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Abstract
Purpose of Review This narrative review introduces key elements of cough neural control, function, dysfunction, and meas-
urement for physicians and speech-language pathologists. Its goal is to guide integrated approaches to the assessment of 
cough and facilitate differential diagnosis of cough dysfunction among people with dysphagia.
Recent Findings Research has shown that cough and swallow dysfunction have high co-occurrence, especially in neurode-
generative populations. Both sensory and motor components of cough dysfunction can be evaluated using high and low-tech 
equipment (e.g., handheld peak flow meters). The evaluation of cough function is vital given the known benefit of targeted 
dystussia treatments for people with dysphagia.
Summary Intact airway protection requires both functional swallowing and cough. However, clinicians report that objec-
tive cough evaluations are not commonly included in assessments of airway protection. This review provides an overview 
of cough neurobiology, describes its measurement, and presents case vignettes to illustrate the benefits of integrating cough 
assessments into clinical settings.
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Introduction

A cough is an airway protective mechanism that serves to 
expel material from the upper and lower airways to ensure 
pulmonary clearance and health [1]. Hypotussic, or down-
regulated cough, refers to the inability to adequately sense 
or effectively remove aspirate material that enters the air-
way, resulting in a high risk of aspiration pneumonia [2–6]. 
Aspiration pneumonia is a serious consequence which can 
lead to increased healthcare costs, decreased quality of life, 
increased mortality rates, and other adverse health outcomes 
[2–4, 7–13]. Aspiration pneumonia risk is also particularly 
high in the presence of disordered swallowing, which exists 
at the opposite end of the continuum of airway protec-
tion from cough [1, 9, 11, 14–19]. Many individuals with 
swallowing disorders, or dysphagia, are at risk for aspiration 
and demonstrate decreased sensitivity to detect foreign mate-
rial that errantly enters the airway, also known as “silent” 
aspiration [18, 20–22]. Additionally, many individuals with 
dysphagia exhibit a reduced ability to cough effectively to 
expel foreign material from the airway, even when sensation 
is present [23–25]. When the sensory or motor components 
of cough are impaired in the presence of impaired swal-
lowing function, aspirate is repeatedly introduced into the 
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respiratory system and is unable to be removed, contribut-
ing to uncontrolled colonization of bacteria [26–28]. There-
fore, it is of critical importance that clinicians who work 
with individuals at risk for dysphagia understand when it is 
appropriate to refer, evaluate, and treat these individuals for 
impairment of sensorimotor cough function.

At present, many clinicians who treat individuals with 
dysphagia report limited education related to cough [29•]. In 
fact, over 97% of speech-language pathologists (SLPs) sur-
veyed in a recent study reported an interest in learning more 
about cough assessment [29•]. Therefore, the aim of this 
review is to provide a basic introduction to cough function, 
describe its neurobiology in both healthy and disordered 
cough, and focus on the implementation of cough assess-
ments in clinical practice. We will then conclude this review 
with case vignettes to exemplify how cough assessments 
may facilitate differential diagnoses in airway protection 
deficits and impact dysphagia management.

The cough literature frequently categorizes cough behav-
iors as either voluntary or reflex. These labels are impor-
tant to understand theoretically and are relevant for clinical 
practice and cough research. Voluntary cough is initiated on 
command (e.g., after a verbal cue to cough), whereas reflex 
cough is triggered in response to stimulation of the airway 
[22, 30•, 31, 32]. There are a variety of external or endog-
enous stimuli which can trigger a reflex cough, one of which 
is the introduction of aspirate into the airway. Reflex cough 
can also be stimulated by aerosolized materials inhaled into 
the airway, which is how reflex cough is typically studied in 
research settings. Despite these labels, reflex and voluntary 
cough behaviors do not always exist as discrete entities. It 
is known that there is some degree to which individuals can 
sense and potentially even modulate cough behaviors [33]. 
This also relates to an important feature of reflex cough, 
known as the “urge to cough” or UTC. The UTC is the inten-
sity of a person’s perception of a cough-inducing laryngeal 
or tracheal stimulus and can contribute to the ability to either 
up or down-regulate the cough response [33–37]. For exam-
ple, if a subject perceives a faint airway irritant, they might 
have the choice to either produce a strong cough, stimulate 
a throat clear, or suppress a response altogether. However, 
if a subject feels a strong laryngeal irritant, this may result 
in a reflex cough response that is more difficult to modulate 
or suppress.

Neurological Control of Cough

Cough is a behavior which typically involves the coordi-
nation of afferent laryngeal sensory mechanisms and effer-
ent cortical, subcortical, and brainstem activation systems. 
Two types of neurons facilitate the transfer of somatosensory 
cough information: mechanoreceptors and chemoreceptors 

[38]. Mechanoreceptors, which are primarily located in the 
distal airways (i.e., lungs and bronchi), respond to mechani-
cal pressure, specifically touch-like stimuli. They are often 
described as “cough receptors,” “irritant receptors,” or “rap-
idly adapting mechanoreceptors.” Chemoreceptors, on the 
other hand, are primarily located in the proximal airways 
(i.e., trachea and main bronchi). These neurons include slow-
conducting unmyelinated C-fibers that selectively respond to 
chemical stimuli, such as capsaicin (a tussigenic, or cough-
provoking, stimulus) [39, 40]. Chemoreceptors respond to 
different types of stimuli depending on the afferent pathway 
and are responsible for inducing cough via the jugular affer-
ent pathway [41].

Brainstem Processing of Reflex Cough

Airway protective reflexes are first sensed through the stimu-
lation of laryngeal and tracheobronchial irritant receptors as 
well as vagal inputs through pulmonary stretch receptors [42, 
43]. Polysynaptic pathways responsible for the integration of 
afferent input and sequencing of the respiratory pump motor 
patterns exist in the caudal medullary raphe nuclei [42]. This 
pathway connects to dorsal (DRV) and ventral respiratory 
groups (VRG), which in turn have mutual interactions with 
several brainstem regions [42, 44]. Specific regions of the 
medulla and pons have been identified as key areas of the 
brainstem responsible for controlling the magnitude of res-
piratory muscle activation to produce a cough [42, 45, 46].

Central and Subcortical Control of Reflex Cough 
and Voluntary Cough

Studies have demonstrated that a UTC always precedes the 
activation of a reflex cough, and a UTC can be detected at 
lower thresholds than stimuli that would prompt reflex cough 
responses [34]. The UTC sensation is a process dependent 
on both discriminative (i.e., discrete components such as 
location) and affective (i.e., emotional) processing. This 
multifactorial process includes the integration of respira-
tory afferent information, respiratory motor drive, affective 
state, attention, experience, and learning [34, 35, 37, 47].

In conscious humans, respiratory afferent information 
associated with a UTC typically ascends from the brainstem 
to the cortex for higher-order processing prior to efferent 
motor output of reflex cough [35]. Brain regions including 
the orbitofrontal cortex, supplementary motor area, insula 
cortex, anterior midcingulate cortex, and cerebellum have 
been associated with the activation of an UTC [48]. Two 
unique pathways have been proposed in relation to the cor-
tical and subcortical integration of UTC afferent pathways; 
however, it is generally understood that there is overlap 
and integration [41, 45, 49, 50]. Jugular or superior affer-
ent pathways receive inputs from the proximal airways and 
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then project to the paratrigeminal nucleus of the brainstem 
[51]. These then continue to the primary sensory cortex and 
are important in the perception of UTC [50]. Nodose or 
inferior afferent pathways first project to the nucleus tractus 
solitarius of the brainstem [34, 49]. From there, nuclei pro-
ject to the orbitofrontal cortex, cingulate cortex, and other 
limbic regions [41, 48]. This pathway is important for many 
aspects of the sensorimotor cough response following airway 
irritation [50]. Subcortically, structures such as the cerebel-
lum and basal ganglia are also involved in controlling the 
coordination, timing, amplitude, and force of movement, 
which plays an important role in the production of cough 
[41, 52–54].

Conceptually, voluntary and reflex cough represent simi-
lar rapid expulsive pulmonary clearing behaviors. However, 
research now supports distinct cortical pathways for these two 
cough archetypes [45, 55]. In contrast with reflex cough, which 
can occur solely through brainstem control, neuronal activa-
tion of voluntary cough activates desire motivational path-
ways [35]. These are primarily accessed through cortical and 
subcortical pathways, and include areas of the motor cortex, 
premotor cortex, supplementary motor area, insula, anterior 
and mid-cingulate cortex, ventral and dorsomedial thalamus, 
inferolateral sensorimotor cortex, and the striatum [44, 52].

Peripheral Motor Control of Cough

The production of an effective cough requires precise coor-
dination across three distinct motoric phases: inspiration, 
compression, and expulsion [56]. In the inspiration phase, 
there is contraction of the external intercostal muscles, 
which brings the rib cage upward and outward, resulting 
in expansion of the thoracic cavity. This action results in 
a reduction in lung pressure, allowing up to 2.5 L of air to 
fill the lungs [57]. In the compression phase, the vocal folds 
are firmly pressed in the closed position through adduction 
of the laryngeal cricoarytenoid and transverse arytenoid 
muscles [57]. The internal intercostals also contract, and 
this motion is followed by the contraction of the abdominal 
muscles, which push against the diaphragm. The compres-
sion phase results in the generation of subglottic pressure 
of 100 mmHg or more, which is necessary to produce an 
effective cough response [57, 58]. In the third phase (expul-
sion), there is a sudden glottal opening followed by contin-
ued dynamic compression of the intra-thoracic region. Air 
velocity during this third expulsive phase can reach speeds 
of 75 to 100 miles per hour [57].

There are important physiologic differences between 
reflex and voluntary cough. For example, healthy adults 
typically initiate voluntary cough responses at higher 

lung volumes than reflex cough. Voluntary coughs are 
also associated with higher expulsive phase airflow rates 
(i.e., peak expiratory flow rate or PEFR; “e” in Fig. 1) 
[59]. Additionally, expiratory muscles tend to be activated 
sooner than accessory muscles during voluntary cough, 
whereas reflex cough demonstrates simultaneous activa-
tion of expiratory and accessory muscles and greater over-
all muscle activation for shorter periods of time [59].

In addition to the differences between reflex and vol-
untary cough, there are also functional and physiological 
differences between single and sequential coughs. This is 
notable because a reflex cough commonly forms a pat-
tern including a sequence of expulsive cough events or a 
cough epoch [56]. While single coughs have been found 
to be effective at expelling debris from the upper airway, 
sequential coughs are more effective than single coughs 
at removing material from the lower airways [58, 60, 61]. 
This phenomenon is due to the dynamic compression that 
is generated during sequential cough production, which 
results in a reduction in the area of the tracheobronchial 
lumen and a subsequent increase in the velocity of airflow 
at the site of compression [60, 61].

Cough Measurement and Assessment

An effective cough response requires intact sensory and 
motor function as well as precise coordination of neural 
and peripheral mechanisms in order to effectively eject 
foreign material from the airway. Therefore, clinicians 
should consider both motor and sensory aspects when 
comprehensively evaluating cough. Several objective and 
patient-reported cough data can be obtained to measure 
cough sensorimotor function.

A subjective perceptual cough assessment is a widely 
used strategy that can be conducted as part of a clinical 
swallow evaluation [29•]. With this type of assessment, 
a patient would be asked to cough following a cue (e.g., 
“cough as if something went down the wrong pipe”) [30•]. 
Cough effectiveness could then be subjectively described 
using words such as “weak” or “abnormal” [29•, 62]. 
However, recent research has demonstrated that percep-
tual ratings of cough effectiveness have only moderate 
interrater reliability [62, 63]. It is unclear whether this is 
because perceptual cough information is too inconsistent 
to be used as a proxy for objective measures, or because 
clinicians lack a universal rating system and training cur-
riculum. In either case, the pitfalls of unstructured percep-
tual cough ratings highlight the need for more objective 
approaches to cough measurement.
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Cough Airflow Measurements

Spirometry is the gold standard for lung function measure-
ment. It can be used to provide quantitative data on the strength 
and coordination of various cough components (Fig. 1). A 
spirometry setup includes a pneumotachograph, which can 
be outfitted onto a facemask that covers the subject’s nose 
and mouth. This then is connected via tubing to hardware for 
data acquisition and software to visualize the cough airflow. 
Unfortunately, cost and lack of portability remain barriers to 
the collection and analysis of spirometry data in most clinical 
practices which assess and treat dysphagia.

Fortunately, research has supported the use of handheld 
peak flow meters in place of the gold standard pneumot-
achograph, with no statistical differences found in mean 
peak cough airflow [22, 64]. Cough peak flow rates can be 
obtained with small analog or digital peak flow meters with-
out significantly affecting reliability [22, 64]. These devices 
are cost-effective, portable, and easy-to-use. They provide a 
single numeric data point: PEFR (‘e’ in Fig. 1). This objec-
tive measure of cough strength has been found to be cor-
related with the ability to clear aspirated material from the 
airway [30•]. Obtaining PEFR has the potential to be a robust 
clinical tool, as objective data can be compared to normative 
ranges in healthy adults and tracked over time to examine 
disease progression or improvement with treatment [65, 66].

Reflex Cough Testing

The assessment of reflex cough typically involves admin-
istering cough-inducing, or tussive, agents to assess reflex 
cough sensory and motor integrity. These tussive agents 
are airway irritants, and they can be aerosolized and deliv-
ered to the airway in measured concentrations. In the case 
of hypotussic cough evaluation, these tussive agents are 
typically meant to imitate aspiration [67]. To obtain these 
measurements, a nebulizer, dosimeter, and compressor can 
be utilized in-line with a spirometry system. The nebulizer 
and compressor work to create and administer specific 
concentrations of aerosol particles, while a dosimeter can 
be used to time its delivery with inspiration [68]. Tussive 
agents that are most frequently used include capsaicin or 
citric acid [69]. When assessing reflex cough, key out-
comes often include the presence or absence of a cough 
to a particular concentration of tussive agent (i.e., indica-
tive of an intact sensory response), as well as cough air-
flow outcomes of interest (e.g., the strength of the motor 
response). Interestingly, even something as simple as the 
presence or absence of a cough reflex has been shown to 
be difficult for experienced clinicians to judge based on 
audiovisual information alone [62]. Therefore, there is a 
need for clear guidelines and training if this type of testing 
is to be adopted in a clinical setting.

Label Cough Phase Measurement Abbreviation Definition

a

Inspiration

Inspiratory

volume
IV

The amount of air inspired prior to a 

cough

b
Inspiratory phase 

duration
IPD

The time from beginning of air intake 

to the closure of the glottis

c Compression
Compression

phase duration
CPD

The time from the closure of the 

glottis to re-opening of the glottis for 

the beginning of the expulsive phase

d

Expulsion

Peak expiratory

flow rise time
PEFRT

The time from the start of the 

expulsive phase to the moment of 

maximum or peak expiratory flow

e
Peak expiratory

flow rate
PEFR

The airflow rate at the maximal point

in the cough episode

f
Cough expired 

volume
CEV

The total volume of expired air during

the cough epoch

e
d

Cough volume 

acceleration
CVA

A measure derived from dividing

PEFR by PEFRT

b
a

e

c

d f

Normal Cough Waveform
)ces/l(

w
olfri

A

Time (s)

1 2
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Fig. 1  A cough waveform is frequently used to represent and measure 
cough airflow parameters related to the cough phases of inspiration (a 
and b), compression (c), and expulsion (d–f) via spirometry. In this 
graph, the y-axis represents the airflow velocity measurement in lit-
ers per second, while the x-axis represents time in seconds. As one 
breathes in for the inspiratory phase, the graph slopes in the negative 

direction, indicating airflow into the lungs. During the compression 
phase, the waveform slope should become relatively flat, representing 
no change in airflow rate. Then, as the expulsive phase begins, the 
waveform slopes in the positive direction rapidly arriving at a peak. 
The peak then quickly returns to baseline as a breath is returned to the 
lungs after the cough is completed
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Cough reflex testing (CRT) is a specific approach to the 
assessment of reflex cough which has garnered significant 
research and clinical interest. This type of measurement can 
be used to determine the lowest amount of tussive stimulus 
that elicits a consistent cough reflex [35, 69, 70]. CRT meas-
urements can either be obtained to find the natural cough 
threshold at the lowest stimulus dose, or to find the threshold 
at which cough can no longer be suppressed [37, 71]. This is 
clinically relevant because research has found that lowered 
cough reflex thresholds are associated with a higher aspira-
tion risk for individuals with dysphagia [2]. Additionally, 
CRT has been found to improve the sensitivity of instrumen-
tal assessments of swallowing to identify individuals at risk 
for silent aspiration [72, 73]. For this reason, it has become 
increasingly incorporated in clinical dysphagia care in coun-
tries such as New Zealand, Australia, Japan, and the UK [74, 
75]. For a full description of a CRT protocol, see Wallace 
et al. [76•]. However, there is still work that needs to be 
done in comparing cough reflex thresholds across patient 
populations, and to understand how this can be used to guide 
clinical dysphagia practices [69, 74, 77•, 78, 79].

While understanding cough reflex thresholds across a 
variety of patient populations is important to further our 
understanding of cough sensitivity and aspiration risk, in the 
United States this type of testing is largely limited to research 
settings. This is in part due to the high cost associated with 
this equipment, as well as the lack of familiarity with cough 
measurement in the United States in general [29•]. However, 
a cheaper and more portable form of delivery can potentially 
be achieved with a portable or handheld nebulizer device. 
Some research on handheld nebulizers has revealed reliable 
cough thresholds in healthy controls as well as those at risk 
for aspiration [67, 80–82]. Additionally, using aerosolized 
solutions of distilled water (e.g., fog) in cough reflex testing 
can offer an appealing option for facilities with restrictions 
on other forms of tussigenic stimulation, though some stud-
ies have shown measurement variability with fog, potentially 
due to differences in nebulizer output [82–84]. Research is 
ongoing to develop the ideal methodology for a sensitive, 
specific, and feasible reflex cough assessment protocol that 
will be widely accessible in the United States.

Instrumental Assessments of Swallowing

Cough effectiveness can also be assessed during instru-
mental assessments of swallowing. When airway invasion 
occurs, patients can be asked to assess their UTC using a 
modified Borg CR10 scale [85]. This will provide informa-
tion about whether the patient is sensing the aspirate or pen-
etrant but are not responding effectively or whether they do 
not perceive the airway invasion at all. The UTC can also 
be used to assess the perception of cough inducing stimuli 
during reflex cough testing. Additionally, the effectiveness of 

a reflex cough or voluntary cough following airway invasion 
can be assessed by utilizing the penetration-aspiration scale 
(PAS) or visual analysis of swallowing efficiency and safety 
(VASES) outcomes to report changes in laryngeal residue 
from before to after the cough [86, 87].

Clinical Case Vignettes

Here, we briefly summarize the literature on hypotussic 
cough in three key clinical populations: amyotrophic lateral 
sclerosis (ALS), Parkinson’s disease (PD), and head and 
neck cancer (HNC). Clinical case vignettes will highlight 
the assessment of different cough profiles within a variety 
of clinical settings and the integration of these findings into 
a comprehensive airway protection (i.e., dysphagia and dys-
tussia) management plan.

Clinical Case Vignette 1: Amyotrophic Lateral 
Sclerosis (ALS)

ALS is a neurodegenerative disease of the upper motor neu-
rons of the cortex, and the lower motor neurons of the brain-
stem and spinal cord which results in global weakness [88, 
89]. At disease onset, this corresponds with more focal weak-
nesses in the limbs or as bulbar symptoms, but the progres-
sive course continues to global weakness. Mortality in ALS 
is primarily due to pneumonia-related complications resulting 
in respiratory failure [90]. Relatedly, it is known that individu-
als with bulbar ALS are at greater risk for airway protection 
impairments including dysphagia and dystussia [64, 91].

A 55-year-old female with a 1-year history of bulbar-
onset ALS presents to  an interdisciplinary clinic appoint-
ment. She consumes an unrestricted regular diet with thin 
liquids at home. The patient has recently lost around 30 lb 
and reports fatigue during meals as well as difficulty swal-
lowing liquids. As a part of the interdisciplinary evaluation, 
the patient completes a cough evaluation with a handheld 
peak flow meter. The patient’s maximum PEFR out of 5 tri-
als is 2 L/s, which is associated with an increase in risk for 
airway invasion in the ALS population (PEFR < 3.97 L/s) 
[31]. Additionally, this value is well below thresholds which 
has been determined to promote cough clearance of aspirate 
material in a heterogenous group of individuals with neuro-
degenerative diseases. For example, clinically meaningful 
cutoffs for effective airway clearance in the literature are 
values greater than 3.23 L/s [30•].

Clinical Takeaways

Low-tech and cost-effective evaluation of cough with a 
handheld peak flow meter can serve to identify patients at 
risk for airway invasion, distinguish patients whose cough 
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is too weak to clear aspirate material, and serve as a base-
line measure to track changes in cough due to disease or 
treatment.

Clinical Case Vignette 2: Parkinson’s Disease (PD)

PD is a neurodegenerative disorder involving the loss of 
dopaminergic neurons in the substantia nigra pars compacta 
[54]. The substantia nigra pars compacta is one of several 
circuits of the basal ganglia, and the progressive reduction 
of dopaminergic neurons in this brain region contributes to 
bradykinesia (e.g., slowness of movement) and increased 
muscle tone (e.g., rigidity), which are common symptoms of 
PD that affect movement timing and amplitude [41, 54, 92, 
93]. These impairments also contribute to the high preva-
lence of dysphagia and dystussia in PD, likely due to sensory 
and neuromotor changes [20, 32, 70, 94–96]. It is also well-
documented that individuals with PD are known to under-
report dysphagia due to these sensory impairments [97].

A 65-year-old male with a 5-year history of PD and 
dysphagia presents to an SLP clinic for a comprehensive 
evaluation of airway protective function. An instrumental 
assessment of swallowing identifies consistent aspiration 
of thin liquids without a cough response and with blunted 
UTC. When cued to perform a voluntary cough to clear 
the aspirate material, the patient’s cough is ineffective. The 
patient’s maximum PEFR out of 5 trials is 3.5 L/s, which 
is associated with increased risk of airway invasion in PD 
(PEFR values of < 7.49 L/s are associated with penetra-
tion, while values < 5.24 L/s are associated with aspira-
tion) [30•, 32, 70, 94, 96]. However, the patient’s maximum 
expiratory pressure (MEP) is adequate at 120 cm  H2O [98].

Clinical Takeaways

In this individual with PD, the comprehensive evaluation of 
airway protection revealed the presence of airway invasion 
in the context of disordered cough. Specifically, cough func-
tion was ineffective in clearing airway invasion, UTC was 
blunted, PEFR was low, but MEP was adequate. Given the 
results of the evaluation, the patient’s diagnosis, and likely 
pathophysiology of dysfunction, future treatment should 
target both swallowing and cough. Specifically, improved 
perception of cough stimuli and enhanced coordination of 
cough with cough skill training should be considered for this 
patient [99•, 100•, 101•].

Clinical Case Vignette 3: Head and Neck Cancer (HNC)

Physiological changes in HNC are mainly peripheral in 
nature [102]. The extent of these changes may depend on 
adjuvant therapies including radiation, chemotherapy, or 

surgery. Acute and long-term toxicities associated with 
airway protection deficits in HNC include pain, edema, 
salivary changes, fibrosis, and mucositis [17, 103–110]. 
Emerging research in cough testing has demonstrated 
that sensory changes in the upper airway can contribute 
to reduced sensation of penetrated and aspirated material 
[25].

A 70-year-old male patient with a diagnosis of HNC 
presents to a laryngology clinic. This patient has recently 
completed primary chemoradiation treatment for a poste-
rior lingual mass. The patient reports no difficulty swallow-
ing solids or liquids during meals but has had pneumonia 
recently. The ENT completes an examination which reveals 
increased post-radiation fibrosis of the oral and pharyngeal 
structures. The ENT refers this patient to SLP services. Dur-
ing this patient’s SLP visit, PEFR trials with a handheld 
peak flow meter reveal cough inefficiency with a maximum 
peak flow value of 4.0 L/s across 5 trials. MEP is also found 
to be inadequate at 45  cmH2O. Research has demonstrated 
that peak flow values less than 6.3 L/s and MEP values less 
than 100.8 cm  H2O are associated with aspiration risk in the 
head and neck cancer population [25]. Further swallowing 
assessment is planned to follow this initial cough assess-
ment, given these findings as well as the clinical history of 
repeated pneumonia.

Clinical Takeaways

The pathophysiology of HNC and its associated treatments 
including chemoradiation can contribute to reduced force 
and range of oropharyngeal structures, which can impact 
both swallow safety and cough effectiveness. Treatment 
approaches such as expiratory muscle strength training 
may be an appropriate option to consider for these patients 
[111].

Conclusions

This narrative review aims to provide clinicians with a 
framework for the neurobiology of cough as well as how 
the measurement of sensorimotor cough function can be 
assessed with a variety of equipment and measurement 
approaches. Clinically, increasing the utilization of struc-
tured assessment of cough sensation and motor function can 
help to identify and treat disordered airway protection across 
a variety of populations at risk for dysphagia. Additionally, 
it is beneficial for allied providers, including referring phy-
sicians, to understand ways in which SLPs can offer cough 
assessment and treatment with the goal of reducing the inci-
dence of aspiration pneumonia and improving the health and 
quality of life in patients with dysphagia.
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