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ABSTRACT

Introduction: Compared with traditional fun-
dus examination techniques, ultra-widefield
fundus (UWF) images provide 200� panoramic
images of the retina, which allows better
detection of peripheral retinal lesions. The
advent of UWF provides effective solutions only
for detection but still lacks efficient diagnostic
capabilities. This study proposed a retinal lesion

detection model to automatically locate and
identify six relatively typical and high-inci-
dence peripheral retinal lesions from UWF
images which will enable early screening and
rapid diagnosis.
Methods: A total of 24,602 augmented ultra-
widefield fundus images with labels corre-
sponding to 6 peripheral retinal lesions and
normal manifestation labelled by 5 ophthal-
mologists were included in this study. An object
detection model named You Only Look Once X
(YOLOX) was modified and trained to locate
and classify the six peripheral retinal lesions
including rhegmatogenous retinal detachment
(RRD), retinal breaks (RB), white without pres-
sure (WWOP), cystic retinal tuft (CRT), lattice
degeneration (LD), and paving-stone degenera-
tion (PSD). We applied coordinate attention
block and generalized intersection over union
(GIOU) loss to YOLOX and evaluated it for
accuracy, sensitivity, specificity, precision, F1
score, and average precision (AP). This model
was able to show the exact location and saliency
map of the retinal lesions detected by the model
thus contributing to efficient screening and
diagnosis.
Results: The model reached an average accu-
racy of 96.64%, sensitivity of 87.97%, specificity
of 98.04%, precision of 87.01%, F1 score of
87.39%, and mAP of 86.03% on test dataset 1
including 248 UWF images and reached an
average accuracy of 95.04%, sensitivity of
83.90%, specificity of 96.70%, precision of
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78.73%, F1 score of 81.96%, and mAP of 80.59%
on external test dataset 2 including 586 UWF
images, showing this system performs well in
distinguishing the six peripheral retinal lesions.
Conclusion: Focusing on peripheral retinal
lesions, this work proposed a deep learning
model, which automatically recognizedmultiple
peripheral retinal lesions from UWF images and
localized exact positions of lesions. Therefore, it
has certain potential for early screening and
intelligent diagnosis of peripheral retinal lesions.

Keywords: Peripheral retinal lesion; Ultra-
widefield fundus; Deep learning; Object
detection; You Only Look Once X

Key Summary Points

Compared with traditional fundus
examination techniques, ultra-widefield
fundus (UWF) images provide a 200�
panoramic image of the retina, which
allows better detection of peripheral
retinal lesions.

This study proposed the hypothesis that
deep learning can be applied to screening
of peripheral retinal lesions based on
ultra-widefield fundus images. On test
dataset 1 with 248 images, the model
performed well in distinguishing and
locating six kinds of peripheral retinal
lesions with average accuracy of 96.64%,
sensitivity of 87.97%, specificity of
98.04%, precision of 87.01%, F1 score of
87.39%, and mAP of 86.03%.

This result supports the initial hypothesis
and indicates certain potential of the deep
learning model in assisting doctors in
improving diagnosis efficiency based on
ultra-widefield fundus images.

INTRODUCTION

It is reported that over 43 million people are
blind and 550 million suffer from vision

impairment [1, 2]. Retinal lesions may be one of
the main causes. Peripheral retinal lesions, as a
typical part of retinal lesions, have the charac-
teristics of high concealment and risk and can
cause irreversible visual loss without early
treatment.

There is clinical relevance among the selec-
ted lesions, but the urgency of ophthalmic
assessment and treatment required for different
kinds of peripheral retinal lesions are quite dif-
ferent. Paving-stone degeneration (PSD) indi-
cates degeneration of retinal neurosensory
layers only and may require no clinical inter-
vention, but some cases reported relevance
between PSD and extensive macular atrophy
routines, so routine follow-up is still recom-
mended [3]. White without pressure (WWOP)
also seems not urgent when peripheral vascular
abnormalities are observed, and WWOP is
thought to be associated with retinal break (RB)
and rhegmatogenous retinal detachment (RRD)
[4]. Cystic retinal tuft (CRT) is believed to not
only develop into a retinal break, but may also
be a finding that reflects the pathogenesis of
RRD [5]. Lattice degeneration (LD) can cause RB
and RRD due to fibrosis of the nearby vitreous
body, and clinical association between LD and
RRD is frequently reported [6] and is especially
common among Asian patients [7]. RB can lead
to RRD in a short time since a retinal break
allows the ingress of fluid from the vitreous
cavity to the subretinal space, resulting in reti-
nal separation [8]. Lesions like PSD may require
no intervention, while RB requires laser treat-
ment and RRD needs urgent surgical interven-
tion in most cases. Since different peripheral
retinal lesions require variable interventions, it
is important for the diagnosis of peripheral
retinal lesions.

However, traditional fundus examination
techniques, such as ocular color Doppler ultra-
sound, color fundus photography, and optical
coherence tomography (OCT), have long had
difficulty detecting peripheral retinal lesions
due to the limitation of view field and image
quality. Therefore, peripheral retinal lesions
often quietly develop into serious conditions
like retinoschisis and RRD, leading to signifi-
cant vision loss before being detected. Ultra-
widefield fundus (UWF) imaging system is a
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relatively new technique that can detect 200� of
the retinal region, thus being able to show
much more information than traditional fun-
dus examination techniques, making it possible
to scan the peripheral retina quickly and non-
invasively. However, because of the complexity
of UWF images, the interpretation requires high
professionalism and is time-consuming; cur-
rently, this work can only be done by experi-
enced and professional ophthalmologists,
which makes it difficult for more people to
benefit from early screening for peripheral reti-
nal lesions [9]. The lack of automatation, relia-
bility, and accurate identification techniques is
still an obstacle to applying the UWF imaging
system to large-scale screening in clinical
practice.

Deep learning (DL) has developed rapidly in
recent years and has been widely applied to
medical imaging interpretation and intelligent
diagnosis, which shows potential for the
recognition of thyroid nodules [10], skin cancer
[11], COVID-19 [12], and so on. Owing to its
high efficiency and accuracy, DL contributes to
efficient early screening and diagnosis.

Based on the traditional color fundus pho-
tography technique, deep learning has accom-
plished automated classification of eye diseases
[13–16], including retinal lesion of prematurity
[17], myopic maculopathy [18], neovascular-
ization [19], and diabetic retinopathy [20, 21].
Studies utilizing a DL model based on UWF
images also perform well in the classification of
many diseases including diabetic retinopathy
(DR), retinal vein occlusion (RVO), age-related
macular degeneration (AMD), and so on
[22–28]. However, most studies cannot show
the specific location of the retinal lesion.
Meanwhile, there are very few studies focusing
on the peripheral retina.

According to the circumstances above, we
proposed a hypothesis: an object detection
model, as one branch of DL, could be applied to
distinguishing and locating peripheral retinal
lesions from UWF images. This study estab-
lished a dataset with UWF images and modified
an object detection model, aiming at distin-
guishing and locating six different peripheral
retinal lesions including WWOP, PSD, CRT, LD,
RB, and RRD.

Overall, this work aims to evaluate the per-
formance of the object detection model on
UWF images not only to locate peripheral reti-
nal lesions but also to prove that the object
detection model can be applied to UWF images.

METHODS

This study adhered to the tenets of the Decla-
ration of Helsinki and the Transparent Report-
ing of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis guidelines
[29] and was approved by the ethical review
committee of the Chinese Center for Disease
Control and Prevention, Beijing, China
(ChiCTR2100053526), and all the images were
desensitized.

A total of [ 100,000 original UWF images
were taken by an Optos Daytona (P200T) oph-
thalmoscope from patients undergoing UWF
imaging photography at the Department of
Ophthalmology, West China Hospital, from
January 2016 to December 2021. The inclusion
criteria for this study were as follows: (1) images
presenting with at least one kind of listed
peripheral retinal lesion including WWOP, PSD,
LD, CRT, RB, and RRD; (2) patients[ 18 years
old; (3) no history of previous laser treatment.

Due to the great influence of low-quality
images on the DL model performance [30], we
established exclusion criteria for this study: (1)
blurred images; (2) over-coverage ratio of the
eyelid[ 30%; (3) abnormal color of the whole

Table 1 Exclusion criteria for images

Exclusion
reason

Criteria

Blurred image Image lacks boundary information and

sharpness and does not show

meaningful details

Over-coverage

of eyelid

Eyelid covering part is[30% of the full

picture, and the image does not show

enough information

Abnormal color Whole image only shows red or green
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image. Details of exclusion criteria are shown in
Table 1 and Fig. 1.

Since peripheral retinal lesions could hardly
be seen by traditional non-invasive examina-
tion and were rarely diagnosed without obvious
symptoms, we could not directly obtain
peripheral retinopathy UWF images with cor-
responding labels from the clinical imaging
system. Moreover, establishment of a DL model
strongly depends on precise and reliable data
support. Therefore, we invited five ophthal-
mologists (WT, CL, WSS, YQZ, WBJ) with
qualifications and[2 years’ clinical experience
and two specialists (ZM and GYX) with [ 10
years’ clinical experience from West China
Hospital, Sichuan University, to establish the
dataset including qualified images with corre-
sponding labels.

As shown in Fig. 2, after excluding unquali-
fied images, the remaining UWF images were
distributed to five ophthalmologists, who
labeled them with an open-source tool called
LabelImg. Five ophthalmologists were divided
into two groups (WT, YQZ in group A and CL,
WBJ, WSS in group B), and the same dataset was
labeled independently by both groups. Each
image was labeled according to what kind of
peripheral retinal lesion it presented and where
it was located. Criteria for consistent labeling of
one image were: (1) category of lesions is the
same; (2) number of rectangles surrounding
corresponding lesions is the same; (3) intersec-
tion over union (IOU) of corresponding rect-
angles is[90%.

Consistent labels on one image were adapted
directly; if there was divergence, the image was
transferred to specialists (ZM and GYX) for final

judgment. If disagreement remained, consensus
on the final judgment was reached after dis-
cussion between two specialists. Since the UWF
imaging system uses red and green lasers to
synthesize the dual-channel pseudo-color
image [9], the ophthalmologists first read the
red channel of the image, then read the green
channel, and finally read the pseudo-color
image for the final diagnosis (Fig. 2b). Table 2
showed features of all target retinal lesions in
the whole labeling process, which were referred
to EyeWiki from the American Academy of
Ophthalmology, while normal image was
defined as one UWF image without any sign of
retinal lesion or disease.

After all the above procedures, we obtained a
database consisting of 2622 UWF images with
corresponding labels in XML format respec-
tively. Ninety percent of the former database
was selected randomly as the training dataset
(with 2374 images) and the remaining 10% as
test dataset 1 (with 248 images). Test dataset 1
was used for testing only and not utilized dur-
ing the training procedure.

The quantity and quality of the database
have a great influence on the DL model, so we
used an open-source tool named Albumenta-
tions to randomly augment the training dataset
by horizontal flipping, vertical flipping, trans-
position, scaling, rotation, brightness variation,
and contrast variation. For the training dataset,
we applied horizontal and vertical flip for all the
images, and we adjusted 60% of the images’
brightness and contrast randomly. For CRT,
WWOP, PSD, and LD, we also applied random
scaling and rotating to augment them again.
Finally, to rebalance the dataset, we applied

Fig. 1 Typical low-quality examples. a Blurred image; b over-coverage of eyelid; c abnormal color
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transposition. The augmented dataset consists
of 24,602 images and 22,601 retinal lesion
areas.

To further evaluate the DL model, external
test dataset 2 was collected separately fromWest
China Hospital, composed of 122 normal UWF
images and 464 UWF images with 600 parts of
peripheral retinal lesions. Neither test dataset 1
nor 2 was used for training or augmented, and
they were never used in the DL model during
the training procedure. Details of the datasets
are shown in Table 3.

The details of UWF images are complex
because there can be multiple different retinal
lesion areas in one UWF image, and the same
retinal lesion may also emerge in different parts
of the retina, resulting in multiple retinal
lesions and multiple retinal lesion areas in one
UWF image, like a multi-instance multi-label
(MIML, multiple instances and multiple labels
in one single image) problem in the research
area of machine learning [31, 32]. Under such
circumstances, a traditional classification net-
work may not work; meanwhile, the simple use

of a multi-label, multi-instance classification
network may have little effect and lack practi-
cability for medical images [33, 34].

To choose our baseline, based on test dataset
1, we tested some state-of-the-art (SOTA) algo-
rithms including SSD, RetinaNet, CenterNet,
YOLOv5, Fcos, and YOLOX, and we finally
chose YOLOX as the baseline.

In this study, the improved YOLOX, a SOTA
object detection model, was innovatively used
to locate and classify peripheral retinal lesions.
The retinal lesions detected are surrounded by
rectangle boxes so that we could see exactly
where the retinal lesion areas are.

YOLOX is an improved implementation
based on YOLOv3, which is one of the SOTA
algorithms in the research area of object detec-
tion and has high precision and speed. Com-
pared with DarkNet-19 used in YOLOv2,
YOLOv3 adopts DarkNet-53 as the feature
extraction network (backbone) and adds a
residual network [35], which alleviates the gra-
dient disappearance and explosion problem
caused by increasing depth in the deep neural

Fig. 2 Labeling process for the dataset used in this study. (a) Establishment of the dataset. (b) Labeling process using
LabelImg. As shown above, the retinal lesion area is surrounded by a box (indicated by red and yellow arrows)
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network. Furthermore, YOLOv3 draws on the
experience of the idea of FPN (pyramid feature
map), and multi-scale features are used for
object detection [36]. Deconvolution is added
to extract features, which has greatly improved
the detection of small objects.

Original YOLOs are mostly anchor-based,
which means the researchers need to design the
anchors beforehand, and the model may lack
generalization when the distribution of the test
dataset is much different from the training
dataset.

The architecture of YOLOX is shown in
Fig. 3. Researchers turned the detector to an
anchor-free method, which means the users no
longer need to design the anchors and the
model becomes more robust. The use of other
advanced detection techniques, such as CSPNet,
Mosaic augmentation, decoupled head [37], and
SiLU [38], makes YOLOX a high-performance
detector. We applied the coordinate attention
block [39] to YOLOX and replaced the loss
function with GIOU [40] improve it.

Table 2 Description of target retinal lesions

Retinal lesion Features

White without pressure Definition: distinctive white appearance of the peripheral retina without indentation and

without mechanical stimulus

Characteristic: whiter than the retina with pressure and the choroidal markings are almost

obscured, found in post-equatorial region at the base of the vitreous and ora serrata,

whiteness further accentuated with scleral depression, margins are sharply demarcated from

normal retina

Paving-stone degeneration Definition: lesions show multiple rounded, punched-out areas of choroidal and retinal

atrophy

Characteristic: yellow-white in color due to sclera being partly visible through the atrophic

choroid, discrete margins that may be pigmented, may become confluent. Lesions located

between ora and equator with size of one to several disc diameters

Lattice degeneration Definition: retinal thinning with fibrosis and vitreous liquefaction over the lesion

Characteristic: oval or linear pattern of lesions, may be one lesion or multiple, may have

yellow deposits, pigment, atrophic holes, or retinal breaks

Cystic retinal tuft Definition: area of retinal degeneration caused by attachment to and pulling of the vitreous

Characteristics: circular, cotton ball-like structure adjacent to a dark background

Retinal break Definition: isolated tear due to a defect in the sensory retina from the traction of the vitreous

after acute posterior vitreous detachment

Characteristic: either retinal tear or retinal hole, retinal holes due to atrophic changes in the

neurosensory retina

Rhegmatogenous retinal

detachment

Definition: subretinal fluid accumulates between the neurosensory retina and the retinal

pigment epithelium with occurrence of a break in the retina allowing vitreous to directly

enter the subretinal space

Characteristic: a rhegmatogenous retinal detachment has a corrugated appearance and

undulates with eye movements
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All the experiments were accomplished
using PyTorch-1.10.2 and CUDA-11.3, and the
model was trained by a GTX 3060 (12 GB).

First, we loaded YOLOX-l’s pretrained weight
(COCO2017) and trained it with the input size
of (640, 640, 3) for 50 epochs with the backbone
frozen. Then, we unfroze the backbone and
trained it for another 150 epochs. When we
froze the backbone, we trained it with the batch
size of 16. After it was unfrozen, the batch size
changed to 8.

While training, we applied Mosaic for further
data augmentation. Mosaic makes the dataset
more various, which is undoubtedly helpful for
the model, but it also makes the image com-
pletely different from the real one, so we shut it
down during the last 30% epochs.

In this study, we used true positive (TP), false
positive (FP), and false negative (FN) to calculate
sensitivity, precision, F1 score, and average
precision (AP) [41]. True negative (TN) was not
defined in the research area of object detection
so we manually calculated true negative (TN)
and specificity by the following formula.

Finally, we evaluated the model with accu-
racy of the formula (ACC) = (TP ? TN)/(TP ?

TN ? FP ? FN), sensitivity (SE) = TP/(TP ? FN),
specificity (SP) = TN/(TN ? FP), precision
(PR) = TP/(TP ? FP), F1 score = 2 9 (PR 9 SE)/
(PR ? SE), and average precision (AP). AP is
actually the area under the P–R (precision-re-
call) curve, and the area is equivalent to the
integral of the equation of the curve. The
computational formula for AP and mean AP
(mAP) is listed in Supplementary Fig. 1.

In the database, some images presented plu-
ral parts of retinal lesions; we counted 1 TP
result only when the YOLOX model accurately
located all lesions with IOU [ 0.5. Figure 4
illustrates a prediction example of our model:
One TP result was counted for RB since two RB
lesions were all detected and surrounded by the
yellow rectangle. One FN result was counted for
RRD since RRD was missed by the model. This
image showed no sign of other peripheral reti-
nal lesion but RB and RRD, so we additionally
counted one TN result for normal and each
other peripheral retinal lesion. One FP result
was counted when there was no actual lesion

Table 3 Distribution of the retinal lesions in all datasets

Dataset Normal WWOP PSD CRT LD RB RRD Total

Training dataset (original)

Image 389 404 159 97 473 595 306 2374

Retinal lesion 0 423 217 106 547 670 391 2354

Training dataset (augmented)

Image 4835 3984 2251 2213 2281 4789 4641 24,602

Retinal lesion 0 4159 3099 2526 2616 5414 4787 22,601

Test dataset 1

Image 40 47 29 21 50 57 26 248

Retinal lesion 0 55 41 26 69 68 28 287

Test dataset 2

Image 122 76 63 54 91 138 52 586

Retinal lesion 0 94 76 73 112 180 65 600

WWOP white without pressure, PSD paving-stone degeneration, CRT cystic retinal tuft, LD lattice degeneration, RB retinal
break, RRD rhegmatogenous retinal detachment
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but identified as one lesion by the model. If any
lesion was missed or identified in the wrong
category of retinal lesion by the model, the
image was counted as a FN result.

RESULTS

This study contained 2374 original images for
training data; of those, 1985 UWF images

showed peripheral lesions (mean age
44.92 ± 22.46 years, 930 images from men and
1055 images from women), and 389 showed
normal UWF images (mean age
40.52 ± 15.89 years, 142 images from men and
247 images from women). In our preliminary
studies, we compared the performance of sev-
eral SOTA models to choose our baseline, and
all the models were trained with 24,602 aug-
mented images. To test the models’ abilities for
detecting target retinal lesions, we used test
dataset 1 (208 original images with peripheral
lesions, mean age 42.17 ± 18.09 years, 92 ima-
ges from men and 116 images from women; 40
normal UWF images, mean age
38.30 ± 12.48 years, 22 images from men and
18 images from women).

We built CenterNet, SSD, RetinaNet, Fcos,
YOLOv5, original YOLOX, and modified
YOLOX with the same dataset and hyperpa-
rameters (batch size, input size, learning rate,
etc.) and trained them for 150 epochs without
extra data augmentation or training skills. We
tested their performance with test dataset 1, and
Table 4 shows the results of the experiments.

As shown in Table 4, YOLOX performed
better than the other models, so we chose it as

Fig. 3 The architecture of YOLOX with the backbone CSPDarkNet-53, which means it has 53 convolutional layers, and
CSP block is added. Three effective features are used for prediction and detection

Fig. 4 Detection example of our model. As shown in the
picture, two retinal breaks were indicated by yellow
rectangles
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the baseline, and after modifying the architec-
ture of the network, it improved.

The YOLOX model can distinguish whether
the UWF image is normal, classify categories of
the six peripheral retinal lesions (WWOP, PSD,
CRT, LD, RB, RRD), and locate where the retinal
lesion is with average accuracy, sensitivity,
specificity, precision, F1 score, and mAP of
96.64%, 87.97%, 98.04%, 87.01%, 87.39%, and
86.03%, respectively. More details about the
performance of the model are shown in Table 4,
indicating that the model is effective for the
identification and localization of the peripheral
retinal lesions based on the test dataset 1.

For further evaluating stability of the YOLOX
model’s performance, we prepared another
dataset called test dataset 2 based on another
bunch of original UWF images separately col-
lected from West China Hospital between Jan-
uary to April of 2022. This set included 586
UWF images (464 with peripheral retinal lesions
and 122 normal) and had never been aug-
mented or used for a training procedure. Based
on test dataset 2, the model achieved average
accuracy, sensitivity, specificity, precision, F1
score, and mAP of 95.04%, 83.90%, 96.70%,
78.73%, 81.96%, and 80.59%, respectively.
Details are shown in Table 5.

DISCUSSION

After being trained with 24,602 augmented
UWF images with 22,601 parts of peripheral
retinal lesion, the modified YOLOX model
achieved average accuracy of 96.64%, sensitiv-
ity of 87.97%, specificity of 98.04%, precision of
87.01%, F1 score of 87.39%, and mAP of 86.03%
based on test dataset 1. To ensure the general-
izability, we tested the model with test dataset

2, and it achieved average accuracy of 95.04%,
sensitivity of 83.90%, specificity of 96.70%,
precision of 78.73%, F1 score of 81.96%, and
mAP of 80.59%. One of the innovative aspects
of this study is that we focus on peripheral
retinal lesions, which were less concerned
because of limited examination techniques in
the past but could also cause vision loss even in
more silent ways. The second aspect is that we
conducted an object detection so that the DL
model could not only identify what the retinal
lesion was but also locate the exact position of
the retinal lesion.

DL models have received significant atten-
tion and interest over the past few decades, but
the models lack interpretation, especially in
healthcare applications. Essentially, inter-
pretability is one of the major obstacles in the
implementation of DL. DL model can extract
features from original images and make
numerous calculations to identify what the
images are. Figure 5a, c, e, g, i, k shows some
examples, and the lesions detected are sur-
rounded by boxes with different colors. Fig-
ure 5b, d, f, h, j, l shows the corresponding
saliency maps and may help to explain how our
model located peripheral retinal lesions, which
improves the interpretability of our study. The
saliency maps partially ripped a crack in the
black box of the DL model, but were still far
from tearing that black box down.

Recent studies based on DL have shown
some stimulating achievements for the identi-
fication of eye diseases. Most focus on polar
retinal disease such as DR [23], AMD [24], RVO
[26], and neovasculation [19]; some also pay
attention to diseases in the anterior part like
cataract and angle-closure glaucoma [13].
However, these studies generally applied

Table 4 Comparison between some SOTA algorithms based on test dataset 1 (%)

CenterNet SSD RetinaNet Fcos YOLOv5-6.1 YOLOX Ours

Recall 61.92 56.86 66.38 79.90 70.50 80.47 81.59

Precision 74.83 81.34 77.03 76.79 83.02 80.02 81.54

F1 65.33 64.83 69.83 77.50 76.17 80.00 81.33

mAP 75.44 73.24 78.19 81.20 80.79 84.08 85.91
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Table 5 Evaluation indexes for detecting each retinal lesion with YOLOX

ACC (95% CI) SE (95% CI) SP (95% CI) PR (95% CI) F1(95% CI) AP (95%CI)

Test dataset 1

Normal 97.96

(97.22–98.69)

91.99

(88.21–95.77)

98.93

(98.32–99.55)

93.36

(89.25–97.47)

92.66

(89.83–95.48)

N/A

WWOP 96.88

(96.02–97.75)

90.38

(87.54–93.22)

98.24

(97.19–99.29)

91.50

(86.17–96.83)

90.91

(87.53–94.29)

90.92

(88.79–93.05)

PSD 97.37

(96.52–98.21)

86.35

(81.47–91.24)

98.73

(98.42–99.13)

88.83

(83.80–93.85)

87.51

(84.23–90.80)

87.86

(82.78–92.94)

CRT 95.91

(94.74–97.09)

81.94

(78.40–85.48)

97.20

(96.43–97.97)

70.67

(65.67–75.68)

75.85

(72.49–79.20)

74.63

(68.10–81.16)

LD 96.02

(94.83–97.22)

82.75

(80.01–85.50)

96.65

(95.69–97.62)

85.60

(82.40–88.80)

84.13

(82.59–85.67)

83.31 (78.

98–87.64)

RB 93.92

(92.30–95.55)

89.43

(86.30–92.56)

97.67

(96.51–98.84)

90.98

(87.05–94.91)

90.19

(87.11–93.26)

89.85

(86.48–93.22)

RRD 98.33

(97.79–98.88)

92.98

(89.05–96.90)

98.82

(98.24–99.39)

88.10

(82.61–93.59)

90.45

(86.26–94.64)

89.62

(88.35–90.89)

Average 96.64 87.97 98.04 87.01 87.39 86.03

Test dataset 2

Normal 97.37

(96.17–98.5)

92.24

(89.32–95.15)

98.47

(97.33–99.61)

9326

(90.04–96.48)

92.73

(90.64–94.82)

N/A

WWOP 94.49

(93.12–95.86)

85.67

(81.70–89.64)

95.92

(94.47–97.37)

77.97

(73.81–82.13)

81.63

(78.00–85.25)

81.32

(78.81–83.83)

PSD 94.34

(92.30–96.38)

79.62

(73.33–80.52)

96.57

(95.27–97.87)

74.16

(70.28–78.03)

75.49

(72.64–78.34)

76.29

(73.35–79.23)

CRT 93.87

(91.62–96.12)

74.85

(70.39–79.32)

95.87

(94.07–97.66)

65.88

(60.96–70.80)

70.04

(66.71–73.36)

70.46

(66.31–74.61)

LD 94.49

(93.50–95.48)

84.53

(8031–88.76)

96.22

(95.31–97.14)

79.79

(76.19–83.40)

82.08

(78.86–85.30)

82.65

(80.69–84.61)

RB 92.93

(91.03–94.83)

85.04

(81.42–88.66)

95.20

(92.82–97.58)

84.08

(78.53–89.63)

84.53

(80.97–88.08)

84.97

(79.9889.96)

RRD 97.82

(96.69–98.49)

88.06

(81.81–94.31)

98.69

(97.88–99.49)

86.40

(83.20–89.60)

87.20

(83.17–91.23)

87.84

(84.49–91.19)

Average 95.04 83.90 96.70 78.73 81.96 80.59

WWOP white without pressure, PSD paving-stone degeneration, CRT cystic retinal tuft, LD lattice degeneration, RB
retinal break, RRD rhegmatogenous retinal detachment, ACC accuracy, SE sensitivity, SP specificity, PR precision, AP
average precision
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traditional classification networks, which were
only able to evaluate the existence of eye dis-
eases; they could not locate the specific position
of the diseases, and the system may not work if
there are multiple diseases in one single image.
Different from traditional classification net-
works, this study applied an object detection
model so that the retinal lesion areas could be
located directly and accurately, being able to
help ophthalmologists make rapid diagnoses.
By outputting the saliency map and exact
position of retinal lesion areas with clear bor-
ders, this study may also help to improve the
clinical interpretability in another way.

This study also has limitations: First, the
UWF images we used to train the model were
two-dimensional images, lacking stereoscopic
qualities rather than three-dimensional images,
thus making the identification of proposed
lesions such as cystic retinal tuft challenging.
Second, only UWF images were included in this
study, lacking assistance from different

dimensions including medical history and
other physical examinations. Thus, this study
could not achieve multi-dimensional evalua-
tion, which limited the accuracy in realistic
scenes. Third, images in this study were taken
from one hospital, and most images come from
only Asians, which lowers the ethnic represen-
tation of the study. Besides, the UWF image
cannot cover 100% of the retina, and the green-
red pseudo-color image differs from the real
look of the fundus, so some peripheral retinal
lesions may still be missed. Moreover, the sen-
sitivity of the model is relatively low, but the
specificity is high, which suggests that the
model tends to produce false-negative results,
which is not advantageous in large-scale
screening. Future studies will focus more on
improving sensitivity while maintaining high
specificity and accuracy of the DL models.

Focusing on peripheral retinal lesions, we
successfully established a modified YOLOX
model based on UWF images. This work

Fig. 5 Examples of peripheral retinal lesions located by
YOLOX. a Retinal break; c paving-stone degeneration and
lattice degeneration; e white without pressure and cystic
retinal tuft; g cystic retinal tuft; i lattice degeneration;

k retinal detachment and retinal break; b, d, f, h, j,
l corresponding saliency maps
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provides an efficient solution for the localiza-
tion and identification of peripheral retinal
lesions, and the results indicated that the pro-
posed model showed high efficiency in intelli-
gent diagnosis for six peripheral retinal lesions.

Main contributions and innovations are as
follows: (1) this study developed an object
detection dataset including six peripheral reti-
nal lesions based on UWF images; (2) the object
detection model YOLOX was applied to locate
and identify the peripheral retinal lesions, being
able to show the exact locations of the retinal
lesions, which has not been frequently reported
in other studies, and showed high efficiency; (3)
this study focused on the six peripheral retinal
lesions that are high risk but sometimes ignored
because of limited examination techniques.

Currently, the interpretation of UWF images
can only be completed by experienced oph-
thalmologists after years of training. There is a
huge gap between the large group of patients
and the relatively scarce fundus disease spe-
cialists, which hinders the popularity of the
UWF imaging system and makes it difficult for
patients to obtain convenient fundus examina-
tion and supporting interpretation services.
How to diagnose fundus diseases with high
efficiency and low cost in basic medical units
has been a concern and discussed widely.
According to a review based on AI and UWF
images, object detection technology has hardly
been applied to fundus images, which means
there is still research space for lesion detection
on UWF images [42]. Meanwhile, although
some meaningful diseases were included for
study and the results were inspiring, there are
still many neglected diseases, and different dis-
eases may be identified as abnormal but not
classified as well [43–45]. Focusing on periph-
eral retinal lesions, we applied an object detec-
tion model to UWF images, verifying its certain
potential for the identification and location of
retinal lesions. With the increase of quantity
and quality of data, more diseases can be
involved in the future study, which may con-
tribute more to early screening and clinical
diagnosis of retinal lesions. In this way, oph-
thalmologists can pay more attention to
patients with severe conditions, and clinical
efficiency might be greatly improved.

In future studies, a larger dataset including
more retinal lesions should be used to improve
and evaluate our method. Furthermore, multi-
center studies may be conducted to promote the
applicability of this study. Many kinds of ima-
ges and information could be involved, which
may contribute to the intelligent diagnosis of
retinal lesions, making this method practical in
clinical settings.

CONCLUSION

In summary, our method showed certain
potential for intelligent identification and
localization of six peripheral retinal lesions
based on UWF images. The results verified that
the model had relatively high efficiency and
accuracy and preliminarily approached oph-
thalmologists’ diagnosis level [46], indicating
that the model may contribute to clinical
diagnosis in the future.
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