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Abstract Magnetic resonance imaging (MRI) is a widely

used and powerful imaging technique for non-invasive

clinical diagnosis. The absorbed radiofrequency (RF)

energy must be carefully managed, as MRI presents one of

the highest RF exposures to humans. Temperature increa-

ses in the patient caused by high-level RF exposure is a

major safety concern in MRI, potentially causing local

thermal tissue damage or systemic overheating. This

review article summarizes recent findings in MR safety

research, including the clear distinction between exposures

of patients with and without implants; evaluates the

advantages and limitations of numerical simulations for RF

safety assessment in MRI; and discusses the need for

additional research at high RF exposure levels and in novel

MRI systems.

Keywords MRI safety � RF exposure � SAR � In silico

assessment � Exposure assessment � Thermal dose

Introduction

Magnetic resonance imaging (MRI) has become a widely

used diagnostic imaging tool in clinical practice.

Radiofrequency (RF) exposure is considerably higher in a

clinical MRI environment than in any non-clinical envi-

ronment, requiring special considerations for RF safety. RF

exposures from MRI are higher than recommended limits

for occupational exposures and are orders of magnitude

higher than those from fixed installations and mobile

devices [1]. The product standard IEC 60601-2-33 (‘‘par-

ticular requirements for the basic safety and essential per-

formance of magnetic resonance diagnostic devices’’) [2]

limits the RF exposure of MRI equipment. Although this

standard has several gaps that are discussed below, MRI

has a remarkable history of safe use (HoSU) with close to

one billion scans performed since the first commercial MRI

installation in the 80-ties, and overall reported severe

incidents in the ppm region [3]. However, the overall

duration of the vast majority of scans are much shorter than

envisaged by IEC 60601-2-33, frequent scan interruptions

are common, and manufacturers have implemented addi-

tional safety margins. Exposure to RF levels[85 % of the

IEC limits (i.e., between 3.5 and 4 W/kg wbSAR) is

reached on average for only 5 min during a scan [4],

whereas the standard did allow 60 min at 4 W/kg until

2014. The current standard leaves any duration-related

limit to the manufacturers’ risk management. Therefore,

This article is part of the Topical Collection on MRI Safety.

& Niels Kuster

kuster@itis.ethz.ch

Manuel Murbach

murbach@itis.ethz.ch

Earl Zastrow

zastrow@itis.ethz.ch

Esra Neufeld

neufeld@itis.ethz.ch

Eugenia Cabot

cabot@itis.ethz.ch

Wolfgang Kainz

wolfgang.kainz@fda.hhs.gov

1 IT’IS Foundation, Zeughausstrasse 43, 8004 Zurich,

Switzerland

2 Swiss Federal Institute of Technology (ETH), Rämistrasse

101, 8092 Zurich, Switzerland

3 US Food and Drug Administration (FDA), Center for Devices

and Radiological Health (CDRH), Silver Spring, MD 20993,

USA

123

Curr Radiol Rep (2015) 3:45

DOI 10.1007/s40134-015-0128-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s40134-015-0128-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40134-015-0128-6&amp;domain=pdf


there is very limited HoSU for the full exploitation of the

RF exposure limits in the IEC standard. Furthermore,

emerging MRI technologies, such as parallel RF trans-

mission (pTx, i.e., multi-channel transmit coils, [5•, 6]) and

dynamic RF shimming [7], generate field distributions

significantly different than traditional resonant body coils

and, therefore, cannot rely on a HoSU.

The recently published Amendment 2 of IEC 60601-2-

33 [2] extends the maximum upper limit of the first level

controlled operating mode (OM) from 4 to 8 T. This

review article focuses on traditional and predominantly

used MRI scanners operating at 1.5 and 3 T. Ultra-high

field MRI at 7 T and above pose additional safety concerns

mainly due to the shorter RF wavelengths, as summarized

in [8].

The RF pulse applied during MR imaging induces eddy

currents in the human body and alters proton magnetization.

The absorption of RF typically leads to exposure hotspots in

areas with a high radial distance to the patient center, mainly

in the arms/wrists, shoulder/neck, torso-lateral, groin, and in

muscle constrictions, such as near the lateral pelvic bone.

Additionally, anatomical RF loops resulting from contact

between the hip and hand, for example, can significantly

enhance the current density. Hotspots may also occur in

close proximity to RF coil capacitors due to the capacitive

coupling of the E-field or around the metal components of

implants. The latter will be discussed separately, as the

interaction mechanism is considerably different: an isolated

metallic lead may ‘‘collect’’ RF energy along its trajectory

and deposit it at its tip.

As the induced internal electromagnetic fields cannot be

assessed experimentally in humans, validated in silico

methods, i.e., simulations are used to determine the

induced RF field distributions in vivo. Finite-difference

time-domain (FDTD) and other finite-difference or finite-

integration solvers have become the standard for electro-

magnetic and thermal simulations [e.g., Sim4Life (ZMT,

Switzerland), SEMCAD X (SPEAG, Switzerland), and

CST Microwave Studio (CST, Germany)], especially in

high-resolution anatomical models such as the virtual

population [9, 10]. Numerical estimations of RF energy

deposition can be derived by adequately modeling the

incident field of the MRI RF coil and by assigning tissue

dielectric and thermal parameters based on literature val-

ues, e.g., from [11].

Global and local energy depositions in the tissues are

typically defined in terms of the specific absorption rate

(SAR), averaged over the whole-body (wbSAR), parts of

the body (pbSAR), the head (hdSAR), or over any 10 g of

tissue (psSAR10g). However, the induced temperature

increase is only weakly related to SAR, as it is strongly

influenced by the tissue-dependent blood perfusion rate.

Furthermore, thermoregulation must be considered, as it

becomes the most influential parameter with the high

exposure levels in MRI [12]. For thermal stress or tissue

damage, the relation to SAR is even weaker, as adverse

thermal effects result from a combination of the induced

temperature increase and exposure-duration, i.e., the ther-

mal dose.

Current Safety Regime in MRI

The international standard IEC 60601-2-33 [2] defines

temperature limits as basic restrictions, namely 40 �C in

first level controlled operating mode (OM) and 39 �C in

normal OM. This limitation applies to both core and local

tissue temperatures; however, the rise of the core temper-

ature cannot exceed 1 �C in first level controlled OM and

0.5 �C in normal OM. The standard also specifies derived

SAR limits of 4 W/kg wbSAR, 3.2 W/kg hdSAR, and

4–10 W/kg pbSAR for first level controlled OM. While the

whole-body exposure can be monitored via the overall

power budget of the scanner, the local exposure cannot be

assessed directly. Numerical simulations have shown that

the derived SAR limits are not consistent with the basic

temperature restrictions [13•, 14]. Some manufacturers

voluntarily limit the psSAR10g via proprietary model

predictions to avoid excessive local hotspots. Such esti-

mations are typically derived from electromagnetic and

thermal simulations using anatomical human models like

the virtual population [9, 10].

RF Exposures

RF-induced exposures have been classified into two cate-

gories, ‘‘low-level RF exposure’’ and ‘‘high-level RF

exposure’’ originating from: (a) long-term (chronic) low-

level exposures, such as mobile phones or occupational

exposures and (b) acute high-level exposures for typically

shorter durations, such as MRI scans or medical hyper-

thermia treatments. Although chronic low-level RF expo-

sures could be relevant for MR workers, they are probably

not relevant to patients undergoing MRI exams. For com-

pleteness, we included them within the scope of this review

article.

Low-Level RF Exposures

Low-level RF exposures originate from environmental

sources, occupational sources, and personal devices.

Environmental sources include broadcast antennas and

base stations. Personal devices operating in close vicinity

of the human body, such as mobile phones or access points,

are the dominant sources of exposure. Persons exposed to
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occupational sources include MR workers, military and

security personnel, radar operators and maintenance per-

sonnel, radio/TV antenna maintenance and repair workers,

dielectric welders and plastic sealers, and physiotherapists

applying diathermy treatments. Exposures within the

occupational limits of ICNIRP [1] belong to low-level

exposures with a maximum psSAR10g of 10 W/kg and

wbSAR of 0.4 W/kg. Numerical simulations predict that

the local temperature increase remains below 3.2 �C any-

where in the body [15••, 16–18], below 1.2 �C in the brain

[18–21], and below 0.12 �C in body core temperature [12,

17].

The corresponding values for the general public are five

times lower. The risks of long-term or chronic exposures

below the ICNIRP guidelines were recently evaluated by

IARC, resulting in the controversial classification of the

exposure as ‘‘Group 2B possibly carcinogenic to humans’’

[22]. Acute effects on human EEG (waking and sleep),

cerebral blood flow, and cognitive performance [23] have

been reported in different laboratories; however, the

underlying mechanisms have not yet been identified.

High-Level RF Exposure and Thermal Dose

MRI exposure can be an order of magnitude higher than

occupational exposure and nearly 50 times higher than the

guidelines for the general public, namely wbSAR[3 W/kg

and psSAR10g [80 W/kg [13•, 24]. This may induce

considerable systemic thermal stress and initiate both

whole-body thermoregulation [25, 26] and local ther-

moregulation processes around thermal hotspots [12, 13•].

There are supposedly three fundamental physiological

responses to excessive heat in the human body: (a) whole-

body systemic thermoregulation which keeps the body core

temperature stable via a generally increased skin and

extremity perfusion, sweating, and decrease in metabolic

rate, (b) local cutaneous perfusion increase in response to

local or superficial heating, and (c) local thermoregulatory

responses in inner tissues and organs, which has the highest

model uncertainty due to very limited knowledge [12].

There are many complex interactions between these three

responses, e.g., related to the overall limited amount of

blood, which will not be discussed further.

The human body has a remarkable ability to maintain a

stable body core temperature. Data from hyperthermia

applications show that even exposures up to a wbSAR of

10 W/kg for 30–60 min generally do not cause increases in

body core temperatures above 38 �C, and rarely above

39 �C [27] for patients without fever. Skin tissues have the

potential to up-regulate blood-flow by a factor of up to 32,

which has often been underestimated [12]. The situation

with internal organs and tissues is least investigated so far.

Again data from hyperthermia applications indicate a high

perfusion increase in healthy internal tissues. Laakso et al.

[12] estimate an increase of up to a factor of 15. There are

potentially high inter-individual differences, and some

patient groups may have a pathologically impaired ther-

moregulatory response. Murbach et al. [28] proposed a

model with a 70 % reduced thermoregulatory perfusion-

response in certain patient groups.

Considering these thermoregulatory response-models,

local temperatures still may exceed 42 �C in muscle or skin

tissues [13•, 27]. Additionally, the local RF absorption can

reach significantly higher magnitudes when the body

comes into close proximity of stray fields around the

capacitors of the birdcage; when the body forms anatomi-

cal RF current loops; or at the electrodes of metal com-

ponents within the implants, as discussed below.

Systemic thermal stress in the patient can be easily

detected by monitoring heart rate, core temperature ele-

vation, or the patient’s subjective well-being. Special pre-

cautions must be taken for non-responsive patients (e.g.,

anesthetized, sedated, or infant patients). For local expo-

sures, however, local temperatures may not be adequately

perceived due to limited heat sensation (e.g., in muscle

tissue) [29]. Actual tissue stress and damage result from a

combination of induced temperature increases and expo-

sure-duration. The thermal dose model of cumulative

equivalent minutes at 43 �C (CEM43) was first proposed in

1984 by Sapareto et al. [30] and allows any transient

temperature profile to be converted into equivalent minutes

of heating at 43 �C. In combination with tissue specific

damage thresholds [31, 32, 33••], CEM43 may constitute

an adequate model to predict tissue damage (major or

minor) over a wide range of exposure temperatures.

Evaluations of CEM43 data for MRI applications [33••]

resulted in a proposed damage threshold of

CEM43 = 16 min for skin, muscle, fat, and bone. These

tissues can sustain 16 min at 43 �C, which can be trans-

lated, e.g., to 8 min at 44 �C, 32 min at 42.5 �C, 64 min at

42 �C, or 256 min at 41� C. Temperatures below 39 �C
were considered safe for any duration. Considering the

remarkable HoSU in MRI scanning, it is likely that these

thermal doses were not reached. At the same time, full

exploitation of the guideline limits (4 W/kg for prolonged

scans, e.g., 60 min) may lead to thermal doses above

CEM43 = 16 min in some patients and imaging positions

[13•, 14], and may even exceed CEM43 = 500 min in

animal experiments [34••]. However, due to frequent scan

interruptions and the manufacturer’s safety margin, the vast

majority of clinical MRI scans will not reach the maximal

allowed exposure limits [35–37]. In current clinical prac-

tice, scanner-indicated wbSAR levels above 3.5 W/kg are

only reached for 5 min on average, with 50 % of all scans

lasting between 3 and 9 min [4], which extrapolates to

0.1 % of scans with high wbSAR for more than 23 min.
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The scanner-indicated wbSAR levels do not include the

manufacturer’s safety margin. Thus, the HoSU over the last

30 years may not be attributable to the maximum allow-

ance of the IEC product standard, but rather to the actual

applied exposures, which can be, and often are, consider-

ably lower.

Numerical Simulations for RF Safety Assessment
in MRI

As internal field quantities cannot be directly measured in

humans, numerical simulations have become the method of

choice to conduct RF safety assessments. Validated in silico

methods are used to estimate the induced RF field distri-

butions in vivo by creating relevant simulation models. The

first step is to reproduce a realistic RF incident field (or B1

field) of the MRI RF coil model. B1 should (a) be circularly

polarized around the static magnetic field axis to effectively

cause the nutation of nuclear spins, (b) have high intensity to

maximize the transmit efficiency, and (c) be highly uniform

for homogeneous contrast. A streamline view of B1 is

depicted in Fig. 1. While the body coils at 1.5 T are

typically driven in circular polarization, exposures at 3 T

and above may have higher degrees of freedom (RF shim-

ming and pTx, typically 2–32 ports), considerably compli-

cating the estimation of local SAR [5•, 8, 38–41]. The next

step is to assign tissue dielectric and thermal properties

based on literature values [11, 42] and compute the induced

fields within the human anatomical models. An example of

the SAR distribution is shown in Fig. 2. The final step is to

translate the induced RF energy to a temperature increase

via thermal simulations. The thermal response at high SAR

exposure locations depends mainly on the perfusion and

local thermoregulation [12], the parameters of which have

not been determined with well-characterized uncertainty

bounds. Additional studies on the variations of thermally

induced perfusion changes must be conducted to validate the

currently applied simplified models [43]. An example of RF-

induced elevated skin temperatures is depicted in Fig. 3.

Thermal tissue damage can be estimated via thermal dose

models, as described earlier.

For all of the above steps, a detailed uncertainty and

sensitivity analysis is necessary for determining the dom-

inant factors affecting SAR, temperature, and thermal dose

[12, 13•, 44].

Fig. 1 Streamline view of the

B1 RF field of a birdcage body

coil at 3 T with a pregnant

anatomical model in the fetal

imaging position. B1 should be

highly uniform within the

region of interest (parallel

streamlines)

Fig. 2 SAR distribution in the

upper sternum of the anatomical

model Louis. High SAR is

reached around the neck-

shoulder region
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Experimental Thermal Validations

Experimental validation of in vivo temperatures is chal-

lenging. MR thermometry, which utilizes the proton reso-

nance frequency shift (PRFS) [45], can be applied to assess

tissue temperature changes over the baseline directly via the

scanner. Although the quality, speed, and accuracy of MR

thermometry are continually increasing [46], issues such as

limited functionality in some tissues (e.g., fat), high sus-

ceptibility to motion artifacts, and perfusion changes still

exist. A recent temperature increase experiment in the

human forearm [47, 48], comparing MR thermometry

measurements with simulated thermal responses, represents

a promising step towards the validation of thermal simula-

tions in MRI. Although the model prediction must be further

refined, good agreement has been achieved between simu-

lations and measurements with high SAR exposures

(psSAR10g presumably above 200 W/kg for 2 min).

Investigations on the thermal steady state and thermoreg-

ulated local blood perfusion can provide valuable data for

future studies. Measurements with temperature probes

attached to the skin at estimated hotspots were performed at

two different realistic exposure levels in [13•]. The applied

thermoregulation model reproduced the steady-state behavior

of the hotspots with good accuracy. However, skin mea-

surements alone do not validate internalmuscle temperatures,

where MR thermometry is the only non-invasive option.

Recent animal studies have investigated MRI exposure

with temperature increases [49], including thermal dose

and actual histopathological tissue damage [34••]. In those

experiments, exposures in porcine muscle within the IEC

limits (wbSAR = 3.7 W/kg) led to thermal doses up to

CEM43 [500 min, resulting in tissue damage. Whether

these results are transferable to humans remains an open

question, as porcine thermoregulation may be very differ-

ent, especially when under anesthesia. However, experi-

ments in swine are indispensable: among available

experimental animals, the pig is the most similar to human.

Due to differences in heart volume and capillary density,

the pig model seems to be more conservative in terms of

local temperatures [34••].

Concepts for Safety Supervision

Currently, RF safety supervision in MRI systems is heavily

based on SAR considerations. IEC 60601-2-33 only spec-

ifies average SAR limits for volume coils, which may not

be sufficiently conservative to control local temperature

increases. Alternative methodologies are being evaluated.

Promising concepts include:

• more conservative SAR limits that would prevent the

prolonged high SAR exposures currently allowed by

full exploitation of the current standard. Results from

thermal dose-based evaluations indicate that these more

conservative SAR limits may be sufficient to ensure

compliance with the current temperature limits [13•];

although this approach is easy to implement, high safety

margins may be applied to guarantee conservativeness;

• direct MR thermometry measurement, as currently

applied in thermal therapy [50]; direct supervision of

the hotspot temperatures would constitute a very safe

method; however, additional thermometry scans are

necessary and, for certain scenarios, the hotspot may

occur outside of the field of view;

• patient-specific exposure estimations: (a) using gross

anatomical properties [51], (b) by mapping the patient to

a similar anatomical model, or (c) actual patient anatomy

with ad hoc segmentation [52]. This is an elegant method

to gain broad insight into the induced RF fields, and may

result in lower safety margins. However, considerable

computational time may be required.

• B1? scanner measurements and subsequent reconstruc-

tion of the B1 field [53]; the additional B1? scans may

contain insufficient information to fully reconstruct the

induced field; and

• thermo-acoustic SAR estimation using very sharp RF

pulses [54]; some feasibility studies are currently being

conducted at this early stage of development.

Safety Considerations Regarding RF-Induced
Heating for Patients with Implants

Patients with metallic or conductive implants present

additional safety challenges. As relatively large levels of

RF fields are induced in the human body during MRI,

Fig. 3 Numerically estimated surface temperature in the upper

sternum of the anatomical model Duke after heating with

wbSAR = 3.6 W/kg for 20 min. High temperatures are reached

around the RF hotspots in the neck-shoulder region
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metallic passive and active implants can collect the RF

power like antennas, resulting in induced currents along the

conductive structure and creating local hotspots at the

implant–tissue interface. The amount of implant-induced

tissue heating can be significant, i.e., �10 �C [55] for

elongated conductive implants with isolated leads and open

electrodes, such as cardiac pacemakers and defibrillator

leads [56, 57] and neurostimulator leads [58, 59]. The

described risk due to RF-induced heating also applies to

passive implants with conductive elongated components

such as metallic stents and abandoned leads, whereas non-

conductive and short conductive implants present a lower

risk; however, dimension and conductivity thresholds must

still be assessed.

Implants with mostly insulated bodies and open metallic

electrode contacts, such as active cardiac- and neuro-

stimulation devices, can deposit the collected RF power

very locally and lead to significant heating of tissue at the

electrode-tissue interface [60]. The magnitude of the

locally deposited power or RF heating depends on a mul-

titude of conditions:

(i) the specific design features of the MRI system (e.g.,

RF coil design and manufacturer’s power calculation

algorithms) [61];

(ii) the implant (specific designs, i.e., material, equiva-

lent RF impedance; effective electrical length; and

resistive/component losses) [57, 62, 63];

(iii) the implant clinical routing (e.g., tissue distribution

along the trajectory) [64••];

(iv) the patient (e.g., patient anatomy and posture); and

(v) the patient position within the RF coil [65].

For active implants, certain conditions can enhance or

reduce the risks. Hence, the risks cannot be assessed

without a detailed analysis considering a sufficient com-

bination of the different conditions. In this context, studies

that have reported no adverse effects in patients with

specific implants (e.g., cardiac rhythm devices [66, 67])

have limited value as such studies may not have necessarily

included the major risk factors that only occur for a very

specific combination of the above conditions. The latest

standard ISO/TS 10974 [68] describes the procedures to

determine most of the above conditions and Cabot et al.

[55] demonstrated the utility of the proposed procedures;

however, certain factors including tissue distribution along

the trajectory, boundary effects, coupling between different

leads, coupling between different lead sections from lead-

coiling, ohmic losses, and uncertainty assessments have not

been fully addressed yet. At present, the ISO/TS 10974

does not address the risk of body-mounted and partially

implanted devices (e.g., ECG electrodes and interventional

catheters). The associated health risks are evaluated in

terms of thermal [69, 70] and other physiological

thresholds (e.g., pacing capture threshold in cardiac stim-

ulation devices [65]). Nevertheless, while substantial tissue

heating in the vicinity of a cardiac pacemaker may be

tolerated and may not cause consistently detectable histo-

logical alterations [56], a relatively small temperature

increase in brain tissue induced by a deep brain stimulator

may be detrimental, thus emphasizing the importance of

tissue specific damage thresholds.

For passive implants, the ASTM F2182 [71] provides

guidelines for testing the tissue heating during MRI RF

exposure and RF-related heating of a significant number of

passive implants (e.g., vascular stents [72–74], orthopedic

implants [75–77], dental implants [78], and small surgical

clips [79]). In this test method, the implant is exposed to a

uniform electric field over the extent of the implant and the

in vitro temperature increase reported. This testing criterion is

only suitable for the evaluation of electrically small implants,

i.e., implant dimensions much smaller than the effective

wavelength in media, where no significant phase variation of

the incident field along the implant is expected during MRI

exposure. Comprehensive test requirements, including inci-

dent or test field conditions, evaluations as a function of the

electrical length of the implants, and translation from in vitro

assessments to in vivo estimates that are independent of the

test institutions, have yet to be established.

In general, for non-conductive and non-metallic

implants there is very limited risk due to induced RF [80,

81]. A systematic evaluation of potential risks due to cur-

rent displacements is still lacking.

The amount of implant-inducedRF heating depends on the

RF field strengths that expose the implant and the implant’s

propensity to capture that RF energy. Several studies have

reported techniques for heating mitigation through a careful

design of RF exposure during MRI [64••, 82]. Alternatively,

several leadmodification techniquesmay reduce the ability of

implant leads to collect the RF energy [83–85].

Conclusions

Excessive thermal dose is the main RF safety concern in

MRI. The HoSU for MRI includes minimal data on scans

that fully exploit the IEC 60601-2-33 exposure limits. The

basic (temperature) and derived (SAR) safety limits are

currently inconsistent in IEC 60601-2-33, as temperatures

[40 �C are likely to be induced if the current SAR limi-

tation is fully exploited [13•, 14, 34••, 49]. Further inves-

tigations on the safety of high-level RF scans and the safety

of MRI in patients with impaired thermoregulation are

needed. Additionally, emerging MRI technologies (such as

parallel transmissions systems) and the growing number of

patients with medical implants that require MRI scans are

making MRI safety assessments more challenging.
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Numerical simulations using high-resolution anatomical

and functionalized human models and powerful electro-

magnetic and thermal solvers together with tissue models

are newly available tools that allow the open safety ques-

tions to be addressed and may assist in the development of

new safety concepts. These tools must be further improved

to include a more detailed characterization of anatomical

and functional variations based on improved tissue models

and parameters. Knowledge about the potential risks of

patients with implantable medical devices from RF heating

has grown substantially in recent years and novel

methodologies to evaluate the risks have been developed;

however, patient safety can only be fully ensured and

unacceptable risks for specific patient groups can only be

excluded by establishing complete evaluation techniques.

Sound experimental verification and validation procedures

and thorough uncertainty assessments are vital to ensure

the reliability and accuracy of the safety assessments.
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