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Abstract

Purpose of Review Computed tomography pulmonary

angiography (CTPA) has become the imaging modality of

choice for patients with suspected pulmonary embolism

(PE). Post-processing techniques currently available for

dual-energy CT pulmonary angiography (DE-CTPA)

enhance image quality and provide additional value in the

diagnosis of PE. The objective of this article is to sum-

marize these recent developments and discuss the appro-

priate use of DE-CTPA post-processing applications.

Recent Findings DE-CTPA post-processing applications

enable reconstruction of virtual monoenergetic images

(VMI) and color-coded iodine-perfusion maps to increase

contrast conditions and visualize lung perfusion defects in

case of embolic occlusion of pulmonary arteries. Both

techniques revealed a superior diagnostic performance for

the detection of pulmonary emboli and assessment of the

pulmonary perfusion compared to the standard image

reconstructions.

Summary DE-CTPA is a well-established method for

excluding or diagnosing PE. Continued developments in

DE-CTPA post-processing techniques improve patient

management and allow for a quantification of disease

burden.

Keywords Dual-energy computed tomography �
Computed tomography pulmonary angiography �
Pulmonary embolism � Pulmonary perfusion � Diagnostic
accuracy

Introduction

Among all cardiovascular diagnoses with potentially life-

threatening complications, pulmonary embolism (PE) is

one of the most frequent. Therefore, accurate and reliable

diagnosis of acute PE is crucial for rapid treatment and

guidance of patient management [1]. Computed tomogra-

phy pulmonary angiography (CTPA) has become the pre-

mier modality for imaging of patients with suspected PE

[2]. However, limitations regarding the accurate diagnosis

of small peripheral emboli still arise during routine clinical

use of CTPA, often due to suboptimal opacification caused

by incorrect bolus timing, breathing-related effects, or low

cardiac output [3–7]. Moreover, suboptimal contrast

attenuation of the small pulmonary arteries can occur even

when the administration and timing protocol is optimized

[8–10].

Dual-energy CT pulmonary angiography (DE-CTPA)

offers several post-processing techniques that facilitate an

optimized evaluation of patients with suspected PE. Sev-

eral studies have demonstrated that image quality of vas-

cular dual-energy CT (DECT) can be substantially

improved with monoenergetic imaging. Moreover, DE-

CTPA enables the reconstruction of iodine-perfusion maps

that aid in the diagnosis of PE through detection of lung

perfusion defects in case of embolic occlusion [11]. Recent
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improvements in detector technology are used to lower the

dose of contrast media and radiation, including high-pitch

and low-tube voltage image acquisitions [12].

Pulmonary CT Angiography

Pulmonary CT Angiography Acquisition Protocols

CTPA enables rapid and accurate exclusion or diagnosis of

PE. The main goal of CTPA is to provide high-contrast

attenuation in the pulmonary arteries, minimizing motion

and streak artifacts with short scanning acquisition times

and minimal residual contrast in the superior vena cava

[6, 7]. The administrated volume of contrast material

should ideally be patient-specific and account for body

habitus. Usually, a dedicated contrast bolus tracking soft-

ware is used, placing a region-of-interest (ROI) in the

center of the pulmonary trunk to obtain adequate contrast

conditions of the pulmonary arterial circulation.

In many institutions, CTPA is performed during inspi-

ratory breath-hold. However, several studies promoted

expiratory CT scanning to reduce artifacts that result from

variable inflow of unenhanced blood from the inferior vena

cava [8, 9]. In a prospective clinical trial by Raczeck et al.,

the authors suggested performing CTPA in the resting

expiratory position to achieve the highest possible attenu-

ation in the pulmonary arteries [13]. The results of this

study are also in line with several physiologic considera-

tions that suggest a breath-hold near end-expiration to

achieve high levels of pulmonary resistance and thus good

arterial opacification [14, 15].

The differential diagnosis of chest pain is a complex

problem in the emergency department and remains a

challenge for the treating physician. In this context, triple-

rule-out CT angiography can provide a simultaneous

assessment of the coronary arteries, aorta, and pulmonary

arteries for patients presenting with acute chest pain. This

method is most appropriate for patients with a low risk for

acute coronary syndrome and symptoms that may also be

attributed to acute pathologic conditions of the aorta or

pulmonary arteries [16]. Injection of contrast media for

triple-rule-out CT angiography is tailored to provide high

levels of arterial enhancement simultaneously in the

coronary arteries, the aorta, and the pulmonary arteries.

Scanning parameters include prospective ECG gating to

reduce radiation exposure. In addition, triple-rule-out CT

can provide comparable image quality to that of coronary

CT angiography (CCTA) and CTPA [17, 18].

Low-Tube-Voltage and High-Pitch Pulmonary CT

Angiography

Low-tube-voltage CT scanning is an effective method for

reducing radiation dose and enhancing contrast attenuation

[19–21]. However, this approach is also accompanied by a

higher level of image noise due to the lower energy of the

photons. Therefore, further reductions of the tube voltage

are not feasible in all patients and modification of the

scanning parameters should be performed on a patient-

specific basis [21, 22]. Furthermore, the improved vascular

signal allows for contrast material reduction, which also

decreases the risk of contrast-related acute kidney injury

[20, 23, 24]. Several studies reported a similar, even

improved, diagnostic accuracy for the detection or exclu-

sion of PE [19, 20, 25]. Compared with the standard

120-kV CTPA, imaging with 100 kV resulted in a 37%

reduction in radiation exposure and increased the evalua-

tion of central and peripheral pulmonary arteries [19, 21].

High-pitch CTPA scanning is available for more recent

scanner generations and can enhance temporal resolution,

as well as image quality with a simultaneous reduction in

radiation dose. Considering patients who are unable to

comply with breath-hold commands, improved temporal

resolution decreases motion artifacts for a better evaluation

of cardiovascular structures [22, 26]. However, image

noise also increases with high-pitch acquisitions; therefore,

this approach requires iterative reconstruction of the CT

raw data to ensure adequate image quality. Several studies

have examined high-pitch low-tube-voltage scanning and

revealed substantial reductions in radiation dose without

compromising diagnostic accuracy [27–29]. In addition,

CTPA acquired in free-breathing yields similar image

quality compared to acquisition during inspiratory breath-

hold for the diagnosis of PE [30].

Dual-Energy CT Pulmonary Angiography

Dual-Energy CT Post-processing Applications

The basic concept of DECT is defined by the acquisition of

two different X-ray-beam energies to obtain two different

spectral datasets. This spectral information facilitates

material differentiation and provides qualitative informa-

tion regarding tissue composition. Recent enhancements in

detector technology and improved algorithms have

emphasized the potential benefits of DECT post-processing

in cardiothoracic imaging [31]. Since DECT has demon-

strated to be dose neutral compared to standard single-

energy CT (SECT), DECT is used more frequently in many

clinical areas [31–33].
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The most common, non-material-specific method for

post-processing of DECT data is linear blending. This

algorithm combines data from the low- and high-energy

images in a single dataset, taking advantage of both the

high-contrast contribution from the low-energy dataset and

the low noise levels from the high-energy dataset. Shifting

the blending ratio toward lower tube voltages results in

increased iodine attenuation, but also usually results in

higher image noise. Moreover, non-linear blending func-

tions have been developed, including binary blending,

slope blending, Gaussian, and modified sigmoid, to maxi-

mize the contribution from the high-contrast low-energy

dataset [34–36]. Yet, DECT images are routinely obtained

in clinical practice using a linear blending ratio.

In addition, DECT enables methods to discriminate

between specific materials (e.g., fat, calcium, iodine, and

water). Using dedicated mathematical algorithms, these

methods can selectively identify the iodine contribution of

an image from the absorption characteristics of three ide-

alized materials, for example, soft tissue, iodine, and air.

The material decomposition analysis has shown favorable

results in oncological imaging regarding tumor character-

ization and therapy response [37, 38]. Moreover, the iodine

contribution can be subtracted from the dataset, generating

virtual non-contrast (VNC) images with image quality

comparable to that of a conventional non-enhanced

acquisition [39, 40]. Additionally, DECT energy-specific

post-processing methods allow for reconstruction of virtual

monoenergetic images (VMI). These images have many

clinically relevant applications, including beam-hardening

correction, optimization of image quality, and metal arti-

fact reduction [41, 42]. For imaging of the pulmonary

arteries, dual-energy perfusion maps and virtual monoen-

ergetic images are the two main methods used for an

advanced evaluation of patients with suspected PE.

Dual-Energy CT Perfusion Maps

Dual-energy perfusion maps display the iodine-perfused

lung tissue, similar to pulmonary scintigraphy, and enable

visual assessment of parenchymal perfusion defects distal

to vessels affected by PE (Fig. 1). The iodine contribution

is super-imposed on the standard grayscale images as a

color map. Notably, DE-CTPA perfusion maps are static

images that indirectly display the blood volume. This is

contrary to time-resolved dynamic CT perfusion imaging,

which is used clinically for the assessment of cerebral

perfusion and arterial anatomy in stroke patients, for

instance [43]. Although this approach was previously

investigated for CTPA, it has not found its way into the

clinical routine [44, 45]. DECT iodine-perfusion maps

support the identification and assessment of non-obstruc-

tive emboli and may provide value in the subsequent risk

stratification [46]. Reconstruction of 3D perfusion images

may also help to visualize reduced perfusion images

(Fig. 2).

Several studies showed that dual-energy perfusion def-

icits correlate with both CT-based morphologic and

scintigraphic functional parameters [46, 47]. Moreover,

Okada et al. showed, in comparison with traditional CTPA

alone, the addition of dual-energy perfusion maps can

enhance the detection of peripheral pulmonary clots and

may have prognostic value for the clinical outcome [48].

Fig. 1 Dual-energy CT

pulmonary angiography of an

82-year-old woman who

presented with shortness of

breath. Axial (a) and coronal

(b) standard CT images show

left central and bilateral

segmental pulmonary

embolism. Axial (c) and coronal

(d) color-coded dual-energy

perfusion maps show wedge-

shaped perfusion defects on

both sides (arrowheads)
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Only a few studies have evaluated direct lung perfusion

DECT using Xenon [49–51]. Xenon is an inert radiopaque

gas that has similar photoelectric absorption characteristics

as iodine. Due to its ability to decompose materials, DECT

allows for separation of inhaled xenon from lung tissue at a

single imaging point. However, xenon-enhanced DECT has

not been introduced into routine clinical practice, so far.

Virtual Monoenergetic Imaging

The calculation of VMI series is a well-established energy-

selective post-processing technique based on material

decomposition. Based on the material-specific information,

the density of each voxel from the DECT data is extrapo-

lated to a certain energy [52, 53]. Application of the VMI

post-processing technique had initially been implemented

for reduction of metal artifacts and beam-hardening cor-

rection [41, 54]. Recently, a noise-optimized virtual

monoenergetic imaging (VMI?) algorithm was introduced,

designed specifically to improve image quality at low-keV

levels. Noise-optimized VMI? reconstructions are gener-

ally based on a regional spatial frequency split technique of

the high and the low-energy datasets [55]. Initial studies

investigating this VMI? technique showed improved

quantitative image quality in DECT angiography of the

aorta and vasculature of the lower extremities, in addition

to improved detection of endoleaks and active arterial

hemorrhages of the abdomen [56–59].

Moreover, low-keV VMI? reconstructions are also

beneficial for DE-CTPA examinations (Fig. 3). Weiss et al.

discovered that VMI? improves diagnostic accuracy for

the detection of incidental PE in oncological DECT follow-

up and staging examinations. The authors observed that

VMI? reconstructions at 55 keV presented the highest

subjective diagnostic confidence for the detection and

exclusion of PE [60•]. Another study by Leithner et al.

assessed the value of VMI? and iodine-perfusion maps of

DE-CTPA; they showed that the implementation of both

40-keV VMI? series and iodine-perfusion maps improves

reader confidence and diagnostic accuracy for segmental

PE detection in suboptimal contrast conditions [61•].

Quantification of Disease Burden and Impact

on Management

Assessment of the severity of PE is crucial for selecting the

appropriate treatment strategy and ensuring ideal patient

care. There are several methods available for assessing

disease severity of PE with CTPA. The most widely used

approach for this evaluation is the calculation of the right-

ventricular-to-left-ventricular (RV/LV) diameter ratio

[62–65]. Applied in numerous studies, this marker for

right-ventricular dysfunction has shown to be a predictor of

in-hospital mortality and adverse clinical events in patients

with acute PE [62–64, 66]. Moreover, Qanadli et al. and

Mastora et al. proposed that specific CTPA indices could

quantify the location and degree of arterial obstruction in

PE [61•, 62, 62]. Although these CTPA scoring systems

may be useful for analyzing the effectiveness of treatment,

their effect on prognosis in patients with severe pulmonary

embolism is still debated in literature [67–69].

Fig. 2 Dual-energy CT pulmonary angiography performed in a

55-year-old woman with bilateral pulmonary embolism. Transverse

standard image reconstructions a show filling defects on both sides

(arrows). Reduced perfusion in the left upper lobe (arrowheads) is

also visible on a 3D perfusion image (b)
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The post-processing capabilities of DECT allow for

further evaluation of disease burden in patients with PE.

Introduced by Chae et al., the DE-CTPA perfusion defect

score presented good correlation with RV/LV diameter

ratio and CTA obstruction score, potentially aiding with the

assessment of acute PE severity [70]. Another study

investigated the impact of the size of perfusion defects as a

predictor of right heart dysfunction and its correlation with

d-dimer levels [71]. The authors of this study discovered

only a weak correlation between perfusion defects and

d-dimer levels, but patients with right heart dysfunction

presented with significantly larger perfusion defects than

patients without. Apfaltrer et al. showed that the extent of

DE-CTPA perfusion defects correlates with adverse clini-

cal outcome in patients with PE [72]. However, according

to a study by Im et al., the volume of DECT lung perfusion

defects provided no statistically significant value for pre-

diction of death within 30 days in patients with PE [73•].

Therefore, further investigations are necessary to validate

these first clinical experiences.

Conclusion

DE-CTPA is well-established as a fast and reliable tech-

nique in patients with suspected PE. Continued develop-

ments in CT system hardware and post-processing

techniques enhance image quality and diagnostic accuracy

for the detection or exclusion of PE. Moreover, DECT

iodine-perfusion maps allow for an assessment of disease

severity in patients with acute PE, although the added value

of these methods for the prediction of adverse clinical

events still remains under discussion.
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