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Abstract Newborn screening (NBS) for severe combined

immunodeficiency (SCID) utilizing the T-cell receptor

excision circle assay is a sensitive and specific method to

detect T-cell lymphopenia in early infancy. Starting in

2008, several programs have implemented SCID NBS with

successful detection of SCID-affected infants; currently

over two thirds of U.S. infants receive SCID NBS. Popu-

lation-based, unbiased screening has established an inci-

dence of SCID to be 1 in 58,000 births, and has revealed a

distribution of SCID genotypes different from prior reports

from specific SCID treatment centers. Detecting SCID-

affected infants in the newborn period allows for timely

implementation of protective measures and optimal defin-

itive treatment prior to the onset of life-threatening infec-

tions. Infants with non-SCID T-cell lymphopenia also

detected by NBS may have one of several recognized

syndromes in which lymphocyte development may be

impaired, as well as other conditions associated with sec-

ondary T-cell lymphopenia.
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Introduction

Severe combined immunodeficiency (SCID) includes a

group of genetically heterogeneous diseases characterized

by impaired development of a diverse repertoire of func-

tional T-lymphocytes combined with inability to produce

specific antibodies, either due to impaired B-cell develop-

ment or lack of T-cell help [1, 2]. SCID-affected infants are

asymptomatic at birth and are protected in the first

2–4 months of life by transplacentally acquired maternal

immunoglobulin G (IgG) antibodies. However, in the

absence of diagnosis and immune system restoring treat-

ment, infants with SCID develop recurrent, increasingly

severe, and opportunistic infections leading to growth

failure and early demise. SCID-affected infants can be

rescued by establishment of a healthy immune system,

usually by means of an allogeneic hematopoietic cell

transplant derived from bone marrow or mobilized

peripheral stem cells or umbilical cord blood. Experimental

gene therapy has been successful for some infants with

adenosine deaminase (ADA) gene defects or X-linked

SCID (SCID-XL). ADA enzyme replacement for ADA-

deficient SCID is also an effective treatment.

The best survival and health outcomes for SCID are

achieved if hematopoietic cell transplantation (HCT) is

performed early in infancy or before the development of

uncontrollable, severe infections [3, 4•, 5, 6••]. As SCID-

affected infants appear healthy at birth, only those with a

recognized family history of SCID, fewer than 20 % of all

cases, were able to have the diagnosis made early in the

past [5, 7, 8•]. Early diagnosis and treatment for all infants,

not just those with a positive family history, is possible

only with population-based screening for SCID [9•].

There were initial attempts to screen infant dried blood

spots for ADA-deficient SCID using a colorimetric ADA
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enzyme assay, but this was unsuccessful due to missed

cases and false positives [10–12]. A real-time polymerase

chain reaction (PCR) test was subsequently devised that

amplifies DNA extracted from dried blood spots (DBS) to

detect T-cell receptor excision circles (TRECs), a bio-

marker of naı̈ve T cells [13]. Absence or low numbers of

TRECs are found in infants who have an inadequate

number of naı̈ve T cells from any cause [14•]. Thus the test

detects any of over a dozen genetic causes of SCID as well

as conditions in which there is abnormal loss of T cells

from the peripheral circulation. The TREC test was pre-

dicted by a cost analysis [15] and a Markov model [16] to

be an effective strategy, both in terms of health and eco-

nomic benefit, to save lives of infants with SCID under a

range of assumptions about incidence and cost of early

versus late treatment.

SCID caused by genetic defects that adversely affects

T-cell generation or maturation prior to and including the

formation of TRECs are expected to be identified by the

TREC assay. As a secondary target, non-SCID immun-

odeficiencies in which there is a profound decrease in

circulating naı̈ve T cells may also be identified [14•]. Some

of the non-SCID causes of low T cells include certain

genetic syndromes (DiGeorge syndrome, trisomy 21 or

Down syndrome, and others) as well as non-immune dis-

orders such as congenital leukemia, vascular leakage, or

chylous effusions that lead to increased T-cell loss until the

underlying problem is corrected [17••]. Infants with very

low T-cell counts from whatever cause are considered to

have impaired immunity and may benefit from avoidance

of live vaccines and environmentally infectious exposures,

transfusion precautions, and in some cases administration

of prophylactic antibiotics and immunoglobulin infusions

[18, 19].

Biology of the TREC Test

The development of a diverse repertoire of T lymphocytes,

each with its own T-cell receptor (TCR), is essential for

recognition of foreign antigen presented bound to self-

MHC molecules, leading to immune system activation and

control of invading pathogens. The generation of T-cell

receptors involves rearrangement and linear assembly of

unique combinations of single segments of the TCR genes

that encode alternate variable (V), diversity (D), and

junctional (J) sequences. This VDJ recombination is car-

ried out in a series of steps mediated by enzymes that

induce double-strand breaks at specific sequences that flank

each V, D, and J segment; upon successful cutting and

rejoining of the DNA, unique VDJ T-cell receptors are

generated, and T-cell maturation and selection continue,

eventually resulting in a mature population of naı̈ve T cells

that are released from the thymus into peripheral blood

[20]. The excised DNA fragments of the locus that are not

destined to be incorporated into a recombinant TCR gene

can be joined at their ends, forming a variety of circular

DNA byproducts called T-cell receptor excision circles

(TRECs) (Fig. 1). One particular circular species, the drec-

wJa TREC, is produced late in maturation by 70 % of all T

cells that express ab TCRs [21]. The circles are stable, but

are not replicated during mitosis, and therefore become

diluted as T cells proliferate [21, 22]. TRECs can be

detected and quantified using primers designed to amplify a

segment spanning the joint of the circle. Thus, the number

of TREC copies correlates with the production of naı̈ve T

cells by the thymus, and a normal TREC number signifies

adequate autologous T-cell production.

TRECs were initially used to monitor generation of new

T cells in HIV-infected individuals who received effective

antiretroviral treatment [21]. TREC copies in normal blood

were highest in young infants, gradually decreasing with

age, reflecting a successively lower contribution of thymic

output of new T cells with TRECs versus peripheral T-cell

expansion in older children and adults. The TREC assay

was adapted to newborn screening by extracting genomic

DNA from the dried blood spots (DBS) on filter paper

already collected by newborn screening programs [13, 23].

Absence of TRECs identifies low or absent T-cell pro-

duction from any cause. A PCR control consisting of

primers amplifying a genomic DNA segment (typically

from the b-actin or RNaseP gene) serves as control for

DNA quality extracted from DBS and differentiates low

TRECs due to genuinely low T cells from insufficient or

poor quality DNA [14•]. With the development of the

TREC assay, SCID became the first immune disorder for

which newborn screening was possible, and at the same

time became the first DNA-based test to be run as a high-

throughput test for DBS samples from all newborns.

Although the TREC test is a DNA-based test, its mea-

surement of TRECs as a DNA byproduct is not specific to

particular gene mutations that cause SCID; rather, low

TRECs will identify low naı̈ve T cells from any cause.

Mutations in a number of genes which play a role in T-cell

development can cause SCID, and those mutations that

affect successful VDJ recombination will manifest with

low TRECs, a non-normal newborn screening test [14•].

(for genetic causes of SCID; see Picard et al., review in this

series) It is important to remember that there are genetic

forms of combined immunodeficiency (CID), sometimes

previously grouped with SCID, in which mutations occur

in genes that affect T cells at a developmental stage beyond

the recombination of the TCR. Examples include ZAP-70

and MHC class II deficiency and also T-cell activation

defects such as ORAI1, STIM1, LCK, IKK2, etc. (see Pi-

card et al., review in this series). Although infants affected
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with these conditions may be phenotypically similar to

SCID patients in their lack of T-cell function and suscepti-

bility to opportunistic infections, TRECs are not expected to

be low and the TREC screening test may be normal [24, 25].

Current Implementation

From a public health perspective, the characteristics of

SCID that merit its inclusion among disorders in newborn

screening (NBS) panels, as outlined by Wilson and Jungner

[26], are its lack of recognizable physical features, the

asymptomatic phase in early infancy, high disease burden

for affected infants, effective available treatment, improved

survival and outcome for infants detected early, and

availability of a low-cost screening test. In the U.S., NBS

programs are under the jurisdiction of the individual states

and territories, each developing its own public health pol-

icies, budgets, and testing strategies for its citizens. Pilot

SCID NBS programs were implemented in Wisconsin in

2008, and Massachusetts and selected Navajo Native

American hospitals in 2009; in May, 2010, the national

U.S. Department of Health and Human Services Secre-

tary’s Advisory Committee on Heritable Disorders in

Newborns and Children recommended adding SCID to the

uniform panel of NBS diseases based on an independent

evidence-based review [27]. However, this recommenda-

tion was advisory in nature.

States with a large number of births, including California,

New York, Florida, and Texas, as well as a number of smaller

states, have added SCID screening to their NBS panels

(Fig. 2). By the end of 2013, over 50 % of births in the U.S.

were screened with a TREC test [28]. SCID NBS is now

being conducted in 26 states, the District of Columbia and the

Navajo Nation (spanning parts of Arizona and New Mexico),

encompassing an estimated two thirds of births in 2014. In

other nations, SCID NBS is occurring in Ontario, Canada,

and Taiwan; in several additional countries in Europe and the

Middle East steps toward the full implementation of SCID

NBS are under way [29–31].

In the U.S., all public health laboratories that perform

TREC testing have followed the general guidelines issued

by the Clinical Laboratory Standards Institute [32••].

However, different programs have developed their own

TREC cutoffs and rules for handling testing of ill and

preterm infants, reflecting each program’s characteristics

and population. Thus there is variability in the particulars

of criteria for recalling infants for additional specimens,

referral to specialists for follow-up, and immunological

investigations undertaken after non-normal TREC results

[33••]. Individual state programs have published SCID

NBS technologies and findings so far [17••, 34•, 35, 36•],

and a recent publication compared SCID newborn screen-

ing outcomes in 11 programs in the U.S. [33••]. The latter

publication, which included over 3 million infants

screened, noted that all programs readily detected infants

with SCID, that no SCID cases were missed by NBS and

then detected later, and that affected infants underwent

immune restorative treatments in a timely fashion.

Findings and Impact in Clinical Setting

SCID is the primary target for TREC newborn screening.

While the historical definition of SCID included low to

absent T cells, growth failure, and severe and opportunistic

infections, early detection of SCID enabled by newborn

screening has required a new definition of SCID based on

laboratory criteria in the absence of infectious complica-

tions. The Primary Immune Deficiency Treatment

Fig. 1 Generation of the dRec-

wJa TREC, showing primers,

black arrows, used to amplify

and quantitate TREC junction

fragment. Excision of the TCRD

locus from the TCRA locus

results in the excised fragment

which circularizes to form the

dRec-wJa TREC, found in

[70 % of ab T-cell receptor

expressing T cells. (schematic

from [14•])
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Consortium (PIDTC), comprising 33 centers in North

America to study the treatment of rare and severe primary

immunodeficiencies, now defines typical SCID as infants

with \300 autologous T cells/lL blood, \10 % of control

proliferation to the mitogen phytohemagglutinin A (PHA),

frequently with detectable spontaneously engrafted mater-

nal T cells, and supported by deleterious mutations in

known SCID-associated genes [8•, 37••]. If the underlying

gene mutations are not totally null, a diagnosis of leaky

SCID is made [38, 39•]; infants with leaky SCID are

defined as having 300–1,500 autologous T cells/lL (or

more if there is an expansion of oligoclonal T cells),

absence of maternal T-cell engraftment, and reduced pro-

liferation to PHA of 10–50 %. Infants affected with SCID

or leaky SCID may appear totally healthy for the first few

months of life.

With wide implementation of SCID NBS in unbiased

populations, accurate incidence data have become avail-

able; Kwan et al. reported 1 in 58,000 infants (95 % CI

1/46,000–80,000) to have SCID or leaky SCID (including

Omenn syndrome), nearly twice the previous estimates

based on population data [33••]. In countries where there

has not been SCID NBS, fewer cases have been reported,

in part because of greater reliance on family history or

characteristic infections that are considered for the diag-

nosis [40–48]. Thus, the true burden of SCID worldwide is

probably underestimated, with many infants succumbing to

infectious diseases without a primary immunodeficiency

being considered. Cost-benefit arguments and worldwide

publicity continue to advocate widespread implementation

of SCID NBS [49–52]. In settings where newborn

screening for SCID is not available, SCID diagnosis relies

on the occurrence of infections, which may be life-threat-

ening: opportunistic pathogens such as Pneumocystis jiro-

veci, persistent and severe cytomegalovirus, adenovirus or

other viral infections, oral thrush, invasive bacterial,

mycobacterial and fungal infections, diarrhea, and failure

to thrive. Further findings may include rashes, lack of

tonsillar tissue and lymph nodes, absence of thymus on

chest radiograph, and lymphopenia. Secondary causes of

immune deficiency such as HIV must be excluded.

The distribution of gene mutations causing SCID

detected by NBS has shown a larger proportion of auto-

somal recessive genes compared to SCID-XL IL2RG

mutations than in pre-NBS series of cases reported by

SCID transplant centers, possibly reflecting greater ascer-

tainment of sporadic cases with no family history (Fig. 3)

[33••, 53, 54]. As X-linked disorders with severe or lethal

phenotypes maintain constant frequency due to replenish-

ment in the gene pool by new mutations [55], the lower

proportion of SCID-XL reflects an actual increase in the

number of autosomal recessive SCID cases detected by

unbiased screening. Kwan et al. also reported a larger

proportion of cases with RAG1 and RAG2 defects, half of

which were leaky [33••]; prior to newborn screening, the

heterogeneous phenotypes of leaky RAG mutations meant

that some patients were not diagnosed until later in child-

hood [39•, 56] and may have manifested autoimmunity or

Fig. 2 Annual U.S. births from 2008 to 2014, with proportions of births screened for SCID in states implementing NBS. Birth data taken from

National Vital Statistics birth reports [28]. SCID screening data obtained from the Newborn Screening Translational Research Network
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Omenn syndrome [57•, 58, 59]. Additionally, genes that

were not known to be previously associated with SCID

have been discovered with the advent of SCID NBS, e.g.,

TTC7A [60•, 61•, 62, 63]. Indeed, a higher proportion of

SCID cases detected by NBS have had unknown gene

defects, even after sequencing multiple typical SCID genes

[33••]. These infants with typical SCID phenotypes repre-

sent opportunities for the discovery of new gene mutations

or identification of previously unrecognized SCID-causing

mutations. In facilities where high-throughput sequencing

can be performed, T-lymphopenic infants identified by

newborn screening can be investigated in a systematic way.

Immune System Restoring Therapies

The premise of SCID newborn screening is to identify

affected infants such that their treatments can be optimized

and tailored for the most favorable outcomes. Treatments

for SCID include primarily HCT (see Wahlstrom et al., in

this series), with enzyme replacement therapy (ERT) as an

option for ADA-deficient SCID [6••, 8•, 64–69]. ADA-

deficient SCID and cc-deficient SCID-XL can also be

treated by experimental ex vivo addition of a correct cDNA

to autologous hematopoietic stem cells, followed by rein-

fusion [70–74] (see Calero et al., review in this series).

Current gene therapy trials with improved safety and effi-

ciency may become approved as a standard care in the

future [75, 76]. In addition, advances in genome editing

technologies now under development may offer gene cor-

rection therapies without the use of viral vectors, reducing

the risks of insertional mutagenesis and nonphysiologic

regulation of gene expression [77, 78].

Since newborn screening for SCID has been imple-

mented, infants have been transplanted at an earlier age

when there are suitable donors, and importantly, before

opportunistic bacterial infections take place because pro-

phylactic antimicrobials and immunoglobulin replacement

therapy have been started soon after birth. Viral infections

in these immune-compromised infants are still problematic,

and physicians need to remain vigilant to warn parents

regarding exposure to respiratory viruses, potential for

transmission of cytomegalovirus in breastmilk, and

avoidance of live rotavirus vaccines [18, 79, 80].

Non-SCID Newborns with T-Cell Lymphopenia

Detected by NBS

In addition to SCID and leaky SCID, secondary targets of

TREC newborn screening include infants with T-cell

lymphopenia (TCL) that does not meet the SCID defini-

tions given above. These TCL conditions can be catego-

rized into genetic syndromes with T-cell impairment

(‘‘Syndromes’’), T-cell lymphopenia arising because of a

non-immune illness (‘‘Secondary’’), certain preterm and

low-birth-weight infants (‘‘Preterm’’), and infants with

‘‘variant SCID’’ or idiopathic T-lymphopenia (‘‘Idiopathic

TCL’’). Screening programs have detected low TRECs in

these non-SCID TCL infants at different rates that depend

on programmatic selection of TREC and T-cell cutoffs. In

the most common TCL category of Syndromes, DiGeorge/

chromosome 22q11 deletion leads the list. This syndrome

includes a failure of T-cell production due to thymic

atrophy and/or intrinsic T- and B-cell defects related to the

TBX1 gene in the commonly deleted region.

Among newborns with DiGeorge syndrome only a small

proportion have sufficiently low T cells to be identified by

SCID NBS. In complete DiGeorge syndrome, a very rare

disorder in which there is aplasia of the thymus, TRECs

and T cells are undetectable, and experimental thymus

transplantation may be required. The number of partial

DiGeorge cases detected by NBS depends on where each

screening program has set its TREC and T-cell cutoffs. For

example, in the California newborn screening program and

several others that define significant TCL as \1,500 T

cells/lL, only about 5 % of all infants with 22q deletion

are expected to be identified by TREC screening [17••].

Down syndrome/trisomy 21 is also a common cause of

low TRECs and low T cells, with other causes being

CHARGE (heart defect, atresia choanae, retarded growth

and development, genital abnormality, and ear abnormality)

Fig. 3 Distribution of SCID genotypes in the presence of newborn

screening in California, with 1,980,133 infants screened in 4 years.

SCID incidence was 1 per 53,000 births. An earlier study of 11 SCID

NBS programs throughout the U.S., with 3,030,083 infants screened,

found an incidence of 1 per 58,000 births with a similar distribution,

and also detected single incidences of additional SCID genotypes

CD3D, TTC7A, and chromosome 12p duplication [34•]
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syndrome, Fryns syndrome, Nijmegen breakage syndrome,

and ataxia telangiectasia [81].

Secondary causes of TCL include congenital heart dis-

ease (other than in association with chromosome 22q

deletion) in which neonatal surgery or vascular leakage

cause third-spacing of fluid and lymphocytes; gastrointes-

tinal malformations, intestinal lymphangiectasia, and

hydrops also cause increased T-cell loss, while neonatal

leukemia is associated with low T cells due to leukemic

cell infiltration of the bone marrow. The Preterm category

of TCL refers to a small proportion of the infants born

often at or before 30 weeks’ gestation and who weigh

\1,500 gm at birth. If they survive their prematurity with

its attendant complications, these infants generally recover

T cells as they mature [17].

Idiopathic TCL describes infants with isolated low T

cells without a recognized congenital syndrome who are

not as severely immunologically impaired as infants with

SCID and do not have hypomorphic SCID mutations

characteristic of leaky SCID. T- or B-cell functions may be

impaired and the condition may or may not resolve over

time. This group of infants, whose existence was not rec-

ognized prior to SCID NBS, offer an opportunity to dis-

cover, and study genes not previously implicated in T-cell

development. Furthermore, the natural history of these

infants is of considerable interest. If a gene diagnosis

associated with a known syndrome is discovered, the infant

is moved to the appropriate category.

As a group, these infants with low T cells from any

cause are advised to receive follow-up until their T-cell

numbers improve, and some are advised to receive pro-

phylactic antibiotics, immunoglobulin support, irradiated

blood products, and avoid live vaccines. Further study will

be required to know the benefit of immune interventions in

these cases.

Conclusions

As of today, 26 states, District of Columbia, and the Navajo

Nation in the U.S. are performing SCID screening with the

TREC test, and SCID-affected infants are reliably being

detected and promptly referred so as to receive immune-

restoring treatments. Population-based screening has

determined an unbiased, overall incidence of SCID to be 1

in 58,000 births, nearly double that of previous estimates.

As newborn screening for SCID becomes more wide-

spread, subpopulations with higher incidence due to foun-

der mutations will be further elucidated [8•, 33••]. Early

detection of SCID-affected infants provides new opportu-

nities to investigate and define molecular etiologies and

optimal treatment strategies for SCID infants. Large multi-

center collaborations are needed to define and investigate

the impact of each of many variables involved in HCT—

donor selection, donor cell preparation, SCID genotype,

conditioning regimen, GvHD prophylaxis—to determine

optimal transplant strategies that can be tailored to specific

SCID genotypes. New protocols may be required to take

into account the small size and immaturity of the blood-

brain barrier in SCID infants detected by NBS to minimize

toxicity from treatments previously established for older

individuals [82•].

The availability of newborn screening for SCID still

requires vigilance from health care professionals to under-

stand and interpret the screen results and to be aware of

forms of immune deficiency that are not detected by

abnormal TRECs. These include infants who for whatever

reason are not screened or appropriately followed up; infants

with defects in late T-cell development or function whose

ability to make TRECs is preserved; and infants with pri-

mary deficiencies of B cells, granulocytes, or other cells that

TREC testing did not reveal. Although screening for B-cell

immunoglobulin gene rearrangement such as by measuring

j-chain excision circles (KRECs) has been suggested, data

on the effectiveness in terms of specificity and sensitivity of

this test as used on entire populations has not been reported

to date. Protection from infection is paramount for all infants

with SCID, T-cell lymphopenia, and indeed all primary

immune defects. With further implementation of SCID

NBS, we anticipate improved understanding of the under-

lying disorders and how best to treat them.
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