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ABSTRACT

In coming decades, artificial intelligence (Al)
platforms are expected to build on the profound
achievements demonstrated in research papers
towards implementation in real-world medi-
cine. The implementation of Al systems is likely
to be as an adjunct to clinicians rather than a
replacement, but it still has the potential for a
revolutionary impact on ophthalmology
specifically and medicine in general in terms of
addressing crucial scientific, socioeconomic and
capacity challenges facing populations world-
wide. In this paper we discuss the broad range of
skills that clinicians should develop or refine to
be able to fully embrace the opportunities that
this technology will bring. We highlight the
need for an awareness to identify Al systems
that might already be in place and the need to
be able to properly assess the utility of their
outputs to correctly incorporate the Al system
into clinical workflows. In a second section we

T. M. Aslam - D. C. Hoyle

School of Pharmacy and Optometry, Faculty of
Biology, Medicine and Health, The University of
Manchester, Manchester, UKD. C. Hoyle

e-mail: dchoyleO1@gmail.com

T. M. Aslam (IX)

Manchester Royal Eye Hospital, Manchester
University NHS Foundation Trust, Oxford Road,
Manchester, UK

e-mail: Tarig.aslam@cmft.nhs.uk

discuss the need for clinicians to cultivate those
human skills that are beyond the capabilities of
the Al platforms and which should be just as
important as ever. We describe the need for
such an awareness by providing clinical exam-
ples of situations that might in the future arise
in human interactions with machine algo-
rithms. We also envisage a harmonious future
in which an educated human and machine
interaction can be optimised for the best possi-
ble patient experience and care.
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Key Summary Points

Artificial intelligence (AI) platforms are
likely to increasingly penetrate to direct
clinical care in upcoming years as an
adjunct rather than replacement for
human clinicians.

It is therefore incumbent on human
clinicians to arm themselves with the
knowledge and skills necessary to
effectively interact with Al systems of the
future.
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This undertaking involves developing an
understanding of the algorithms
themselves, their strengths and
weaknesses and the precise meaning of
their outputs with relevance to individual
clinical scenarios.

Human skills will remain critically
important, and these skills should also be
nurtured with respect to particular aspects
of their importance in the Al-enabled
clinics of the future.

INTRODUCTION

There has been a rapid proliferation of research
in recent years demonstrating the immense
power of artificial intelligence (AI) and, in par-
ticular, deep learning, to perform complex
clinical tasks that had hitherto been regarded as
the exclusive domain of human experts [1, 2].
The pace and breadth of developments in this
discipline, including in the fields of mathe-
matics, medicine, computing, statistics, and
research methodology, would challenge the
capacity of most clinicians to comprehend
them all, with pertinent questions left unan-
swered on clinical implications and impact.
The most fundamental of these questions is
whether the abilities of current Al systems will
effectively replace trained human experts,
leaving them redundant in a brave new world.
Our article demonstrates that, to the contrary,
there are areas where human intelligence pro-
vides crucial services beyond the capability of
current Al systems and yet other areas where
although Al systems may have proven equality
or superiority, expert human skill is still
required to interpret and interface with the
computer systems. Indeed, studies demonstrat-
ing such effectiveness of Al systems may not be
as promising as they appear and must be sub-
jected to further assessment to ensure that they
are based on research conducted under strict
methodological guidelines [3]; for example, a
recent study highlights that impressive-appear-
ing outcomes in some scientific reports are

significantly flawed when subjected to close
scrutiny [4]. The findings also need to be
externally  validated with  independent
prospective clinical trials in a real-world setting
that considers workflows and addresses any
legal or ethical implications. The algorithms
will ultimately need regulatory approval, and
subsequent clinical deployment is likely to
require clinician training and support as well as
regular audits, including close attention to
adverse events and evidence for clinical benefit.

This complex and necessary development
pathway requires considerable time and finan-
ces to bridge the results of any widely released,
albeit impressive, published algorithm results to
real-world utility. The many less common con-
ditions and less stable situations that are more
complex to train and less lucrative may there-
fore remain in the human domain for many
years to come, even if they are cases humans
might appreciate more help with. Ultimately,
most authorities concur that Al is likely to
involve platforms as useful adjuncts to help
clinicians rather than replace them, both in
medicine in general [5-8] and in ophthalmol-
ogy specifically [9, 10].

The profound results achieved by DeepMind
and other systems do however indicate that this
adjunctive potential of Al could have a revolu-
tionary impact on ophthalmology specifically
and medicine in general [5], potentially
addressing many of the crucial scientific,
socioeconomic and capacity challenges facing
populations worldwide. Thus, the important
question for human clinicians becomes not
whether Al will replace them but how should
they work with Al to ensure that this potential
is fully realised. Whilst Al has the potential
within the field of ophthalmology to be an all-
pervasive powerful technology, it is also one
that requires careful implementation as its for-
eign methodologies may be a degree more
opaque and impenetrable to humans than other
technologies we have adapted to.

Given the vast field of Al and machine
learning research, in this article we will not
explain the technical details of developing Al
systems or guidelines on conducting detailed
research critique, issues which have been amply
addressed elsewhere, both in medicine in
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general [11, 12] and in ophthalmology specifi-
cally [13, 14]. Instead, this article presents a
template for human clinicians to prepare for a
future landscape where validated AI systems
need to be appropriately exploited and com-
bined with the best of human intelligence to
provide the safest, most effective and efficient
healthcare system for their patients. This article
is based on previously conducted studies and
does not contain any new studies with human
participants or animals performed by any of the
authors.

There are two broad areas of this template
where we believe human clinician awareness
and training will ensure they are prepared for
the new era of Al. The first is in the appropriate
identification, assessment and incorporation of
Al systems into their clinical workflows; the
second is in the cultivation of their human skills
that are beyond the capabilities of the Al sys-
tem. We will address these two aspects in turn.

ASSESSMENT
AND INCORPORATION OF Al
INTO CLINICAL WORKFLOW

Understanding Where Al has been
Employed

We may imagine Al systems as being discrete,
highly visible and publicised tools that we need
to opt-in to use, but their presence may not
necessarily be obvious and the first challenge
for human clinicians involves awareness and
vigilance to this presence. Physicians should
ideally be aware of all Al processes in their
workflow so that these can, if necessary, be
muted to serve the raw data to the clinician for
analysis.

For example, Al may be integrated into
patient electronic health records (EHR), using
natural language processing (NLP) to filter out
noise and extract information determined to be
important for the clinician [15]. Whilst these
steps may be overall of great benefit, if they are
not understood, there is a risk of complex or
rare cases being mismanaged due to the inad-
vertent filtering out of pertinent data. Useful

information for an ophthalmic surgeon from a
large set of patient data, for example, may be
that the patient is myopic and diabetic; how-
ever, this crucial information might not neces-
sarily be highlighted by a deficient NLP system,
and any presumption by the attending physi-
cian that qualified clinicians had procured and
shared all relevant data could lead to errors.

Similarly, the images we see from modern
ophthalmic scanners, such as optical coherence
tomography (OCT) angiography, are highly
processed from raw collected data, and some of
these steps may involve machine learning. In
some cases, these applications are clearly indi-
cated, and associated studies have demon-
strated their benefit [16]. However, this may not
always be the case for future applications where
it may be possible that images apparently
enhanced by machine learning could also cause
degradation of relevant information in certain
circumstances.

Understanding the Accuracy of the Al
Algorithm Employed

Even if an algorithm is clinically approved, its
level of validity will need to be fully understood
to be properly incorporated into any decision-
making process in an individual clinical prac-
tice; therefore, understanding and interpreting
the nuances behind accuracy metrics may be a
Kkey critical skill for a clinician working with Al

As an example, consider a theoretical Al
algorithm that is being used in a clinic. From an
analysis of an OCT image this algorithm esti-
mates that there is an 81% probability that the
macular neovascular membrane in a patient’s left
eye is active. This 81% probability is essentially a
measure of how confident the algorithm is that
the patient’s membrane is active. The clinician,
however, feels the membrane is not necessarily
active and is unsure how to proceed, especially as
the patient had a severe adverse event from an
injection in the other eye and does not want to be
treated unless absolutely necessary.

The first thing to note is that although the
81% figure is one that is easy for the clinician to
grasp, it only represents the developed algo-
rithm’s estimate. We know, however, that more
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pertinent information for our clinician would
be the accuracy of this prediction based upon its
subsequent performance in independent trials
with patients in a clinical setting.

In these clinical trials the output of such an
algorithm should be tested against a gold stan-
dard; in this case the best possible human
expert decision, which involves using all avail-
able data on whether the OCT image was indeed
one of an active membrane or not. This then
becomes a comparison of the output probabili-
ties from the algorithm with a gold standard
binary classification of active or inactive. To
allow for this comparison, the clinical trial
investigator could choose a threshold for the
output probability above which the prediction
is considered to be for an active membrane and
below which it is considered inactive. For
example, if the threshold applied to the algo-
rithm’s output is 50%, then if the algorithm
determines a 50% or greater probability of an
active membrane, its classification is given as
‘active’. Depending on which threshold is cho-
sen, the performance of the algorithm measured
in clinical studies against the gold standard
classification will naturally change. For exam-
ple, by choosing a high threshold for mem-
branes to be thought of as active the specificity
of detection would increase. The sensitivity,
however, will also become lower as some of the
patients with active membranes would not be
detected by such a high threshold. The sensi-
tivity is also known as the true positive rate
(TPR), and specificity is related to the false
positive rate (FPR = 1 — specificity). In order to
show the full range of the algorithm’s ability, a
research paper will often visually show how the
TPR changes with the FPR as we change the
cutoff threshold at which we define a ‘posi-
tive’—in this case an active membrane. This is
typically done in the form of a plot of a receiver-
operator-characteristic (ROC) curve [17]. The
ROC curve provides a summary assessment of
the overall predictive performance of the algo-
rithm, typically quantified through reporting
the area under that ROC curve, i.e. the area-
under-the-curve (AUC or AUROC) statistic. Less
common, but related and perhaps more useful,
is a plot of the precision-recall curve [18, 19].
Figure 1 shows the ROC curve for a data set of

1000 algorithm predictions against actual trial
results that is consistent with the algorithm
from our example. We see two potential
threshold locations highlighted, and for each
location we have added to the curve the crucial
data of results from comparing actual clinical
findings in the trial to the 1000 test-set predic-
tions, if that threshold was reached. The data at
each location are displayed in a matrix, known
as a confusion matrix; in this case it compares
the gold standard actual outcomes for an OCT
to the clinical trial results for the algorithm’s
prediction for those same OCTs and when that
threshold is applied.

For our example in the clinic, the algorithm
gave an output probability of 81%. The actual
confusion matrix for the surpassed threshold of
80% is shown in Fig. 2 and represents the clin-
ical trial comparisons and, therefore, most clo-
sely the actual values we might expect in the
scenario for our clinician and their patient. The
numbers in this matrix show that with this
threshold the algorithm’s classifications in the
clinical trial have an overall accuracy of 85%,
which is the proportion represented by the
diagonal elements in the confusion matrix.

This overall accuracy figure is reassuring to
our clinician. However, even this figure of
accuracy with a threshold appropriate to their
patient can be misleading. The overall preva-
lence of active membranes in this population is
low, and so even a naive algorithm that always
predicted an inactive membrane would achieve
a high degree of accuracy. What is more rele-
vant to the Al-aware clinician using the algo-
rithm in their practice is specifically how likely
is their patient to have an active membrane
given the algorithm has estimated an active
membrane probability higher than the 80%
threshold—what is called the positive predictive
value (PPV; also called precision). From the
right-hand column in Fig. 2 we see that with the
confusion matrix at the cutoff threshold of
80%, when the algorithm predicts an active
membrane its accuracy is actually 108/
(108 + 58) = 65%; thus, with the application of
the 80% cutoff, 65% of predicted active mem-
branes actually turned out to be active in the
sample of 1000 patients in the clinical trial. Its
estimated PPV is therefore 65%. This figure of
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Fig. 1 Example receiver-operator-characteristic curve for
test data that are consistent with the algorithm being used
by our clinician in the example. Two different thresholds,
or cutoffs, are highlighted. At each, we display the resultant

Predicted
Inactive Active
Inactive 742 58
Actual
Active 92 108

Fig. 2 Test-set confusion matrix for our artificial intelli-
gence algorithm taken at a threshold of 80%. The overall
accuracy in the test set is total correct predictions/total
predictions. In this case, the total accuracy is (742 + 108)/
1000 = 85%

65% is the closest yet described to one the
clinician should use to judge the validity of the
Al algorithm’s prediction for their patient—and

0.50 0.75 1.00
FPR
data in a confusion matrix. The 80% (0.8) threshold cutoff
provides the closest appropriate data relevant for the

output of the algorithm used in our clinical scenario. FPR
False positive rate, TPR true positive rate

is somewhat different to that which was first
presented.

Although this is a hypothetical scenario, it
demonstrates the variety of statistics that might
be used to present algorithm validity and how
they can easily be misinterpreted. Although a
plot of the ROC curve or precision-recall curve
is an excellent overall indicator of an algo-
rithm’s performance that is very appropriate for
publications validating algorithms, it still does
not allow the clinican, in a clinical setting, to
determine the PPV for their specific patient.
Even the PPV has deficiencies, and other refined
indicators may become commonplace, but the
importance of understanding the principles of
these statistics is illustrated here with a final
most appropriate value that is very different
from the one first presented.
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Understanding the Compatibility of the Al
Algorithm with Current Clinical Scenario

Even when we have a clinically approved algo-
rithm and can confirm its highly impressive
predictive value with reference to our clinical
problem, this may still not be enough to war-
rant a clinician deploying or deferring to its
decision-making. As an overarching principle, it
is well recognised that Al algorithms are limited
by the data they are trained on. As such, if the
current clinical scenario is different from the
situation for which the algorithm was originally
trained, then the algorithm will not achieve the
reported level of predictive accuracy. Conse-
quently, the clinician needs to ensure the cur-
rent context corresponds with that of the
algorithm training and testing process.

At a basic machine level, for example, when
using an algorithm that interprets colour fun-
dus images it would be important to know the
technical quality of the fundus camera and
what the mix was of patients that the algorithm
was trained on. If a clinician is seeing an Asian
patient with a much higher quality resolution
image then they should be less likely to com-
pletely rely on a computer algorithm that was
trained on white patients with lower quality
images and may wish to give greater credence to
human expert opinion. This example highlights
that successful use of an Al algorithm for diag-
nostic purposes requires the identification of
any material contextual differences between the
algorithm’s training population and the current
clinical scenario. Any differences need to be
accounted for by the human interpreting the
algorithmic output into a clinical decision.

Understanding How Al and Clinician
Diagnoses may be Combined

When an algorithm has been robustly devel-
oped and shown to have excellent outcomes
with similar populations and characteristics to
those in your specific workplace, the decision
may be made to deploy it in this clinical work-
place. At the heart of the public and media
fervor on the future roles of Al algorithms are
claims that they are markedly more accurate

than clinicians in making a diagnosis. However,
a recent meta-analysis from Nagendran et al.
[20] suggests that the reported evidence for the
superiority of deep-learning systems over clini-
cians is not clear-cut, primarily due to a lack of
well-designed prospective trials.

Furthermore, even if headline figures suggest
equality in trials comparing human against
machine decision-making, it should be borne in
mind that mistakes that are made by humans
may be very different from those made by Al
systems, with the latter having no backing of
general intelligence and therefore having the
potential to result in more devastating conse-
quences [21, 22]. For example, if we take a
hypothetical scenario of an algorithm screening
patients for exudative age-related macular
degeneration (AMD) to decide if they should
have a hospital visit, we could find that only
one error out of 100 occurred for the algorithm
and one error out of 100 occurred for a human
expert, suggesting that they are equal in terms
of screening for AMD. However, in this scenario
the algorithm followed its specific training, and
its single error was in defining a patient who
had a very large and obvious melanoma in the
periphery of imaging as not needing medical
care—a condition which even a junior clinician
would have easily detected. This melanoma was
not in its learning database and was missed
repeatedly as it grew as there is no automatic
common-sense check in Al. Conversely, the
human error was in missing a small area of
paracentral subretinal fluid which at the next
visit of the patient had grown in size until it was
more visible and easily noted. Clearly, errors
made by systems without general intelligence
have the potential to be of different conse-
quential importance to those by humans [21].
Equal sensitivity and specificity do not tell the
whole story, and workflows may need to have
human checks in place for such eventualities.

Finally, it has been reported that even when
algorithms appear to show superiority in formal
statistical testing, combining human and algo-
rithmic decisions can improve results beyond
those achieved by either system alone [23-25].

There is therefore a need, for all of these
reasons, to understand how to combine the
diagnosis made by the AI algorithm and the

A\ Adis



Ophthalmol Ther (2022) 11:69-80

75

clinician into a consensus. But what is the best
practice for doing this?

Mathematically combining predictions from
multiple algorithms to improve overall accuracy
is standard practice within the machine learn-
ing field [26] and is variously referred to as
‘classifier combination’, ‘classifier fusion’, ‘de-
cision fusion’, ‘mixture of experts’ or ‘ensemble
learning’. This can be a complex task, for which
heuristic approaches exist [27], as well as more
principled Bayesian approaches [28, 29]. Most
methods require the measurement of the pre-
dictive accuracy of the individual algorithms to
determine appropriate weights when combin-
ing the predictions. The assessment of the cor-
relation between the output of the different
algorithms may also be required: consider if we
had two algorithms whose predictions are per-
fectly correlated, i.e. identical, one of the algo-
rithms would be redundant as it provides no
new information to us.

To apply such techniques to derive a con-
sensus of the Al algorithm and clinician would
then require quantifying the historical diag-
nostic accuracy of the clinician—and impor-
tantly—evaluated on the same patient samples
on which the Al algorithm was evaluated. In the
longer term, such a combination of Al and
clinician expertise may be possible, guided by
software that has already accessed the historical
audit information on clinician diagnostic
accuracy or taken the clinician through an
appropriate calibration process as part of the
setup of the new diagnostic tool. However, the
difficulty of obtaining Al versus clinician com-
parisons on the same samples makes it unlikely
that such a combination of Al and clinician
diagnoses will be routine in clinical settings
anytime soon, and clinicians will need to learn
how incorporate in a non-mathematical way
the prediction of an Al system—or even possibly
reject it.

As an example, a clinician reviews the OCT
scan of a patient with AMD and feels that
although the condition is largely stable, there
are some discrete choroidal signs that have been
shown in literature to indicate inactive disease.
A machine learning system known to use the
appropriate and relevant learning input data is
then applied, and after processing the patient’s

OCT the AI system states that the wet AMD is
actually active, with 90% probability and with a
PPV also of 90%—i.e. it disagrees with the
clinician’s diagnosis. The clinician is not sure
and estimates their human clinician level of
certainty just above 50:50. Superficially, it
appears that the Al algorithm is highly likely to
be correct. How should the clinician proceed?

To fully optimise the power of Al, clinicians
should demand systems that feature explainable
Al [30]. Due to significant work in the Al field
on this, most image-based Al prediction algo-
rithms will be capable of attaching to each pixel
a numerical measure of how that pixel con-
tributed to the algorithm’s prediction through
so-called saliency maps [31, 32]. From this the
clinician can see whether the algorithm is bas-
ing its prediction upon the same areas of the
OCT as they are. Despite processing the same
input data, the AI algorithm and clinician may
still be using different features to make their
diagnoses.

In our clinical example above, the clinician
may become aware of basing the diagnosis on a
relatively small area of the OCT that can be
indicative of inactive disease but with no
appreciation of other discrete and faint areas
that the highlighted pixels have now demon-
strated. This information helps the clinician to
decide on a management plan.

Rather than the clinician attempting some
form of mathematical computation or disre-
garding the Al algorithm in cases of disagree-
ment, the preferred pathway is therefore likely
to be close examination of the explainable Al
data and, combined with knowledge of the Al
training and development, to make an empiri-
cal judgment on the algorithm. It may be as
simple as noting that clearly artefactual data
were used in the algorithmic decision to over-
rule it. Alternatively, it may reveal, such as in
our example, that areas of the OCT that the
human physician had not seen contain useful
information, thereby validating the algorithm
decision over the initial human one and reas-
suring the physician of the decision to follow
the algorithm. This important step of chal-
lenging Al decisions using explainability would
likely rely on the human making decisions
before seeing the decision of the Al system to
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avoid a gradual complacency of aligning with
the view of the computer without independent
human thought. Clearly this attribute of
explainability should be sought out in any
clinically available systems of the future.

CULTIVATING HUMAN SKILLS
THAT EXCEED Al

In the preceding section we have explored how
humans should adapt in order to be able to
incorporate Al decisions into their clinical work
streams. We now address the importance of
humans in their own right. Where are the
abilities of humans likely to continue to be
greater than those of computers?

Firstly, we address the need for humans in
the incorporation of Al predictions into the
wider clinical management strategy. In the
preceding sections we discussed issues around
understanding the utility of Al-based analyses
applied to discrete clinical data, such as images,
and combining these assessments with clinician
assessments of the same data. However, physi-
cians’ patient management strategies often
need to incorporate more information than that
derived from structured planned history,
examination and investigations. We clinicians
must also consider more vague concepts, such
as the patient’s willingness and tolerance of
treatment, preference or insistence on seeing
particular physicians, reliability of future
attendances, convenience for timing of treat-
ment, general discomfort and faith in the
treatment and service. Only with knowledge of
such human factors are clinicians able to bal-
ance the holistic impact of their treatment
decisions—the decision-making process then
involves the integration of all these pieces of
information, with the clinician ultimately
making trade-offs to identify the optimal course
of action for the patient. In principle, calculat-
ing the optimal trade-offs could be performed
by another algorithm, provided all risks and
benefits have been suitably quantified . In real-
ity, however, a patient may only give vague
qualitative statements about their views on
treatment or even only non-verbal cues, and it
would still require a clinician to translate the

consultation dialogue and behaviour into a
quantitative point on a scale for each of the
many factors. Then, other considerations out-
side of those programmed for could arise, such
as local travel problems. Overall, there are
multiple points during this process where the
clinician’s expertise is needed, and the nuances
of the various trade-offs mean that decisions
around whether and how to treat are likely to be
always better made by a human clinician.

For example, a patient with diabetic
retinopathy attends clinic in the early stages of
a viral pandemic. The hospital cancelled the
patient’s last appointment, and staffing levels
are low. The patient admits to poor glucose
control. The patient is also a carer and must
leave their partner to attend clinics. An algo-
rithm suggests the likelihood of the retinopathy
being proliferative is low at this visit, recom-
mending a review in 4 months. However, the
retinopathy is still very severe and worsening.
You have access to the laser today and the
patient seems willing. Do you proceed to laser,
or just to review? If you proceed to the laser
treatment, you may be overtreating according
to the algorithm and possibly cause unnecessary
retinal damage. However, you may decide to
perform the laser treatment anyway because if
the patient fails to make the next appointment
and develops neovascular complications the
consequences could be devastating and so
overall it may be the safer option.

The discussion here is not about the details
of the AI algorithm, its accuracy, nor the
nuances in how to interpret its output. Instead,
the discussion is about the decision to treat, the
wider inputs to that decision and the various
prognoses with their upsides and downsides.
The AI algorithm that predicts exclusively the
probability of proliferative retinopathy is only a
small part of this wider decision and should be
recognised as such. Decision-making in
nuanced and highly variable situations is pre-
cisely the sort of thing humans excel at whilst
algorithms struggle with [33], reinforcing an
ongoing need for humans to ensure they
maintain and nurture their broad clinical skills.
Humans should therefore be reminded of the
importance of taking the Al algorithms as a
report only on the very precise clinical question
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posed to the algorithm. Physicians must use this
report together with all the additional infor-
mation they have on the patient’s overall
external clinical factors to make a final clinical
decision, which may or may not follow the
algorithmic advice.

In our final segment on how we as humans
must learn to assimilate and interact with the
tools that Al provides us, we turn appropriately
to a discussion of the importance of further
nurturing of those characteristics that make us
distinct as humans. We must further remember
that even if extremely accurate and appropriate
information is available from a computer ter-
minal, patients will often prefer to hear it from a
clinician. The patient may be anxious and need
to hear the voice of a confident and respected
individual to convey what may be alien infor-
mation. They must hear this from an empathic
and knowledgeable voice they feel they can
trust. As we discussed in preceding sections, Al
decisions may not necessarily be followed by
the practicing human clinician, any such devi-
ations from computer recommendations would
need to be understood by the clinicians and
duly explained.

Once the information is conveyed, the
patient will very likely have questions, and
these may or may not be about the algorithm.
Explainable Al may theoretically allow less well-
trained individuals to provide some informa-
tion on how the algorithm arrived at its con-
clusions but is unlikely to be appropriate for
many questions, such as how the disease will
affect detailed aspects of the patients’ specific
lives. If Al can be used to effectively enhance
and speed up some aspects of consultations,
then we should take the opportunity to
enhance these other aspects of communication
with patients to improve their overall experi-
ence and well-being.

Finally, there is a more general argument
over patients’ overall acceptability to have
machines making decisions, a concept that has
been wrestled with in the context of automated
cars [34]. As well as the general principle of
important decisions being made by machines,
we have become accustomed to seeking apolo-
gies, explanations, retribution or forgiveness
when humans are responsible for errors.

However, machines also have a level of fallibil-
ity. Patients may not accept these without the
intervention of a responsible individual, and
there is some evidence of people favouring
human judgment in inherently uncertain
domains such as in medicine [35].

In this section we have detailed the human
skills that are superior to those derived from
machine learning and highlighted how impor-
tant these will be. They are also skills that have
become somewhat degraded over time as clini-
cian—-patient time has become gradually eroded
by economic pressures in all fields of medicine.
These economic pressures may well impact the
use of Al systems merely to speed up and auto-
mate patient care so that greater numbers of
patients can be seen without compromising
safety and at reduced cost. It is our opinion,
however, that at least part of the time savings
should be reinvested in resurrecting greater
amounts of patient-physician time to realise
the full potential of Al in the workplace. In an
ideal future world, tasks can be delegated such
that some of the more automated ones of image
screening can be done by machines, leaving
more time for human-human interaction in the
explaining and nuanced decision-making tai-
lored to the individual patient needs.

CONCLUSIONS

Medical science in general and ophthalmology
in particular have been blessed in recent years
with transformative technologies such as OCT
imaging that have improved diagnosis and the
management of patients. These technologies
have typically required an ongoing process to
educate and update clinicians, for example with
training on OCT and interpretation of OCT
angiography.

Inevitably Al algorithms in future clinical
use will similarly emerge with their own indi-
vidualised instructions for correct use. However,
there are more fundamental principles and
mindsets that will apply more generally to the
use of all Al systems in modern clinical practice.
This paper demonstrates how, just as with other
revolutionary technologies, there are several
distinct principles of Al algorithm use that
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clinicians must be educated on to ensure correct
use to improve patient care. We have examined
these principles and explained the potential
pitfalls if these principles are not understood.

With the increasing complexity and perva-
siveness of Al, this knowledge will become a
crucial foundational requirement for clinicians
of the future. Indeed, a recent study suggests
there is already an appetite among clinicians to
understand more than just the cursory details of
the Al systems they use [36].

It should be clear from this article that Al will
not replace clinicians—rather, it will augment
aspects of their work. Certainly, there are—at
least in the short term—also significant non-
technical barriers to the widespread adoption of
Al into healthcare systems [37]. In the longer
term, clinicians willneed to learn to interact
with Al systems. However, it should also be
remembered that as Al hopefully frees up clin-
icians’ time, there will be an increasing need for
clinicians to focus on tasks requiring empathy
and communication, and also for higher-level
tasks, such as the complex integration of mul-
tiple pieces of nuanced clinical information.

It is our hope that Al will indeed allow use of
machines to do what they do well whilst at least
to some extent freeing up humans for more
time to do what we do well.

In paraphrasing a much-used expression, Al
will not replace clinicians, but clinicians who
understand Al and the principles outlined in
this paper will perhaps replace those who do
not.
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