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ABSTRACT

The prevalence of chronic fundus diseases is
increasing with the aging of the general popu-
lation. The treatment of these intraocular dis-
eases relies on invasive drug delivery because of
the globular structure and multiple barriers of
the eye. Frequent intraocular injections bring
heavy burdens to the medical care system and
patients. The use of topical drugs to treat retinal
diseases has always been an attractive solution.
The fast development of new materials and
technologies brings the possibility to develop
innovative topical formulations. This article
reviews anatomical and physiological barriers of
the eye which affect the bioavailability of topi-
cal drugs. In addition, we summarize innovative
topical formulations which enhance the per-
meability of drugs through the ocular surface
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and/or extend the drug retention time in the
eye. This article also reviews the differences of
eyes between different laboratory animals to
address the translational challenges of preclini-
cal models. The fast development of in vitro eye
models may provide more tools to increase the
clinical translationality of topical formulations
for intraocular diseases. Clinical successes of
topical formulations rely on continuous and
collaborative  efforts  between  different
disciplines.
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Key Summary Points

Increasing life expectancy is accompanied
by more age-related and chronic posterior
eye diseases, which require long-term
intervention.

Topical eye drugs must overcome various
cellular and liquid barriers to effectively
enter the retina from the ocular surface.

Novel topical drugs with innovative
formulations have shown encouraging
results in improving their permeability
and retention time. These formulations
include nanospheres, nanocapsules,
nanomicelles, nanovesicles, dendrimers,
in situ gels, and microneedles.

The rapid and successful clinical
translation of novel topical drugs relies on
a thorough understanding of the
significance and limitations of preclinical
models. The emerging in vitro models
may provide some valuable information
beyond animal models.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14791566.

INTRODUCTION

With the improvement of the quality of life and
average life expectancy, ophthalmologists are
facing more challenging diseases caused by
internal factors, such as age-related degenera-
tive diseases, metabolic diseases, and systemic
immune diseases [1]. Current effective drugs for
intraocular diseases largely require invasive
drug delivery. Frequent intraocular operations
bring heavy burdens on the medical care system

and increase the risk of intraocular hemorrhage
or infection [2, 3]. Patients may also be dis-
couraged by the frequent treatment regimen
and have compromised compliance for the
long-term therapy [4]. Thus, the development
of less invasive ocular formulations has become
a great need for patients with chronic and
vision-threatening fundus diseases. Moreover,
more drugs with neuroprotection functions
may have beneficial effects on ocular disorders
if they can be effectively delivered to the fundus
[S].

Topical drugs, which are the most widely
applied ocular formulations, have been recently
explored as possible tools for the treatment of
fundus diseases [6]. However, as a result of the
structural and physiological barriers of the eye-
ball, this convenient drug administration
method generally can not effectively deliver
drug molecules to the back of the eye. There
have been extensive explorations to enhance
the delivery efficiency of topical formulations
[7-9]. Currently, only a few topical formula-
tions to target the posterior segment are in
clinical development, including a dexametha-
sone in cyclodextrin microparticle formulation
for the treatment of diabetic macular edema
(DME) (phase II/III) [10], difluprednate emul-
sion for the treatment of DME (off-label use)
[11], Aganirsen emulsion for the treatment of
ischemic central retinal vein occlusion
(phase II/IIT) [12], and OCS-01 in a soluble
nanoparticle formulation for the treatment of
DME (phaseIll) [13, 14]. However, in recent
years, the emerging science of new materials has
brought possibilities for generating many novel
topical drug formulations, which receive
increasing attention in preclinical studies.

This review summarizes the features of ocu-
lar barriers that prevent topical drugs from
entering and staying in the eye and the inno-
vative approaches that overcome these barriers
to deliver drug molecules to intraocular targets.
In addition, some key parameters of laboratory
animal and human eyes are reviewed, as they
are factors that can influence the preclinical to
clinical translation of novel formulations. The
purpose of this article is to share ophthalmol-
ogy knowledge, promote multidisciplinary
cooperation, accelerate the clinical translation
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of noninvasive ocular drug delivery, and ulti-
mately bring benefits to patients with chronic
fundus diseases.

OCULAR BARRIERS THAT LIMIT
THE BIOAVAILABILITY OF TOPICAL
DRUGS

Drugs applied topically to the ocular surface can
theoretically reach the intraocular tissues via
three pathways: (1) penetrate through the cor-
nea, aqueous humor, and vitreous body; (2)
penetrate through conjunctiva and sclera to
reach the choroid, and then reach the aqueous,
vitreous, or retina; (3) enter the systemic circu-
lation and reach the retina via retinal vascula-
tures. The first two routes play dominant roles
in the intraocular distribution of topical drugs
[15, 16]. In reality, however, most of the drug
molecules cannot effectively reach the fundus
through these routes. Multiple static and

dynamic barriers restrict the penetration and
retention of drugs (Fig. 1).

Running Tear Film Constantly Washes
Away Drugs from the Ocular Surface

The front surface of the eye is the tear film. This
liquid surface looks like a slow-moving “water-
fall”, which continuously moves downwards,
and drains into the nasolacrimal duct and the
nasal cavity [17]. The film has a unique three-
layered structure. The surface lipid layer pro-
duced by the meibomian gland can prevent the
evaporation of the liquid. The water in the
middle serves as a lubricant and the inner
mucous layer secreted mainly by the conjunc-
tival and corneal epithelium can keep the tear
film closely attached to the ocular surface. The
tear film, as the first encountered barrier of
topical drugs, plays a predominant role in the
dilution and excretion of drugs. The turnover
rate of tear film under normal conditions is
approximately 15%/min in humans [18].

/ Tear turnover In-situ gel, cationic modification, viscous vehicle

—— Corneal barrier

Nanoparticles, Cell-penetrating peptides,
iontophoresis, microneedles

— Aqueous drainage Melanin-binding prodrugs

— Vitreous reservoir Anionic modification (faster distribution), nanoparticle

Fig. 1 Schematic drawing of ocular drug barriers and common ways and formulations to bypass these barriers
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However, after the instillation of eye drops, the
tear turnover rate instantly increases and most
of the eye drops are lost to drainage in 15-30's
after application [19]. Thus, drugs administered
as conventional eye drops have very short
retention time on the ocular surface [20, 21],
and a very limited amount (less than 5%) of the
drug molecules can penetrate into the eye [22].
The vast majority of drained drugs, however,
can be reabsorbed by the nasal mucous mem-
brane and are responsible for their systemic side
effects [23].

One of the key principles of designing topi-
cal drugs is to avoid excessive tearing and
extend the preocular retention time. To avoid
irritation and further stimulation of lacrima-
tion, topical formulations usually need to have
the correct pH and osmolality. The ideal pH is
close to the tear physiological pH of 7.4, but
pH 4.0-8.0 appears tolerable for human eyes
[24]. The viscosity of eye drops is also a critical
factor that can influence the speed of drainage
[25], and adding viscous molecules is a common
approach to increase the retention time of
topical drugs, often with hydrophilic polymer
polyvinyl alcohol, poloxamer, hyaluronic acid,
carbomer, or cellulose [26]. However, high vis-
cosity may disturb vision and become incon-
venient when accurate vision is needed [27]. In
addition, the proteins in the tear may bind to
drugs and restrict their penetration. In particu-
lar, under inflammatory conditions, the tear
protein increases which can lead to a more
pronounced decrease in drug bioavailability
[28]. In recent innovative formulations, other
approaches have been tested, such as increasing
the affinity of drugs to corneal cells or enhanc-
ing endocytosis, as summarized in the following
text.

Cornea and Sclera Block the Penetration
of Drugs into the Eye

The cornea and sclera are the rate-limiting bar-
riers that block the penetration of drugs into
intraocular tissues. In general, the cornea is the
major route for the entry of topical lipophilic
drugs, and the sclera is more permeable for
hydrophilic molecules and proteins [29].

Different layers of the cornea have different
barrier capacity and hydrophilicity [30]. The
corneal epithelium in humans is composed of
6-7 layers of epithelial cells connected by tight
junctions. This layer serves as a lipophilic bar-
rier that restricts most hydrophilic drugs and
molecules larger than 5 kDa from entering the
eye [31, 32]. Corneal stroma and endothelium
are more effective at limiting the penetration of
small lipophilic drugs [33, 34]. However, com-
pared with the epithelial barrier, the corneal
stroma and endothelium are much less effective
in blocking the drug molecules [35]. Thus,
approaches to target the cornea barrier mainly
focus on the enhancement of paracellular or
transcellular uptake of drug molecules through
the lipophilic corneal epithelium. Surface
modification with cationic molecules (such as
chitosan) is a common approach to enhance the
corneal permeability and extend the retention
time as the cornea is negatively charged
[36, 37]. In addition, multiple types of
nanoparticles and the newly explored extracel-
lular vesicles demonstrate improved transcellu-
lar uptake by corneal epithelium owing to their
structural similarity to cell membranes and high
affinity, which is discussed in more detail in
“Innovations  That Increase Intraocular
Bioavailability of Topical Drugs” [38].

The sclera has a similar fibrous structure as
the corneal stroma but is vascularized and cov-
ered by the loose fibrous layer of the conjunc-
tiva. The sclera and conjunctiva have relatively
higher drug permeability than the cornea and
therefore are explored as alternative routes of
topical drug delivery [30, 39]. However, far
more drug molecules are absorbed by conjunc-
tival circulation compared with those pene-
trated into the aqueous humor. This may
explain the disproportional change between
intraocular drug bioavailability and drug per-
meability across these barriers [40].

Running Aqueous Humor Continuously
Removes Intraocular Drugs

Behind the cornea is the anterior chamber,
which is filled with approximately 200 ul of
aqueous humor in humans [41]. The liquid has
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similar compositions to plasma except for a
lower protein concentration [42]. The aqueous
humor is constantly generated by the ciliary
body and flows through the pupil into the
anterior chamber and drains into the venous
circulation at the anterior chamber angle. The
turnover rate of human aqueous humor is
1.0-1.5%/min [41], with variation between
daytime (about 2 pl/min) and nighttime (about
1 pl/min) [43]. The drug molecules that pass
through the ocular surface are first diluted in
the aqueous humor and subsequently drained
into the systemic circulation with aqueous
humor outflow [44]. For drugs targeting the
posterior eye, modification of drugs with sur-
face molecules to enhance the binding with
melanin to the uveal tract is a possible approach
to resist excretion by aqueous drainage [45].

Vitreous Body Dilutes Intraocular Drugs

The vitreous body is the largest tissue in the eye
with a total volume of around 5-6 ml in adult
humans [46, 47]. This gel-like organ is mainly
composed of water (98%) with a density of
1.0053-1.0089 g/cm?® [48, 49] and contains gly-
cosaminoglycans and typelIl collagen which
form a complex network with an average pore
size of 550 nm [50]. There are very limited
phagocytes and hyaluronic cells to maintain
low activities in this gelatinous tissue [51, 52].
As a result of its large volume and static
physiology, drugs in the vitreous body are rel-
atively stable. Topical drugs have to diffuse
across this large static pool to reach the fundus,
and the vitreous has distinct barrier functions
depending on the properties of the drugs. Small
drug molecules can move freely by passive dif-
fusion [53]. As the vitreous network is also
negatively charged, drug molecules with nega-
tive charges move faster, while drug molecules
with positive charges move much more slowly
and therefore have a relatively longer retention
time [50, 54]. Although the vitreous is highly
viscous, the diffusivity of many small and
anionic large molecules is even higher than in
water [55, 56]. Thus, for faster drug distribution
to the fundus, modification with negative
charges is preferred. The drug molecules can get

eliminated either by diffusion to the reti-
na/choroid (posterior approach) or the aqueous
humor (anterior approach) [57]. As the reticular
structure of vitreous collagens restricts the
movement of large molecules, large molecular
drugs generally have a long intravitreal half-life.
Antibodies like ranibizumab and bevacizumab
have a half-life in the vitreous of 3-7 days, while
the small molecular drug ganciclovir has a half-
life of less than 24 h [58-60]. In addition, the
vitreous body contains a low level of enzymes
and proteinases which can lead to the degra-
dation and inactivation of drugs [61, 62]. Thus,
protection with nanoparticles may extend the
drug effect time and is a preferred choice for the
treatment of chronic diseases. As for transla-
tional considerations, the vitreous volume is
very different between laboratory animals and
humans as discussed in “Preclinical Models and
Their Impacts on Translation of Novel Topical
Formulations”. One should be very careful
when comparing the drug retention time in the
vitreous between animals and humans [63].

In short, various ocular barriers, which either
mechanically prevent drug molecules from
entering the eye or continuously eliminate
drugs within the eye, prevent topical drugs from
reaching sufficient concentration in the
intraocular tissues. This limitation becomes a
bottleneck for topical drugs in the treatment of
fundus diseases. The fast development of
material sciences and technologies promotes
the innovations of topical drug delivery and
addresses the ocular barriers by different means.
Recent results demonstrate the potential of
different innovations in topical drug delivery
for intraocular diseases.

INNOVATIONS THAT INCREASE
INTRAOCULAR BIOAVAILABILITY
OF TOPICAL DRUGS

As described above, various barriers prevent
drugs from entering from the ocular surface and
staying in the eye. Many new materials and
technologies have been developed to overcome
these obstacles (Fig. 1). Most of the explorations
are still in the preclinical phases, but the results
support their potential applications for clinical
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use. The following sections summarize the cur-
rent progress of topical drug carriers for poste-
rior delivery.

Nanotechnology-Based Formulations

Nanotechnology studies nano-sized materials
from 1 to 100 nm and nanomedicine uses these
particles for pharmaceutical and diagnostic
purposes [64]. To date, about 50 nanomedical
products have been approved by the US Food
and Drug Administration (FDA), and more are
in the preclinical and clinical phases [65]. In the
field of ophthalmology, nanoparticles are also
being explored as topical drug delivery tools
(Table 1). In this section, we summarize the
best-studied nanomedicines as topical ocular
drug carriers.

Nanovesicles (Liposomes and Niosomes)
Nanovesicles are composed of a bilayered shell
and a central core. The shell structure is similar
to that of the cell membrane, which is com-
posed of a double-layered amphiphilic mem-
brane with hydrophobic tails facing inward and
hydrophilic heads facing outward (Table 1).
Owing to their high biocompatibility,
nanovesicles have been tested as drug carriers to
assist drug molecules through the corneal
epithelial barriers [66, 67]. The unique structure
of nanovesicles allows them to carry either
hydrophobic drugs between the hydrophobic
space of bilayered shells or hydrophilic drugs
and large biomolecules in the aqueous core [68].
On the basis of the compositions of shells,
nanovesicles are divided into liposomes and
niosomes [67, 69].

Liposomes are made of natural amphiphilic
lipid molecules, such as phosphatidylcholine,
phosphatidylethanolamine, and so on. Liposo-
mal formulations of topical drugs have
demonstrated promising results in improving
both drug permeability and release time. A tri-
amcinolone acetonide liposome eye drop could
reach the aqueous humor and retinal surface
within 6-10 min after instillation and amelio-
rated retinal edema in a rat model [70]. In
addition, surface modification of bevacizumab-
loaded liposomes with annexin A5 was found to

enhance the uptake and transcytosis of corneal
epithelium. Topical application of this new
formulation of bevacizumab could deliver
therapeutic concentrations of the drug to the
rat and rabbit retina [71].

Niosomes are made of nonionic surfactants.
As the surfactants are neutrally charged, nio-
somes are less susceptible to oxidative degrada-
tion and therefore have longer shelf lives than
liposomes [68, 72]. As with liposomes, niosomes
have similar structures to the cell membrane
and can reduce direct irritation of encapsulated
drugs to the ocular surface [73]. A niosome
formulation of doxycycline hyclate could
release the drug component for up to 2 months
in an in vitro system [74]. Pilocarpine
hydrochloride niosome dispersed in gel formu-
lation demonstrated better stability and drug
release time in albino rabbits [75].

Although these preclinical studies have
shown encouraging results, few such formula-
tions have been developed into clinical use yet.
Challenges include inadequate data on phar-
macological properties to illuminate the impact
of different drug-surfactant ratios, the relative
amount of additives (cholesterol), vesicle size,
surface charge, and surface modifications
[76, 77]. The poor stability and easy aggregation
are potential issues, especially for large-scale
production and long-term storage [78]. Some
evidence suggests that liposomes may trigger
certain innate immune reactions by activating
the complement system [79]. A type of reaction
called “complement activation-related pseudo-
allergy” has been reported in 25-45% of
patients receiving intravenous liposomal drugs
[80-82]. However, ocular toxicity associated
with liposomes has not been reported up to
now, presumably owing to the immune-privi-
leged state of ocular tissues [83-85]. More basic
and preclinical research will help to move for-
ward their success for clinical use.

Nanomicelles

Nanomicelles are nano-sized spheres with a
hydrophilic shell and a hydrophobic core
(Table 1). The shell is formed of well-oriented
surfactants and polymers, with hydrophilic
heads facing outward and hydrophobic tails
facing inside. Therefore, nanomicelles are
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efficient carriers of hydrophobic drugs within
their core space, such as dexamethasone,
cyclosporine A, tacrolimus, rapamycin, etc.
[86]. Nanomicelles demonstrate improved
transcorneal permeability by increasing the
contact time with corneal epithelial cells and
inhibiting efflux pumps [87-90].

Eye drop formulations of nanomicelles have
been tested for the treatment of retinal and
choroidal diseases in animal models. A flur-
biprofen nanomicelle eye drop had a tenfold
increase of drug concentration in the aqueous
humor compared with conventional eye drops
[91]. A cyclosporine nanomicelle eye drop effi-
ciently delivered the drug to the fundus of
albino rabbits. The drug concentration in the
retina and choroid was above the calculated
therapeutic level [92]. Some concerns with the
formulation have been discussed, such as the
dilution effect of the tear film on the release
kinetics of the drug and the potential toxic
effect of nanomicelle polymers on retinal and
choroidal cells [90, 93].

A successful product of nanomicelles for-
mulation is Cequa® by Sun Pharma. This FDA-
approved nanomicelle eye drop carries
cyclosporine A (0.09%) and is developed for the
treatment of keratoconjunctivitis sicca. It
showed a tenfold increase of cyclosporine A in
the aqueous humor compared with conven-
tional cyclosporine A solutions [94]. However,
currently no topical nanomicelle formulation
has been approved for the treatment of fundus
diseases.

Nanospheres and Nanocapsules
Nanospheres and nanocapsules are polymeric
particles with spherical shapes and diameters of
10-200 nm. Nanospheres carry drug molecules
in the polymer matrix, and nanocapsules in the
core (Table1) [95, 96]. Nanospheres and
nanocapsules are highly versatile and efficient.
They can carry various drug molecules, from
hydrophilic and hydrophobic molecules, pep-
tides, proteins to genetic materials, by different
means, either linked, entrapped, dissolved, or
dispersed within the matrix/core [66, 97].

The polymeric nanoparticles can modify the
activity of drugs by altering the physicochemi-
cal properties of the formulations, delay and

control the drug release, and increase the drug
adhesivity to the ocular surface [98]. These
nanoparticles can be taken up by cells via
endocytosis or pinocytosis and therefore assist
drugs moving through ocular barriers and thus
improve drug bioavailability [99-101]. Preclini-
cal experiments have demonstrated that these
polymeric particles could deliver topical drugs
into the intraocular tissues. In a rabbit retinal
degeneration model, melatonin delivered in
topical ethylcellulose nanocapsule formulation
demonstrated improved transcorneal perme-
ability and neuroprotection effects [102]. Acy-
clovir nanosphere eye drop showed a sustained
drug release curve and an increased drug con-
centration in rabbit aqueous humor. When
modified with polyethylene glycol (PEG) coat-
ing, the AUCy_g, (area under the curve) of acy-
clovir further increased by another 80% in the
aqueous humor [103].

Despite the high loading capacity and suit-
able pharmacokinetic properties, safety con-
cerns are bottlenecks for their clinical
application. Some reports show that polymeric
materials of nanospheres and nanocapsules can
interact with cell surface receptors, mitochon-
drial enzymes, and cytoplasmic proteins, which
can cause stress responses and alteration of
metabolic processes. Although polymers of
nanospheres and nanocapsules are generally
non-toxic to the ocular surface, the molecules
may cause irritation and immune reactions,
especially when applied in intraocular tissues
[104, 10S5]. Poly(lactic-co-glycolic acid) (PLGA)
nanocapsules have been found to cause cyto-
plasmic vacuole formation in rabbits [106].
Intravitreal injection of nude PLGA nano-
spheres could cause foreign body reactions and
induction of monocyte chemoattractant pro-
tein 1, macrophage inflammatory protein lo
(MIP-1a), MIP-1B, interleukin-8, tumor necrosis
factor-o, interleukin-6, and interleukin-1ra in
non-human primates [107]. Thus, nanospheres
and nanocapsules are still in the early explo-
rative phases and need more investigations for
ocular use.

Dendrimers
Dendrimers are highly branched, star-shaped
polymeric macromolecules with nanometer-
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scale dimensions (Table 1). These particles con-
sist of a central core, interior dendritic structure
(the branches), and exterior surfaces [108]. The
core can carry either small molecules, macro-
molecules, or even genetic materials to ocular
tissues [109, 110]. The large surface area of the
branches makes them bioadhesive to the extra-
cellular matrix and cell surface receptors;
therefore dendrimers have a long retention time
on the ocular surface and can assist the pene-
tration of carried drugs into the eye [111]. Their
unique structures also extend the release time of
drugs in the tissue [112].

One unique feature of dendrimers is their
high affinity to the active monophagocytic
system. Hydroxyl-end polyamidoamine
(PAMAM) dendrimers were found to be enri-
ched in activated macrophages, retinal micro-
glial cells, astrocytes, and retinal pigment
epithelium (RPE) in diseased eyes [112-113].
Once they enter the cells by endocytosis, the
drug molecules in the dendrimers can be grad-
ually released. For example, a cyanine dye in
generation 4 hydroxyl-end PAMAM dendrimer
formulation was administered into mice eyes
with ischemia/reperfusion injury. The dye was
retained in macrophages and microglial cells for
over 21 days [113]. More sophisticated forms of
dendrimers could even guide the drug to cell
surface receptors such as integrin avf3 on the
surface of the neovasculature [116]. Among the
hundreds of types of dendrimers published,
PAMAM-based dendrimers appear to be the
most studied ones in ocular drug delivery [117].

To use dendrimers as potential drug carriers,
more knowledge and experience are needed,
such as how the composition, branching gen-
eration, terminal ends, charge, size, and surface
radicals of dendrimers influence their stability,
solubility, bioavailability, retention time, and
their impacts on drug efficacy and safety
[117, 118]. In particular, dendrimers demon-
strate ocular irritations which are dependent on
their structures. PAMAM dendrimers with car-
boxyl or hydroxyl ends appear to be well toler-
ated and not immunogenic, but dendrimers
with positively charged amino ends have some
dose-dependent adverse effects [119, 120].

Besides the formulations mentioned above,
many other forms of nanomedicines, including

nanoemulsion [121], quantum dot [122], soli-
d-lipid nanoparticle [123], and so on, have been
investigated as topical ocular drug carriers and
demonstrate beneficial efficacy. As an example,
dexamethasone carried by soluble nanoparticle
(drug name OCS-01) developed by Oculis is now
in a phase III clinical trial for DME. The results
of a phase II (DX-211) study demonstrated that
OCS-01 as a topical eye drop formulation could
significantly reduce central macular thickness
and improve the visual acuity compared with
the vehicle arm [13, 14].

To sum up, a variety of nanoparticles have
been tested as ophthalmic drug carriers in ani-
mal eyes, and results showed that the
nanoparticle formulations could increase the
drug penetration through the ocular surface
and/or extend drug retention time in the eyes.
More investigations are needed to understand
their nature, metabolism, and potential toxici-
ties in the eye.

In Situ Gelling Systems

In situ gelling systems are polymeric formula-
tions that switch from the initial solution form
to gel form in the target tissue shortly after
application. Commonly, the sol-gel transition
is stimulated by pH change, temperature mod-
ulation, solvent exchange, ultraviolet irradia-
tion, or the presence of specific ions or
molecules (Table 2) [124]. For topical formula-
tions, the sol-gel transition can slow down the
clearance of drugs on the ocular surface. In
ophthalmic application, the commonly used
polymers were either sensitive to temperature
(poloxamers, hydroxypropyl methylcellulose,
and xyloglucan), pH (polyacrylic acid), or ions
(gellan gum, alginic acid, and carrageenan)
[125].

Several insitu gelling systems have been
successfully translated into ocular drugs, such as
Akten® (lidocaine hydrochloride), Pilopine HS®
(pilocarpine hydrochloride ocular gel), Virgan®
(ganciclovir), and Timoptic-XE® (timolol mal-
eate ocular gel-forming solution) [126]. And
more in situ gelling systems are under develop-
ment. One type of ciprofloxacin hydrochloride
eye drop is a thermosensitive and pH-responsive
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Table 2 Recent application of in situ gelling systems in topical formulations

Drugs Designed Stimuli Gelling agents Chief study results Reference
indications
Acetazolamide ~ Glaucoma T ~ 35°C 25% Pluronic F-127 Drug released for over 6 h [224]
Betaxolol Glaucoma T ~ 33°C DPoloxamer 407 and > 80% of drugs released [225]
hydrochloride methylcellulose within 12 h
Levofloxacin Ocular bacterial T ~ 32°C Hexanoyl glycol Drug released for over 12h  [226]
infection chitosan Precorneal retention time
over 30 min
Dorzolamide Glaucoma pH ~ 7.4  Carbopol® and Drug released for over 8h  [227]
chloride hydroxyl propyl
methyl cellulose
(HPMC)
Levofloxacin Ocular bacterial pH ~ 74 HPMC and sodium 94% of drug released within [228]
infection alginate 24 h
Moxifloxacin Ocular bacterial pH ~ 74  Terminalia arjuna bark Drug released for over 12h  [229]
infection resin gum and
alginate
Nepafenac Postoperative pain  Divalent Sodium alginate and ~ Corneal permeability [230]
cations Protanal PH 1033 increased by 14-fold
compared with simple
solution
Phenylephrine  Induce mydriasis for Mono- and  Gellan gum and 80% of drugs released within [231]
and ocular divalent hydroxyethylcellulose ~ 30-180 min
tropicamide examination and cations
surgery
Brinzolamide Glaucoma Mono- and  Deacetylated gellan 90% drugs released over [232]
divalent gum 16-19h
cations

in situ gelling formulation, and the drug in the
formulation could be detected on the ocular
surface for 8 h [127]. A compound formulation
of insitu gel and nanoparticle was found to
deliver disulfiram to the rat retina and rescued
retinal dysfunction in a diabetic model by
repeated topical instillation [128]. Some large
molecules and genetic materials are also being
tested with in situ gelling systems in preclinical
and clinical studies [125, 129].

In addition to the improvement of the
bioavailability and the permeability of drugs,
insitu  gelling formulations are often

transparent and therefore have less visual dis-
turbance compared to micelles or ointments
[130]. Most of the polymers used for in situ
gelling systems are non-toxic, biocompatible,
and self-degradable, and their short-term
application appears to be safe [131, 132].

Iontophoresis and Sonophoresis

Iontophoresis and sonophoresis are a group of
techniques that apply the physical force of an
electric or acoustic field to enhance the
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penetration of drug molecules across cellular
barriers [133]. These approaches are particularly
useful for the delivery of antibiotics, antiviral
agents, steroids, as well as proteins into the eye
[134].

Iontophoresis uses an electric current to
drive ionized particles through the normal cel-
lular barrier [135-137]. The electrodes are often
placed on the surface of the cornea or sclera as
they have relatively high water contents and
low tissue resistance and can stand relatively
higher current intensity [138]. Some ion-
tophoresis devices, such as EyeGate®, Ocu-
Phor™, and Visulex™, have been developed
for ocular applications in humans [139, 140].
The upper limit of current density and duration
are usually within 1.8 mA/cm? for 5min for
corneal application, and 5.5 mA/cm? for 20 min
for scleral application [134, 141]. The procedure
can cause transient but bearable irritations, and
some reversible epithelial lesions [141]. Ion-
tophoresis is effective for the intraocular deliv-
ery of both small and large molecules. In a
rabbit choroidal neovascularization (CNV)
model, approximately 0.6 mg of bevacizumab
could be delivered into the rabbit eye by trans-
scleral iontophoresis and the development of
retinal neovascularization was delayed by
4 weeks [142].

Sonophoresis is an ultrasound-based tech-
nique that creates tiny cavitations in cells that
act as permeable channels for drug movement
[143]. This technique was used 60 years ago for
the absorption of hydrocortisone in skin tissues
[144]. In the ocular test, sonophoresis showed a
1.6-fold increase of the penetration efficacy of
fluorescein isothiocyanate-labeled bovine albu-
min through excised rabbit sclera, without
observable histological adverse changes [145].
Similarly, sonophoresis could help the pene-
tration of different sizes of dextran
(20-150 kDa) through the cornea [146]. The
drug depots in cavitations of the eye surface
tissues act like tiny reservoirs and could slowly
release drug molecules into the aqueous or vit-
reous humor [133]. Future ocular studies need
to further evaluate the impacts of overheating
effect due to energy absorption and the redis-
tribution effect by aqueous flow and choroidal
vascular circulation [147-149].

Microneedles

Microneedles apply mechanical force to gener-
ate multiple tiny holes on the tissue surface that
effectively help deliver drugs through tissue
barriers such as skin, cornea, and sclera. There
are different types of microneedles as illustrated
in Fig. 2. Solid microneedles are often made of
stainless steel, titanium, or silicon, which are
applied on the surfaces of the cornea or sclera to
enhance the penetration of drugs. Other types
of microneedles include drug-coated micro-
needles, dissolvable microneedles (made of
biodegradable materials), and hollow micro-
needles (with a channel inside which is con-
nected to a syringe or pump).

Intracorneal and intrascleral microneedles
are often used to assist the penetration and
retention of topical drugs by physically inter-
rupting the epithelial barriers to improve
intraocular drug bioavailability. The tiny sizes
of microneedles make them generally mini-
mally-invasive to the ocular surface. For exam-
ple, a type of dissolvable microneedle
containing besifloxacin was able to deliver over
55% of the drug across the corneal barrier over
24 h. The microneedle could spontaneously
dissolve within the cornea in 25 min [150]. A
dissolvable trans-sceral microneedle could
enhance trans-scleral penetration of dextrans at
the size of 150 kDa from 6% to 100% compared
with the simple solution [151]. These data sug-
gest that when used in combination with topi-
cal drugs, microneedles can effectively promote
their penetration, even for macromolecules.
However, it should be noted that most of the
current studies only explore their efficacy for
anterior segment diseases, and the efficacy data
for retinal and choroidal disorders are lacking.
Future studies need to further explore their
potential applications for posterior segment
diseases and address the long-term impacts of
repeated applications of intracorneal micro-
needles on the biomechanical properties of the
cornea.
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b

Solid Microneedle Coated Microneedle

Dissolved Microneedle

Hollow Microneedle

Fig. 2 Schematic of different types of microneedles used for drug delivery. a A microneedle patch; b detailed structures of
different microneedles, including solid, drug-coated, dissolved, and hollow microneedles

Cell-Penetrating Peptides

The corneal epithelium has active endocytosis
activity which may act as a gateway for drug
entry [152]. There are four types of endocytosis
in general, i.e., phagocytosis, macropinocytosis,
clathrin-mediated endocytosis, and caveolin-
mediated endocytosis, and their activities are
essential for maintaining normal functions of
the eye [153]. Stimulation of these endocytosis
activities by cell-penetrating peptides, folic
acid-binding, transferrin, and hyaluronic acid
coating can facilitate the penetration of topical
drugs through the corneal epithelial barriers
[154, 155].

Cell-penetrating peptides are a group of
short peptides containing abundant positively
charged amino acids, which can enhance the
transcorneal permeability of drugs [156]. Some
preclinical studies demonstrated that cell-pen-
etrating peptides could help large molecular

drugs in eye drops reach the posterior segment
in animal eyes [157-159]. An eye drop formu-
lation of acidic fibroblast growth factor coupled
with a cell-penetrating peptide named transac-
tivator of transcription (TAT) was applied topi-
cally to a rat model of retinal ischemia/
reperfusion injury. The drug was detected in the
retina 8 h after topical dosing, and the protec-
tive effect on ganglion cells was evident [157].
An eye drop formulation of bevacizumab and
ranibizumab coupled with cell-penetrating
peptides was topically administered to a laser-
induced CNV rat model, and the results showed
similar efficacy to that from the drug adminis-
tered intravitreally [158]. It should be noted
that these promising results were largely limited
in small animals so far.

There are many remaining challenges in the
translation of cell-penetrating peptides into
clinical use. Some essential questions need to be
answered, such as how to control the selectivity
of drug penetration and avoid the unspecific
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enhancement, and how to prevent the fast
degradation of the peptides by the intracellular
protease system [160]. In addition, certain drugs
may form complexes and be stored in intracel-
lular vesicles or escape into the cytoplasm after
endocytosis, which may cause potential toxicity
[155].

Extracellular Vesicles

Extracellular vesicles (EVs) are a broad range of
biological particles released from cells, includ-
ing exosomes, ectosomes, microvesicles,
microparticles, oncosomes, and apoptotic bod-
ies, with sizes ranging from 30 to 10,000 nm in
diameter [161]. EVs can be generated by direct
outward budding of the plasma membrane
(microvesicles) or inward budding of the endo-
somal membrane and subsequent release from
cells (exosomes) [162]. Natural EVs carry a
variety of cargos from their source cells, such as
mRNA, miRNA, DNA, proteins, and lipids, and
may participate in many biological processes,
including cell-cell communication, remote sig-
naling, immunomodulation, substance deliv-
ery, and even apoptosis [163, 164].
Immunologically active exosomes have been
found to regulate innate and adaptive immune
responses [165]. Thus, EVs can naturally be a
part of the regimen for many ocular inflamma-
tory conditions [166-169].

EVs as natural components of cells have the
highest tissue biocompatibility, low immuno-
genicity, and low toxicity, and therefore are
ideal drug carriers if possible. Therapeutic
molecules can be loaded into the EVs via
exogenous loading or endogenous packaging
processes [170]. Although EVs have been
extensively explored as potential drug carriers
in many fields, their ocular application as drug
carriers is still in the initial exploration stage. In
animal models, drugs loaded by EVs given by
intraocular injection demonstrate widespread
and homogenous distribution in the fundus,
which was superior to conventional carriers
[171, 172]. On the basis of the experience
gained from nanoparticles, it is reasonable to
infer that EVs may also have potential benefits

as a topical formulation for posterior segment
diseases, which require further explorations.

More investigations on the contents, cell
distribution, ocular tissue tropism, penetrating
capacity, and interaction with host cells will
help the clinical translation of EVs [173]. The
uptake of EVs by target cells is also affected by
the sizes, charge, and ionic strength of the sur-
rounding environment and should be opti-
mized for clinical application [174]. One of the
major safety concerns with EVs is related to
their natural components, as EVs are mainly
harvested from immortalized cells or stem cells,
which may carry oncogenic materials [170]. In
addition, introducing donor EVs into host cells
could disturb their normal environment [175].
However, current data did not show any obvi-
ous adverse effect of EVs-based therapy in ani-
mals [176] and humans [177-180].

As a type of new platform, EVs also face
manufacturing challenges. At the moment, EVs
can only be generated in cultured cells and
scale-up preparation needs more innovations
[181]. A good manufacturing practice (GMP)-
grade method for scale-up generation of EVs
from human cardiac progenitor cells has been
reported [182]. Recently some companies are
using technologies based on chromatography
and filtration, and candidate products are being
tested in clinical trials [183].

In summary, multiple new platforms and
formulations have been tested and applied for
topical ocular drugs to reach the posterior seg-
ment. The mechanisms to overcome ocular
barriers include both active approaches (en-
hancement of endocytosis, binding with cor-
neal surface, or inhibition of efflux activity) and
passive approaches (physical breakdown of
epithelial barriers, or movement driven by
physical forces). The choice of the platforms for
topical drugs should consider the internal
properties of the drug molecules (size, charge,
hydrophilicity, ocular irritation, etc.), indica-
tions, demand for sustained release, availability
of equipment for drug administration, and the
acceptability of patients and ophthalmology
clinicians.
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PRECLINICAL MODELS AND THEIR
IMPACTS ON TRANSLATION

OF NOVEL TOPICAL
FORMULATIONS

Laboratory animals are the major tools for the
preclinical evaluation of new drug molecules
including topical formulations. These tools
were used to demonstrate promising efficacy
and good accessibility to the fundus of rodents
of numerous topical small molecular drugs,
such as TG100801, pazopanib, acrizanib, rego-
rafenib, and OT-551 [16, 184-191]. However,
these drug molecules failed to achieve similar
efficacy and therapeutic concentration in
patients. These failures remind us of the differ-
ence between animal eyes and human eyes. An
in-depth understanding of comparative eye
anatomy is crucial for species selection and data
translation obtained from animal models. The
fast development of in vitro human eye models
will serve as alternative tools for the evaluation
of topical eye drugs in the future.

In Vivo Models: Be Aware of Differences
Between Animal Eyes and Human Eyes

Animal models have been applied in many
ophthalmological studies [192]. Commonly
used laboratory animals for ocular pharmaco-
logical research include mice, rats, rabbits,
monkeys, and occasionally dogs, pigs, etc. Small
laboratory animals are more often selected as
test species, especially for small molecular
drugs, presumably owing to lower cost, broader
test options, and easier availability of housing
conditions. However, some data demonstrate
that small eyes have poor clinical predictability
of topical drugs [186, 193]. As an example,
regorafenib and pazopanib are small molecular
inhibitors of vascular VEGF receptors and were
given topically to treat CNV in animal models.
Both drug molecules achieved desirable thera-
peutic concentrations in rat fundus and inhib-
ited CNV in a rat model. However, similar
pharmacokinetics and efficacy results were not
achieved in rabbit and monkey eyes [184]. A
phase II clinical trial of regorafenib eye drops for

neovascular age-related macular degeneration
(AMD) was terminated because of inferior effi-
cacy compared with current nAMD therapy,
presumably as a result of insufficient drug
exposure to the posterior segment [185]. This
example highlights that the differences between
animal and human eyes need to be fully
understood.

To visualize the anatomical differences, we
collected globes of healthy mice (CS57BL/6)),
rats (Sprague-Dawley), rabbits (New Zealand
White), dogs (beagles)), and monkeys
(cynomolgus), which were fixed with 10% for-
malin, embedded in paraffin, sectioned at
4-mm thickness, and stained with hema-
toxylin—eosin. Representative slides at similar
sectional planes were scanned with a digital
slide scanner (Leica, USA) with the same
amplification. The study was approved by the
Institutional Animal Care and Use Committee
(IACUC) of National Chengdu New Drug Safety
Evaluation Center, and the procedure followed
the Association for Research in Vision and
Ophthalmology (ARVO) Statement for the Use
of Animals in Ophthalmic and Vision Research.
Representative images of the eyes are shown in
Fig. 3, which visualizes remarkable differences
in globe size and major structural compositions
of the eyes of different laboratory animals. The
differences in the axial length, the thickness of
cornea and sclera, and the volume of vitreous
are all potential factors that affect the bioavail-
ability and accessibility of topical eye drugs at
the fundus of the eye. Taking the vitreous vol-
ume as an example, the difference between
rodent and human eyes could even exceed one
thousand times (see detailed figures in Table 3).
This remarkable difference may significantly
affect the intraocular concentration of small
molecule drugs delivered via eye drops.

The differences among species not only
include structural parameters but also dynamic
physical activities as summarized in Table 3.
Some physiological factors can also influence
topical drug concentration in animal and
human eyes. Take the rabbit eye as an example:
it has a very lower blink rate that can influence
drug retention time on the ocular surface and
drug penetration rate into the eye. Obviously,
no animal eye is identical to the human eye. To
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Fig. 3 Comparison of the globe structures of different
laboratory animals

increase the translation rate of topical eye drugs
for fundus diseases, one should have an in-
depth knowledge of the anatomical and physi-
cal features of human and animal eyes to take a
rational selection of suitable laboratory animals
as the preclinical test model. When using pre-
clinical data to determine the dose range one
needs to make appropriate adjustment based on

anatomical and physiological differences of
animal eyes and human eyes.

In Vitro Models: Emerging Tools
for Ocular Drug Testing

In recent years, the fast development of human
embryonic stem cell technology makes it pos-
sible to construct eye models in vitro. These
models are rationally simplified human eyes
which can mimic parts of the structural, physi-
cal, or pathological features of the human eye.

3D bioprinting uses inkjet-based printing
approaches to build the 3D scaffolds which
allow cells to reside [194]. Some tissue struc-
tures, such as skin, muscle, and liver tissues,
have been created by 3D bioprinting [194-197].
In ocular application, 3D bioprinting has been
successfully applied to reconstruct the struc-
tures of the cornea in vitro and shows promis-
ing results in retina bioengineering. Different
corneal models, either containing a specific
layer (stroma) or the intact cornea, have been
printed with viable cells derived from humans
[198, 199]. The bioprinting of the retina is
extremely challenging because of its multiple
cellular composition and complex structure.
Currently, no complete retinal structure based
on 3D bioprinting has been constructed but
some researchers have created retinal models
containing several specific layers [200, 201].
These 3D bioprinting models provide a new tool
for in vitro drug testing in a human-like
environment.

Organoids are tiny, self-organized 3D tissue
cultures that are derived from stem cells. The
cultures can recapitulate some structural and
functional features of the organ and also simu-
late pathological conditions [202, 203]. As these
organs can be derived from the patient and
survive for up to several months in vitro, they
can provide valuable information to observe
personalized reactions to the drugs [204]. As an
example, a corneal organoid was developed
from human induced pluripotent stem cells.
The stem cells underwent multiple differentia-
tion programs and formed 3D corneal structures
with functional layers of the epithelium,
stroma, and endothelium [205]. Retinal
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Table 3 Comparison of static and dynamic features of human eyes with commonly used laboratory animals

Mice Rat Rabbit Rhesus Human
monkey
Static parameters
Corneal diameter (mm) 2.3-2.6 5.8 Horizontal 13.4 Horizontal Horizontal
[233] [234] Vertical 13'0 1 1.4 1 1.8
[235] Vertical 10.8  Vertical 11.3
[236] [237]
Central corneal thickness (pm) 123-134 159 £ 15 349-384 520 £ 5 548 + 35
[233] [238] [239] [240] [241]
Anterior chamber depth (mm) 0.31 0.87 2.90 3.51 3.05
[242] [243] [244] [245] [246]
Ocular axis length (mm) 3.0 6.0 18.1 20.3 23.9
[242] [243] [244] [236] [246]
Anterior chamber depth/ocular axis  0.10 0.14 0.16 0.17 0.13
Anterior chamber volume (pl) 2.39-3.08 ~ 15 ~ 250 134 £ 5 153 £ 27
[247] [248] [249] [250]
Total aqueous volume (1) 5.9 £ 0.5 13.1 £3.8 287 220 + 15 260
[251] [248] [252] [249] [41]
Vitreous chamber depth (mm) 0.71 1.51 6.20 12.42 16.32
[242] [243] [244] [245] [246]
Vitreous chamber depth/ocular axis ~ 0.24 0.25 0.34 0.61 0.68
Vitreous volume (pl) 44 £ 0.7 134 + 0.6 ~ 1400 3300-3700 ~ 4400
[253] [254] [255] [256] [257]
Lens thickness (mm) 1.6 3.9 7.9 3.8 4.0
[243] [244] [245] [246]
Retinal thickness (m) 204 219-236 Vascular area 223 190-276
[258] [259] 163-340 [260] [261]
Avascular area
142-168
[259]
Dynamic parameters
Blink intervals (s) 300 300 360 6 5
[262] [262] [262] [262] [262]
Tear secretion rate (pl/min) 0.5 0.7-1.2
[263] [264, 265]
Residual tear volume (ul) 0.06-0.20 4.6 75+ 25 7.0-124
[266] [267] [263]
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Table 3 continued
Mice Rat Rabbit Rhesus Human
monkey
Tear turnover rate (%/min) 5.2 7.1 16.0
[268] [263] [265]
Rate of aqueous humor production  0.18 &£ 0.05 0.35 £ 0.11 1.46-1.71 454 £ 1.11  2.40 £ 0.60
(ul/min) [251] [248] [239] [240] [41]
Aqueous humor turnover rate (%/ 25 22 1.6 2.0 1.0-1.5
min) [251] [248] [252] [240] [41]

organoids are much more complicated and are
still under development. These organoids are
often generated from mice or human embry-
onic stem cells and are composed of either the
outer layers of the retina (rods and cones with
photosensitivity activity) or the inner layers of
the retina (stratified layers of neural retina)
[206-208]. These in vitro organs are useful for
drug testing and prediction of the response of
the patient to a specific therapy.

The organ-on-a-chip (OoC) system is a mul-
tichannel 3D microfluidic cell culture chip that
simulates the activities, mechanics, and physi-
ological responses of the entire organ or organ
systems [209]. OoC provides the opportunity to
study the effects of dynamic physiological
activities on drug distribution and bioavailabil-
ity, such as vascular drainage, lacrimation, and
blinking [210]. In an OoC model of the ocular
surface, the system was composed of functional
corneal and conjunctival epithelium and an
electric-actuated hydrogel-made eyelid. The
different parts were connected with multiple
channels to mimic tear generation during
blinking [211]. In a recently reported OoC
which was used to simulate the pathological
features of nAMD, the system consisted of a
layer of RPE and adjacent blood vessel network
which showed the intact blood-retinal barrier
function. Addition of VEGF to the culture
media induced sprouting of blood vessels into
the PRE layer, which could be inhibited by
bevacizumab [212]. OoC has also been applied
to observe retinal drug toxicity on functional
retinal cells [213].

Taken together, the use of topical ocular
formulations to treat chronic fundus diseases is
a very attractive and very difficult concept. The
novel testing technologies such as OoC, orga-
noids, and 3D bioprinting are still in the early
phase of development and their applications on
in vitro drug testing need further validation.

CONCLUSIONS

Intraocular drug delivery is one of the most
challenging fields in ocular drug research and
development (R&D) as a result of the unique
structure of the eye. The solutions depend on
brave innovations and scientific tests. The
development of new material and technologies
has brought possibilities to create new topical
formulations. The test models are critical to
guarantee the clinical translationality of new
topical formulations.
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