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ABSTRACT

Introduction: Septic patients requiring inten-
sive care unit (ICU) readmission are at high risk
of mortality, but research focusing on the
association of ICU readmission due to sepsis
and mortality is limited. The aim of this study
was to develop and validate a machine learning
(ML) model for predicting in-hospital mortality
in septic patients readmitted to the ICU using
routinely available clinical data.

Methods: The data used in this study were
obtained from the Medical Information Mart
for Intensive Care (MIMIC-IV, v1.0) database,
between 2008 and 2019. The study cohort
included patients with sepsis requiring ICU
readmission. The data were randomly split into
a training (75%) data set and a validation (25%)
data set. Nine popular ML models were devel-
oped to predict mortality in septic patients
readmitted to the ICU. The model with the best
accuracy and area under the curve (A.C.) in the
validation cohort was defined as the optimal
model and was selected for further prediction
studies. The SHAPELY Additive explanations
(SHAP) values and Local Interpretable Model-
Agnostic Explanation (LIME) methods were
used to improve the interpretability of the
optimal model.
Results: A total of 1117 septic patients who had
required ICU readmission during the study
period were enrolled in the study. Of these
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. After
feature selection, 31 of 47 clinical factors were
ultimately chosen for use in model construc-
tion. Of the nine ML models tested, the best
performance was achieved with the random
forest (RF) model, with an A.C. of 0.81, an
accuracy of 85% and a precision of 62% in the
validation cohort. The SHAP summary analysis
revealed that Glasgow Coma Scale score, urine
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output, blood urea nitrogen, lactate, platelet
count and systolic blood pressure were the top
six most important factors contributing to the
RF model. Additionally, the LIME method
demonstrated how the RF model works in terms
of explaining risk of death prediction in septic
patients requiring ICU readmission.
Conclusion: The ML models reported here
showed a good prognostic prediction ability in
septic patients requiring ICU readmission. Of

the features selected, the parameters related to
organ perfusion made the largest contribution
to outcome prediction during ICU readmission
in septic patients.

Keywords: Explainable artificial intelligence;
Machine learning; Random Forest; Sepsis;
Mortality
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Key Summary Points

Why carry out this study?

Sepsis is among the major causes of
readmission to the intensive care unit
(ICU), with a considerable negative
impact on critically ill patients readmitted
to ICU.

Early prediction of deterioration could
provide a critical window of time for
clinical interventions that might reduce
severity.

The objective of this investigation was to
develop and validate an explainable
machine-learning (ML) model based on
clinical variables to estimate the in-
hospital mortality in septic patients
requiring ICU readmission.

What was learned from the study?

ML-based algorithms for accurate
prediction of mortality in septic patients
requiring ICU readmission is possible.

Parameters related to organ perfusion
contributed the most to outcome
prediction during ICU readmission in
septic patients.

SHAP values and the LIME method could
help to improve the model’s
interpretation.

DIGITAL FEATURES

This article is published with digital features,
including a graphical abstract, to facilitate
understanding of the article. To view digital
features for this article go to https://doi.org/10.
6084/m9.figshare.20260935.

INTRODUCTION

The transition of patients from the intensive
care unit (ICU) to a hospital ward is one of the
highest-risk transitions of care [1, 2]. About
5–7% of patients admitted to the ICU will be
transferred back to ICU, and the frequency of
ICU readmission appears to have increased over
the last 20 years [3]. ICU readmission is associ-
ated with higher mortality and longer ICU and
hospital lengths of stay [4, 5]. Septis, defined as
life-threatening organ dysfunction caused by a
dysregulated host response to infection, is
among the most important reasons for ICU
readmission [6] and has a considerable negative
impact on critically ill patients [7]. Sepsis can be
caused by virtually any infecting organism and
is usually accompanied by the production of
proinflammatory cytokines with immunosup-
pressive activity, which increase patient mor-
tality and morbidity [8]. Recent epidemiological
evidence suggests that sepsis occurs in more
than 1.7 million persons annually in the USA
alone, with an estimated mortality of 10–40%
[9, 10], and it is increasingly recognized as a
serious, worldwide public health priority [11].
Despite constant updates to the Surviving Sepsis
Campaign (SSC) guidelines between 2004 and
2021 [12–16], the incidence of sepsis-related
deaths remained unacceptably high [9].

Delays in identifying clinical deterioration in
critically ill patients usually result in increased
morbidity and mortality [17] while, conversely,
early prediction of deterioration could provide a
critical window of time for clinical interven-
tions that might reduce severity [18]. Recently,
a considerable body of literature has grown up
around the theme of early detection of clinical
outcomes in sepsis by utilizing advanced tech-
nologies [19–22], such as machine learning
(ML) and artificial intelligence. However, most
studies only included the first qualifying ICU
admission during a single hospitalization, and
excluded multiple qualifying ICU admissions
[20–22]. Therefore, to our knowledge, no study
has yet developed a specific ML model for pre-
dicting in-hospital mortality in septic patients
requiring ICU readmission.
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Explainability of ML is of great importance
to help enhance the trust of medical profes-
sionals, because it shows why predictions are
made and how parameters contribute to the
model [23]. However, almost all of the ML
models are black boxes, and the decision-mak-
ing procedure is complex and hard to interpret
and explain in detail [24, 25]. For this reason,
Lundberg and colleagues first identified an effi-
cient and trustworthy method to significantly
enhance the interpretability of ML models by
incorporating desirable properties from game
theory [26]. This powerful method has also been
successfully used in prediction of the preven-
tion of hypoxemia in patients during surgery
[27], prediction of the development of acute
kidney injury in patients following cardiac sur-
gery [28] and prediction of sepsis in patients
with COVID-19 [29].

Accordingly, the objective of this investiga-
tion was to develop and validate an explainable
ML model based on clinical variables to esti-
mate the in-hospital mortality in septic patients
requiring ICU readmission.

METHODS

Study Design and Data set

This was a modeling study that used a clinical
data set extracted from the Medical Information
Mart for Intensive Care (MIMIC)-IV database
(v.1.0) [30]. The MIMIC-IV is a publicly avail-
able single-center critical care database that
contains information on [ 70,000 critically ill
patients admitted to the ICU at the Beth Israel
Deaconess Medical Center from 2008 to 2019.
After completing a training course called Pro-
tecting Human Research Participants that
includes Health Insurance Portability and
Accountability Act (HIPAA) requirements, we
were granted access (author Chang Hu; certifi-
cation number: 47460147).

The principal procedures of this study were
conducted in three main steps. First, we devel-
oped nine popular ML models using clinical
variables collected on the first 24 h after ICU
readmission. Second, we compared the perfor-
mance of nine ML models in the validation set,
and the optimized model with the best accuracy
and greatest area under the curve (AUC) was

Fig. 1 Flow diagram of this study. MIMIC-IV Medical Information Mart for Intensive Care IV, XGBoost eXtreme
Gradient Boosting, AdaBoost Adaptive Boosting
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chosen as the optimal model. Third, we per-
formed two last interpretation methods to
explain the optimal model. The overall work-
flow of this study is schematically presented in
Fig. 1.

The establishment of this database was
approved by the Massachusetts Institute of
Technology (Cambridge, MA, USA) and Beth
Israel Deaconess Medical Center (Boston, MA,
USA), and consent had been obtained for the
original data collection. Therefore, the ethical
approval statement and the need for informed
consent from each individual patient were
waived for this study because the project did
not impact clinical care and all protected health
information was deidentified [30]. This study
was done in accordance with the Declaration of
Helsinki [31] and complied with the Transpar-
ent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis
(TRIPOD) statement [32].

Patients and Outcomes

We enrolled all adult individuals ([ 18 years of
age) diagnosed with sepsis in the last 24 h
before ICU readmission or in the first 24 h after
ICU readmission. The ICU readmission was
defined as any return to ICU after a first ICU
discharge during the first hospitalization within
1 year. The ICU interval duration was defined as
the number of hours between the first ICU dis-
charge and the second ICU admission (Elec-
tronic Supplementary Material [ESM] Fig. S1).
Patients with third or more ICU admission were
not included in our study. Sepsis was defined
according to the Sepsis 3.0 criteria [7]. In brief, a
confirmed or suspected infection combined
with a Sequential Organ Failure Assessment
(SOFA) score C 2 (ESM Fig. S1). Patients with
ICU length of stay \ 24 h were excluded. The
flow diagram of the inclusion criteria and
exclusion criteria are presented in ESM Fig. S2.

The primary endpoint of our study was the
area under the receiver operating characteristic
curve (AUROC) of the model’s prediction. The
secondary endpoints of our study were accu-
racy, precision, recall and F1 score of the mod-
el’s prediction.

Data Collection

Clinical data in the MIMIC-IV database were
extracted for the first 24 h following patient
ICU readmission. These variables included
patients’ demographics, medical history, vital
signs, laboratory parameters, severity of illness
scoring systems and outcomes. Demographic
data extracted included: age, sex, body weight
and height. Then, we collected data on comor-
bidities, including hypertension, diabetes, con-
gestive heart failure, cerebrovascular disease,
chronic pulmonary disease, liver disease, renal
disease and tumor, and we calculated the
Charlson Comorbidity Index (CCI) [33]. Vital
signs, such as heart rate, systolic blood pressure
(SBP), diastolic blood pressure, mean artery
pressure, respiratory rate, body temperature and
SpO2 were also abstracted. Furthermore, we also
collected the laboratory parameters, such as
white blood cell counts, platelets, hematocrit,
hemoglobin, international normalized ratio,
prothrombin time, partial thromboplastin time,
alanine aminotransferase, alkaline phosphatase,
aspartate aminotransferase, amylase, total
bilirubin, creatine phosphokinase, creatine
kinase-MB, lactate dehydrogenase, albumin,
blood urea nitrogen (BUN), serum creatinine,
lactate, pH, PO2, PCO2, PaO2/FiO2 ratio, base
excess, anion gap, bicarbonate, serum calcium,
serum chloride, serum sodium, serum potas-
sium, fibrinogen and blood glucose. ICU inter-
val duration, taken to be the number of hours
between the first ICU discharge and the second
ICU admission, and the cumulative urine out-
put on day 1 in the ICU were also extracted.
Finally, we calculated the Glasgow Coma Scale
(GCS), SOFA score [34], Oxford Acute Severity of
Illness Score (OASIS) [35] and Logistic Organ
Dysfunction System (LODS) score [36]. The
maximum value and minimum value in the first
24 h of each variable were considered to be
different variables in the final data set. A list of
each variable is detailed in ESM Table S1.

Feature Selection and Data Preprocessing

We selected all of the features listed above (ex-
cept SOFA, OASIS and LODS; for medical

Infect Dis Ther (2022) 11:1695–1713 1699



history, only the CCI was included for analysis)
for the development of ML models. Feature
selection is considered to be a crucial step of
data preprocessing. For this study, we proposed
a five-stage feature selection method: (1) find
columns with a missing fraction [ 50%, and
features with a missing percentage of not[50%
were retained and filled in with the method of
multivariate imputation by chained equations
in the R statistical environment [37] (ESM
Table S2); (2) find features with only a single
unique value; (3) find collinear features as
identified by a correlation coefficient[ 0.7; (4)
find features with zero importance from a gra-
dient boosting machine; and (5) find features
that do not contribute to a 95% cumulative
feature importance from the gradient boosting
machine. The details of feature selection are
shown in ESM Fig. S3. Ultimately, we chose 31
clinical features to be included for model con-
struction (ESM Table S3).

Model Development and Validation

The data set was randomly split into two data
sets: a training (75%) data set, which was used
to develop the models, and an internal valida-
tion (25%) data set, which was used to validate
the constructed models. We utilized the fol-
lowing nine representative ML classifier algo-
rithms for clinical feature screening and model
construction in the training data set: Logistic
Regression, Nearest Neighbors, Decision Tree,
Random Forest (RF), adaptive boosting (Ada-
Boost), Naive Bayes, Linear DA, Neural Net and
extreme gradient boost (XGBoost). To ensure
maximum use of data, we did not use a cross-
validation method. The A.C., as well as accu-
racy, precision (also called positive predictive
value), recall and F1-measure (F1) were calcu-
lated for each ML model to be evaluated and
compared in the validation cohort. Through
comprehensive evaluation of multiple evalua-
tion indicators, the best performing model
among the nine ML models was defined as the
optimal model and selected for further predic-
tion analysis. Furthermore, we compared the
performance of the optimal model-based ML
versus the traditional model-based severity of

illness scores (OASIS and SOFA) to predict the
mortality in septic patients requiring ICU read-
mission. Finally, we performed calibration
curve to evaluate the consistency of the optimal
model.

Model Explainability

Opening the black box of ML is of great
importance to engender trust with the health-
care workforce and provide transparency into
the ML-based decision-making process. Thus,
we implemented SHAPELY Additive explana-
tions (SHAP) values and the Local
Intepretable Model-Agnostic Explanation
(LIME) method to improve the interpretability
for the top-performing model. SHAP values
could help to quantify the contribution of each
feature and explain how the features affect the
output of the optimal prediction model,
whereas the LIME method could help to deter-
mine ML model explainability for each patient’s
prediction.

Statistical Analysis

Differences in patient characteristics that were
measured on a continuous scale were compared
using the t-test or Mann–Whitney U-test as
appropriate, and categorical variables were
evaluated using the Chi-square or Fisher exact
test, as appropriate. After feature selection and
data preprocessing, we developed nine popular
ML-based models to predict mortality in septic
patients requiring ICU readmission. Overall
performance of each model was assessed via the
A.C., accuracy, precision, recall and F1-measure.
Moreover, a two-by-two confusion matrix with
the number of true positive, false positive, false
negative and true negative values was generated
for each ML model. Then, the best performing
model was applied to the further interpretation.
Finally, SHAP summary analysis, SHAP depen-
dence analysis and the LIME method were uti-
lized for model explainability.

SPSS statistical software version 24.0 (IBM
Corp., Armonk, NY, USA), R statistical software
version 3.6.1 � Project for Statistical Comput-
ing, Vienna, Austria) and Python software
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Table 1 Baseline characteristics of the study cohort

Characteristics Survivors (N = 896) Non-survivors (N = 221) P value

Demographic

Age, year 67.9 (57.7–78.2) 71.9 (62.4–83.1) \ 0.001

Sex 0.118

- Male, n (%) 558 (62.3) 125 (56.6)

- Female, n (%) 338 (37.7) 96 (43.4)

Weight, kg 80 (68–94) 78 (67–93) 0.433

Height, cm 170 (163–178) 169 (163–175) 0.232

Comorbidities

Charlson Comorbidity Index 6 (4–8) 7 (6–9) \ 0.001

Hypertension, n (%) 355 (39.6) 79 (35.7) 0.290

Diabetes, n (%) 304 (33.9) 67 (30.3) 0.307

Congestive heart failure, n (%) 342 (38.2) 88 (39.8) 0.652

Cerebrovascular disease, n (%) 146 (16.3) 47 (21.3) 0.080

Chronic pulmonary disease, n (%) 264(29.5) 56 (25.3) 0.224

Liver disease, n (%) 171 (19.1) 68 (30.8) \ 0.001

Renal disease, n (%) 215 (24.0) 77 (34.8) 0.001

Tumor, n (%) 153 (17.1) 62 (28.1) \ 0.001

Vital signs on day 1

Heart rate, bpm 88 (79–99) 93 (83–103) 0.001

Systolic blood pressure, mmHg 114 (105–124) 109 (100–120) \ 0.001

Diastolic blood pressure, mmHg 60 (54–67) 58 (51–64) 0.001

Mean arterial pressure, mmHg 75 (70–82) 71 (67–78) \ 0.001

Respiratory rate 19 (17–23) 20 (18–24) 0.003

Body temperature, �C 36.9 (36.7–37.2) 36.7 (36.4–37.1) \ 0.001

SpO2, % 93 (90–95) 91 (87–94) \ 0.001

Laboratory findings on day 1

White blood cell, 9 103/lL 14.3 (10.3–20.1) 15.0 (10.6–20.7) 0.519

Platelets, 9 103/lL 193 (118–275) 142 (68–222) \ 0.001

Hematocrit, % 26.9 (23.8–30.5) 25.6 (22.7–30.1) 0.033

Hemoglobin, g/dL 8.8 (7.8–10.1) 8.2 (7.3–9.9) 0.001

International normalized ratio 1.4 (1.2–1.7) 1.6 (1.4–2.4) \ 0.001

Prothrombin time, s 15.5 (13.5–18.6) 18.1 (14.8–25.3) \ 0.001

Partial thromboplastin time, s 35 (29–54) 44 (32–75) \ 0.001

Infect Dis Ther (2022) 11:1695–1713 1701



Table 1 continued

Characteristics Survivors (N = 896) Non-survivors (N = 221) P value

Alanine aminotransferase, U/L 31 (17–68) 33 (18–76) 0.262

Alkaline phosphatase, U/L 90 (63–144) 107 (75–178) 0.002

Aspartate aminotransferase, U/L 42 (25–86) 61 (33–184) \ 0.001

Amylase, U/L 56 (37–95) 61 (28–129) 0.761

Total bilirubin, mg/dL 1.0 (0.5–2.1) 1.3 (0.6–5.0) 0.004

Creatine phosphokinase, U/L 100 (43–284) 130 (60–527) 0.045

Creatine kinase MB, U/L 4 (2–7) 5 (3–14) 0.005

Lactate dehydrogenase, U/L 311 (227–412) 438 (246–805) \ 0.001

Albumin, g/dL 2.8 (2.4–3.2) 2.4 (2.1–3.2) 0.005

Blood urea nitrogen, mg/dL 24 (16–39) 38 (25–60) \ 0.001

Serum creatinine, mg/dL 1.1 (0.8–1.7) 1.6 (1.0–2.7) \ 0.001

Lactate, mmol/L 2.1 (1.4–3.5) 3.0 (1.7–6.4) \ 0.001

pH 7.45 (7.40–7.49) 7.42 (7.36–7.47) \ 0.001

pO2, mmHg 73 (49–102) 61 (41–81) \ 0.001

pCO2, mmHg 46 (40–55) 47 (39–61) 0.589

PaO2/FiO2 ratio 163 (95–240) 109 (72–178) \ 0.001

Base excess 2 (0–5) 0 (- 3 to 3) \ 0.001

Anion gap 15 (13–18) 18 (14–22) \ 0.001

Bicarbonate, mmol/L 25 (23–28) 24 (20–28) \ 0.001

Serum calcium, mmol/L 8.5 (8.1–9.0) 8.6 (8.0–9.3) 0.077

Serum chloride, mmol/L 105 (101–109) 106 (101–112) 0.020

Serum sodium, mmol/L 139 (137–142) 142 (139–146) \ 0.001

Serum potassium, mmol/L 4.4 (4.1–4.9) 4.5 (4.1–5.1) 0.120

Fibrinogen, mg/dL 266 (203–390) 230 (179–350) 0.042

Blood glucose, mg/dL 172 (138–217) 174 (136–236) 0.441

ICU interval durationa, day 2.5 (0.6–5.6) 2.9 (1.0–7.0) 0.073

Urine output on day 1, mL 1535 (1040–2350) 861 (445–1645) \ 0.001

Severity of illness scores

GCS 13 (10–14) 8 (4–13) \ 0.001

SOFA 6 (4–9) 10 (7–14) \ 0.001

OASIS 34 (28–40) 41 (34–49) \ 0.001
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version 3.6.6 (Python Software Foundation,
Wilmington, DE, USA) were used for all analy-
ses. All statistical tests were 2-sided, and P values
\ 0.05 were considered to be statistically
significant.

RESULTS

Cohort Characteristics

Among 76,540 ICU stays registered in the
MIMIC-IV database, we identified 1117 patients
as having sepsis who were readmitted to the
ICU, including 837 in a training cohort and 280
in a validation cohort. The flow chart of this
study is presented in ESM Fig. S2. Of these 1117
participants, 434 (38.9%) were female, and the
median (interquartile range [IQR]) age was 68.6
(58.4–79.2) years. The median (IQR) ICU inter-
val duration was 2.60 (0.64–5.78) days. The
mortality rate of this cohort was 19.8% (221/
1117). Table 1 shows the baseline characteristics
of the overall study cohort stratified by the
survivor status. Compared with those in the
survivor group, non-survivors were older (71.9
[IQR 62.4–83.1] vs. 67.9 [57.7–78.2] years;
P\ 0.001); had higher CCI scores (7 [IQR 6–9]
vs. 6 [4–8]; P\0.001); and had more comor-
bidities of liver disease (30.8% vs. 19.1%;
P\ 0.001), renal disease (34.8% vs. 24.0%;
P = 0.001) and tumor (28.1% vs. 17.1%;
P\ 0.001). In addition, non-survivors were
more likely to have lower urine output on day 1
after ICU readmission (861 [IQR 445–1645] vs.
1535 [1040–2350] mL; P\0.001), with higher

organ injury scores, such as SOFA (10 [IQR 7–14]
vs. 6 [4–9]; P\0.001), OASIS (41 [IQR 34–49] vs.
34 [28–40]; P\0.001) and LODS (9 [IQR 7–12]
vs. 5 [3–8]; P\ 0.001).

Model Development and Validation

The overview of study design is shown in Fig. 1.
The detailed processes for determining each
variable are described in ESM Fig. S3. Missing-
ness is considered to be missing at random, and
we performed multiple imputation of chained
equations for missing data with missingness\
50%. ESM Fig. S4 presents a good agreement
between the imputed values and actual values.
After feature selection, we used 31 candidate
factors for model construction (ESM Table S3).
The performance of each of the nine ML models
as assessed by ROC analysis and confusion
matrix are presented in Fig. 2. In the validation
cohort, the RF model had a promising discrim-
inatory capability with an A.C. of 0.81 for esti-
mating in-hospital mortality among septic
patients requiring ICU readmission, compared
with the XGBoost (A.C. 0.79), AdaBoost (A.C.
0.78), Logistic Regression (A.C. 0.77), Linear DA
(A.C. 0.77), Naive Bayes (A.C. 0.75), Decision
Tree (A.C. 0.66), Neural Net (A.C. 0.65) and
Nearest Neighbors (A.C. 0.58). Table 2 details
the A.C., accuracy, precision, recall and F1 of
the nine ML classifiers. The RF approach
achieved the best performance with an accuracy
of 85% and a precision of 62%, compared with
other eight ML models. Additionally, the RF
model had a significantly greater A.C. than
OASIS and SOFA (RF 0.81; OASIS 0.76; SOFA

Table 1 continued

Characteristics Survivors (N = 896) Non-survivors (N = 221) P value

LODS 5 (3–8) 9 (7–12) \ 0.001

Data are presented as a number with the percentage in parentheses, or as the median with the interquartile range (IQR) in
parentheses
ICU Intensive care unit, GCS Glasgow Coma Scale, SOFA Sequential Organ Failure Assessment, OASIS Oxford Acute
Severity of Illness Score, LODS Logistic Organ Dysfunction System
aICU interval duration was defined as the time gap between the first ICU discharge and the second ICU admission
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0.74) (ESM Fig. S5). The calibration curve also
showed a good agreement between predictions
and actual observations, which demonstrated
the consistency of the RF model (ESM Fig. S6).
Thus, the RF model was applied to the further
interpretation.

Model Explainability

Figure 3 shows the SHAP summary plot that
orders features based on their importance to
predict mortality in the validation cohort. For
the RF approach, GCS score, urine output, BUN,
lactate, platelet count and SBP were the top six
most important features. Figure 4 shows the
relationship between the top six features and
the prediction of patient outcomes. The SHAP
values for these six features exceed zero, repre-
senting an increased risk of mortality. The ele-
vated GCS score, cumulative urine output on
day 1, platelet count and SBP showed a negative

correlation with mortality due to sepsis,
whereas elevated BUN and lactate levels showed
a positive correlation.

Model Application

Figure 5 shows the four prediction patients
using the RF model in the validation set. For
patient A (Fig. 5a), the predicted probability for
in-hospital mortality by the RF model is 2%.
The factors detected for predicting a lower
mortality in this patient include a high GCS
score of 13, a normal urine output of 1845 mL, a
normal kidney function with BUN of 7.0 mg/
dL, a normal serum sodium level of 137 mmol/L
and a normal total bilirubin value of 0.6 mg/dL.
For patient B (Fig. 5b), the predicted probability
for mortality is 6%. The patient’s risk of mor-
tality is only a decreased SpO2 value of 87%,
whereas the normal urine output of 1465 mL,
high GCS score of 13, normal BUN of 14.0 mg/
dL and normal partial thromboplastin time of
27.3 s contribute to a negative impact for mor-
tality. For patient C (Fig. 5c), the predicted
probability for mortality is 33%. The patient’s
oliguria (the cumulative urine output of 222 mL
on day 1), elevated lactate value of 5.6 mmol/L,
high alkaline phosphatase level of 196 U/L and
low mean arterial pressure level of 41 mmHg
contribute to increasing the mortality, whereas

bFig. 2 Area under the receiver operator curve (ROC) and
confusion matrix for each machine learning–based model
to estimate mortality in the validation set. a ROC curves
for the nine machine-learning models to predict in-
hospital mortality, b confusion matrix for each machine
learning–based model to estimate in-hospital mortality.
AdaBoost adaptive boosting

Table 2 Performance of the nine machine-learning classifiers for predicting in-hospital mortality in the validation set

Classifiers A.C. Accuracy Precision Recall F1

Random Forest 0.81 84.64% 62% 0.31 0.41

eXtreme Gradient Boosting 0.79 81.79% 47% 0.35 0.40

AdaBoost 0.78 81.79% 48% 0.41 0.44

Logistic Regression 0.77 81.07% 44% 0.29 0.35

Linear DA 0.77 82.14% 49% 0.41 0.44

Naive Bayes 0.75 80.36% 44% 0.45 0.44

Decision Tree 0.66 77.14% 38% 0.49 0.43

Neural Net 0.65 73.93% 30% 0.37 0.33

Nearest Neighbors 0.58 81.07% 39% 0.14 0.21

A.C. Area under curve, AdaBoost Adaptive Boosting
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a high GCS score of 13 helps offset this risk. For
patient D (Fig. 5d), the predicted probability for
mortality is 65%. The patient’s risk for a such
high mortality because of a low GCS score of 3,
a lower urine output of 222 mL and abnormal
laboratory findings (high level of glucose, serum
sodium and BUN).

DISCUSSION

Our aim in performing this modeling, ML-based
study was to establish an effective, stable and
explainable model for predicting mortality in
septic patients requiring ICU readmission. The
results demonstrated that the RF model was the

Fig. 3 Feature importance assessment for RF classifier
using SHAP values in the validation set. Each dot
represents 1 patient and accumulates vertically to depict
the density. The color reflects the high and low values of
each feature, with deep color indicating a higher value and
light color indicating a lower value. The X-axis of the
graph represents the SHAP value, and a positive SHAP
value indicates that it contributes positively to predicting
the model and that the probability of mortality occurring

is high, and vice versa. SHAP SHAPELY Additive
explanation, RF Random Forest, GCS Glasgow Coma
Scale, BUN blood urea nitrogen, SBP systolic blood
pressure, MAP mean arterial pressure, ALP alkaline
phosphatase, DBP diastolic blood pressure, PTT partial
thromboplastin time, PO2 partial pressure of oxygen,
PaO2/FiO2 ratio of arterial oxygen partial pressure to
fractional inspired oxygen
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most reliable and accurate of all models tested
for predicting outcomes. We also found that
GCS score, urine output, BUN, lactate, platelet
count and SBP were the top six most important
features contributing to the RF model. More-
over, we illustrated the specific impacts of key
features on the RF model in four individual
patients from the validation cohort. Overall,
our study demonstrated that accurate predic-
tion of mortality for septic patients requiring
ICU readmission using routinely collected clin-
ical data is possible.

Sepsis is a life-threatening condition with
limited therapeutic options. Additionally, sur-
vivors of critical illness with sepsis usually have
a high ICU readmission rate [38]. However, the
vast majority of previously described models
were created for septic patients with the first
ICU admission, and no one model has yet been
constructed to predict outcome for such
patients with ICU readmission [20, 39–41].
Therefore, it is necessary to develop and vali-
date a risk as well as an outcome prediction
model to assess septic patients requiring ICU
readmission.

In the present study, we found that the
mortality rate in septic patients requiring ICU
readmission was 19.8%, which was approxi-
mately 1.6-fold higher than that associated with
the first ICU admission for sepsis (12.6%) [22].
In accordance with the previous results, our
study also found that readmission of patients to
the ICU was associated with worse outcomes,
such as increased mortality and increased
lengths of stay [3].

In this study, we extracted the clinical data
from the MIMIC-IV database and randomly
divided the data set into a training cohort (75%)
and a validation cohort (25%). We then

constructed nine popular ML models to predict
the mortality risk for septic patients requiring
ICU readmission. The results from the valida-
tion set showed that the best performing model
among the nine ML models tested was the RF
model, having the highest A.C., accuracy and
precision and classical severity of illness scores
(OASIS, SOFA). Given the many data elements
included in our models, including patient
demographics, medical history and laboratory
test results, it is not surprising that the RF model
performed well statistically. These findings are
in keeping with previous observational studies
that confirmed the important role of applying
artificial intelligence to predict mortality in
patients with sepsis [20, 40].

ML models are usually considered to be a
black box: the data go in and the decisions
come out, but the processes between input and
output are opaque [42–44]. This opaqueness on
how decisions are arrived at accounts for why
healthcare providers are unable to explain why
the ML model makes a such particular predic-
tion or how it works. In this study, we utilized
two novel methods, the SHAP value and LIME,
to open the black box in our RF model. The
SHAP value is a game theoretic approach that is
used to explain the output of any ML model
with a good performance, whereas the LIME can
explain the predictions of the ML model by
learning an interpretable model locally around
the prediction. The SHAP summary analysis
showed that GCS score, urine output, BUN,
lactate, platelet count and SBP were the top six
most important factors contributing to the RF
model. This result is partly in agreement with
our earlier observations, which showed that
GCS score, BUN and cumulative urine output
on day 1 were the key factors contributing to
the XGBoost model in predicting mortality
among patients with sepsis [22]. In addition,
these results demonstrated that the elevated
lactate levels, decreased platelet counts and SBP
may be even more relevant to predicting
increasing risk of mortality in septic patients
upon readmission to the ICU, compared with
the primary ICU admission for sepsis. Taken
further, these results indicated that the param-
eters related to organ perfusion contribute
highly to outcome prediction during ICU

bFig. 4 SHAP dependence plot of the top 6 clinical
features in the RF classifier. a GCS, b urine output,
c BUN, d lactate, e platelet, f SBP. Values are plotted with
a scatter plot. A feature has an impact on mortality when
its SHAP value is [ 0, and it has an impact on the
patient’s survival when its SHAP value is\ than 0. GCS
Glasgow Coma Scale, BUN blood urea nitrogen, SBP
systolic blood pressure, SHAP SHapley Additive explana-
tion, RF Random Forest
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readmission in septic patients. Therefore, much
more attention should be paid to organ perfu-
sion in patients with sepsis readmitted to the
ICU. On the other hand, we used the LIME
method to clarify the outcomes produced by
the model on the four individuals from the
validation set, and to explain how the RF model
works in mortality prediction for septic
patients. These will greatly increase a healthcare
provider’s trust in the ML model behavior and
provide insights into the possibility for clinical
use.

Recently, the combination of higher-fre-
quency physiological data streams and artificial
intelligence offer promising applications for
predicting the onset of sepsis, which can allow
for early identification of at-risk patients
[45–47]. This promising tool help healthcare
providers in making better treatment decisions.

However, the present study still has several
limitations. First, the modeling, single-center
and retrospective design of this study does not
allow causal inferences about the associations
between variables and mortality to be drawn.
Additionally, the prediction efficiency of the
current model may be affected by racial and
ethnic differences. Second, the populations in
our study were heterogeneous due to the broad
time window for sepsis diagnosis. We have
attempted to partly mitigate this effect by
applying a new definition of sepsis (Sepsis-3)
and excluding treatment measures in our final
model. Third, our predictive model lacks proper
external validation, and this will affect the
credibility of the RF model. Fourth, our study
could not capture some potential features
known to be highly predictive of mortality risk,
such as medications, and we could only collect

the features based on available data in the
MIMIC-IV. Fifth, we only extracted the clinical
data within the first 24 h after ICU readmission,
but we failed to assess changes during the ICU
stay, which may ignore the effect of feature
fluctuations on the trends. Thus, further mul-
ticenter prospective studies are needed to vali-
date our findings.

CONCLUSION

The ML models have shown a good prognostic
prediction ability in septic patients requiring
ICU readmission. Parameters related to organ
perfusion made the major contributions to
outcome prediction in septic patients readmit-
ted to the ICU. The SHAP values and LIME
method could help to improve interpretation of
ML model outcomes.
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