heme oxy-

genase 1 (HO1) plays an important role, perhaps via the pro-

duction of carbon monoxide [91, 92]. Other mechanisms

involve CTLA-4 and TGFb [93]. Importantly, depletion of

Tregs in mouse glioma models improves survival [94].

There are indications that, just as in other forms of

cancer where inflammation plays a pro-tumorigenic role,

STAT3 and NFjB, key nodes of cytokine intracellular

signaling, are central to this effect. STAT3 inactivation

changes the profile of glioma-associated microglia from

anti- to pro-inflammatory and decreases glioma growth

[95–97]; NFjB activity seems to block glioma cell dif-

ferentiation while its inhibition promotes glioma cell

senescence [98], whereas deletion of NFKBIA, an NFjB

inhibitor, is associated with more aggressive gliomas [99].

In addition to immune cells, reactive astrocytes are also

commonly found within gliomas. These cells secrete Shh

[100–102], SDF1 [103–105], and IL-10 [62], which support

glioma cell survival and proliferation. Astrocytes also play

important roles for the enhancement of glioma cell migra-

tion, a property of gliomas that makes them particularly

difficult to cure. UPA/uPAR from astrocytes cleaves plas-

minogen secreted by the glioma cells to plasmin, which in

turn cleaves astrocyte-secreted pro-MMP2 to MMP2, thus

increasing glioma cell invasiveness [106]. Additionally,

glioma-secreted factors stimulate microglia to release MT1-

MMP (MMP14) which can then activate glioma-derived

pro-MMP2 [107]. Other molecular interactions and cellular

players in the glioma microenvironment are not covered in

this review due to space constraint, but we refer interested

readers to recent reviews for more details [77••, 108••].

In summary, while the immune system can detect the

presence of a glioma in the CNS and responds with

mobilization/activation of many cell types, this response

appears to be subverted from a pro-inflammatory, classic

activation state to an immunosuppressed, alternative acti-

vation state by glioma-derived factors. If this tolerant,

subverted state can be changed back to a pro-inflammatory

state, then the immune system could help eliminate the

glioma cells. Multiple efforts are currently underway to

devise therapeutic strategies based on that concept.

Glioma Immunotherapy

The concept of cancer immunotherapy has existed for many

years. It is based on recruiting the patient’s immune system and

enhancing its anti-cancer properties to help eliminate the tumor

cells [109•]. Passive immunotherapies use immune effector

molecules (antibodies and cytokines) to elicit a rapid, but short-

term, anti-tumor response. Active immunotherapies enhance T

cell anti-tumor activity (autologous grafting of APCs exposed

to tumor peptides or direct peptide injection) and can therefore

confer a longer-lasting protection against cancer. Compre-

hensive reviews of the current state of glioma immunotherapy

can be found in recent publications [110••, 111••]. Below, we

discuss examples of promising glioma immunotherapies as

well as approaches that have shown promise in other types of

cancer and might soon be used against glioma.

One of the prerequisites of immunotherapy is the existence

of antigens specific to glioma cells, a rare occurrence since

tumors are composed of ‘‘self’’ cells. One candidate is EG-

FRvIII mutant receptor, which is not expressed by normal

cells and has a prevalence of 20–30 % in GBM patients [112].

Immunization against EGFRvIII-specific antigens has shown

safety and increased survival in glioma mouse models and

patients [113, 114]. Unfortunately, immunotherapies based on

EGFRvIII epitope alone eventually recur from tumor cells that

had no EGFRvIII expression [114], illustrating the need for

immunization against multiple tumor epitopes by using

inactivated whole tumor cells as the immunogen [115–119].

Recently, several groups have reported high levels of cyto-

megalovirus (CMV) in human gliomas [120, 121], sparking

interest in using ‘‘non-self’’ CMV antigens to mount an anti-

glioma immune response [118].

In addition to unique antigens, immunotherapy can only

be effective after overcoming the immunosuppressive

environment created by gliomas. Some attempts have

focused on inactivation of Tregs: CD25-blocking antibod-

ies (IL2Ra, central to Treg function) have been used with

some success in mice and humans [94, 122–124], and

TLR8 and TLR9 stimulation can reduce Treg accumulation

in glioma and improve CD8? T cell activity [125, 126].

Other approaches could be to inhibit the CCL2/CCL22

chemokine receptor CCR4 to prevent Tregs from being

attracted to the glioma site [89, 90].

Recent successes in immunotherapy for other cancers

have re-ignited interest in this field [109]. Activity-blocking
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CTLA-4 antibodies are showing promise in the treatment of

metastatic melanoma. This approach could also prove

effective against glioma, where CTLA-4 plays a role in Treg-

mediated immunosuppression. CTLA-4 also plays a direct

role in downregulating effector T cell activity, and thus

inhibiting it in gliomas could also improve these cells’

function in the tumor, provided there are cells with antigen-

presenting ability to stimulate them. Another attractive

candidate target for immunotherapy is PD-1, the receptor for

PD-L1 (B7-H1), which can reduce proliferation and induce

apoptosis of CD8? T cells. PD-1-inactivating antibodies

have been tested with encouraging results in phase I clinical

trials for metastatic melanoma, colorectal cancer, non-small

cell lung cancer, prostate cancer, and renal cell carcinoma

[127]. As the mechanisms mediated by PD-1 and its ligand

are known to occur in glioma (see above), this approach

could also one day be beneficial for glioma patients.

Conclusion

Just as many parasites have developed strategies to evade

immune rejection [128–130], gliomas seem to use similar

approaches to avoid elimination by the immune system. By

secreting immune-modulating factors, glioma cells convert

microglial and macrophage activation away from a pro-

inflammatory, classic state towards an anti-inflammatory,

alternative activation state. This permissive environment is

further enhanced by attracting Treg and other immunosup-

pressive cells into the tumor mass. Such modulations not only

passively allow tumor cells to survive but can also promote

their growth, possibly by engaging immune cells into a tissue

repair mode. Therefore, rigorous studies are urgently needed

to uncover the two-way communications between glioma and

immune cells. Importantly, to fully understand the impact of

inflammation on gliomagenesis, we should study such rela-

tionships not only in malignant gliomas but also during tumor-

initiation stages, where many important questions remain to

be answered. Do pre-malignant mutant cells trigger microglial

activation, and if yes, then by which mechanism? If no, how do

they evade detection? Do microglia initially try to eliminate

mutant cells, or can mutant cells subvert microglial responses

from the earliest stages towards a growth/survival-promoting

role? Do these interactions accelerate gliomagenesis? Genetic

mouse models of glioma can be particularly helpful in

answering these questions due to the ability to follow mutant

cells throughout their malignant progression in a physiologi-

cally relevant environment. Ultimately, therapeutic strategies

that can thwart the subversive tricks of tumor cells and turn the

immune system against them will yield tremendous clinical

benefits. The challenges are great, but collaborations between

immunologists, neuroscientists, and oncologists should make

a cure possible.
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