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ABSTRACT

In spite of increased awareness and the efforts

taken to optimize Clostridium difficile infection

(CDI) management, with the limited number of

currently available antibiotics for C. difficile the

halt of this increasing epidemic remains out of

reach. There are, however, close to 80

alternative treatment methods with

controversial anti-clostridial efficacy or in

experimental phase today. Indeed, some of

these therapies are expected to become

acknowledged members of the recommended

anti-CDI arsenal within the next few years.

None of these alternative treatment methods

can respond in itself to all the major challenges

of CDI management, which are primary

prophylaxis in the susceptible population,

clinical cure of severe cases, prevention of

recurrences, and forestallment of

asymptomatic C. difficile carriage and

in-hospital spread. Yet, the greater the variety

of treatment choices on hand, the better

combination strategies can be developed to

reach these goals in the future. The aim of this

article is to provide a comprehensive summary

of these experimental and currently off-label

therapeutic options.

Keywords: Clinical development pipeline;

Clostridium difficile infection (CDI);

Controversial therapies; Experimental therapies

INTRODUCTION

Clostridium difficile infection (CDI) has been

increasingly recognized in recent years as an

entity of primary importance that requires

prompt diagnosis and efficient treatment to

prevent a severe and complicated disease

course, in-hospital spread and recurrences.

However, due to the spore-forming ability of
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C. difficile, the impaired host intestinal

microbiota and the altered immunity of CDI

patients, current treatment strategies often have

suboptimal results with regard to clinical cure

and relapse prevention alike. In fact, present

therapeutic options leave ample room for

improvement in terms of clinical outcome, as

the average cure rates achieved by the three

main antibiotics currently recommended for

CDI treatment (metronidazole, vancomycin

and fidaxomicin [1, 2]) do not exceed 80–90%

[3]. Although fidaxomicin boasts significantly

lower relapse rates than the other two

alternatives, sustained cure (that is cure

without recurrence) may be as low as 75%

among patients treated with this best available

option [4, 5].

The urgent need for more efficient tools to

fight CDI makes it unsurprising that today there

are an impressive number of novel antibiotics

and other therapies at different stages of

development, some of them already being

tested in phase III randomized controlled trials

(RCTs). At the same time, some long-known

drugs that are currently not recommended for

CDI have been revisited lately to check whether

there is potential room for them in the arsenal

of anti-CDI therapeutics. The aim of this review

is to summarize novel, neglected and

controversial CDI treatment options, some of

which may become part of everyday practice in

the near future.

There are various criteria according to which

one may classify these therapies (mode of

administration, predominantly prophylactic

vs. therapeutic agents, natural vs. synthetic

products, etc.). In this article we resume them

according to the major therapeutic effect that is

sought by their application (Fig. 1).

Accordingly, the majority of these products

can fit in one of the following categories: (1)

antibiotics and non-antibiotic agents with

bacteriostatic/bactericidal effect against C.

difficile; (2) toxin-neutralizing agents; (3)

therapies that boost host immune defense

against CDI; (4) treatments that modulate the

intestinal environment to make it less favorable

for C. difficile colonization; (5)

anti-inflammatory substances that prevent or

reduce enterocyte damage caused by C. difficile

toxins. Table 1 summarizes all therapies

discussed in the following, along with their

current phase of development.

Compliance with Ethics Guidelines

This article is based on previously conducted

studies and does not involve any new studies of

human or animal subjects performed by any of

the authors.

ANTIBIOTICS
AND NON-ANTIBIOTIC
ANTICLOSTRIDIAL AGENTS

Similarly to the three main currently

recommended anti-clostridial drugs, the

majority of off-label and experimental

therapeutic options seek to have a direct effect

on the causative microorganism. These

antibiotics and non-antibiotic agents target

certain molecular components of C. difficile

with the aim of eliminating the bacteria in an

already established infection. They are

presented in the following, grouped according

to their main mechanism of action.

Inhibitors of Transcription and DNA

Synthesis

Rifamycins

Rifaximin is a semisynthetic, nonabsorbable

derivative of rifamycin that inhibits bacterial

2 Infect Dis Ther (2017) 6:1–35



RNA synthesis, primarily used in the treatment

of traveler’s diarrhea and hepatic

encephalopathy. It is considered to have very

little and rather beneficial effect on the normal

intestinal microbiota [6, 7], though its complete

innocuousness in patients receiving long-term

rifaximin treatment is questionable [8]. It was

equally efficient as vancomycin in a hamster

model of CDI, and—depending on the C.

difficile strain used—similar or lower recurrence

rates were observed after rifaximin withdrawal

as compared to the vancomycin group [9].

There have been various retrospective and

prospective clinical case series demonstrating

its efficacy in first CDI episodes, as well as in

recurrent and refractory CDI [10–13], but

rifaximin failed to unmistakably demonstrate

non-inferiority to vancomycin in a RCT [14]. Its

somewhat higher resistance rates as compared

to vancomycin and metronidazole—especially

Fig. 1 Major events in Clostridium difficile infection
pathogenesis as therapeutic targets of investigational anti-CDI
treatments. A Disruption of healthy gut microbiota and C.
difficile colonization—therapy aiming to protect or to restore
the intestinal microbiota; B C. difficile germination and
outgrowth—antibiotics and non-antibiotic agents targeting
C. difficile; C toxin secretion—toxin-neutralizing agents;
D toxin-mediated enterocyte damage and activation of the
innate immune system—therapy aiming to alleviate intestinal

mucosa inflammation; E adaptive immune system
activation—active immunotherapy. The figure does not
pretend to depict the entire process in its completeness but
rather focuses on themain steps that are interferedwith by the
different treatment modalities detailed in the article.
Important components of C. difficile pathogenesis and host
defense (endosomes, cytoskeleton, dendritic cells,mucus layer,
bile acids, etc.) are deliberately missing from the image
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in binary toxin negative strains—and the

possibility of resistance emergence during CDI

therapy are additional issues of concern [15–19].

Today it may only be recommended as a

‘‘chaser’’ therapy after vancomycin treatment

to reduce CDI recurrence risk [20], based on the

results of case series [19, 21] and a small RCT

[22]. A larger phase IV RCT to verify these data is

currently recruiting participants [23].

Rifalazil is another rifamycin derivative,

which conferred significantly lower

mortality—both administered prophylactically

and therapeutically—in a hamster CDI model,

as compared to vancomycin [24]. However, no

studies on its efficacy in human CDI have been

published until now.

Other Agents

Kibdelomycin is a novel inhibitor of type II and

IV topoisomerases developed by Merck, which

possesses high in vitro activity against various

C. difficile strains [25]. Encouraging results were

obtained with it in a hamster model of CDI in

terms of survival (80–100%), bacterial

elimination (2- to 5-log reduction of C. difficile

counts) and a practically absent enteral

absorption [25]. Upcoming phase I human

trials have not yet been announced.

MGB Biopharma is developing a compound,

MGB-BP-3, that interferes with the transcription

of C. difficile DNA by binding directly to certain

sequences on its minor groove [26]. It reduced

both vegetative cell and spore count of intestinal

C. difficile to a greater extent than vancomycin in

an animal model [26], and it was well tolerated

without raising major safety issues in a recent

phase I human trial [27]. The initiation of a phase

II trial with this compound is one of the major

immediate objectives of the company [28].

OPS-2071 is a quinolone-based

investigational compound under development

by Otsuka Pharmaceutical. After two recentlyT
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completed phase I trials [29], a phase II clinical

trial is currently recruiting subjects to evaluate

its efficacy and safety in CDI patients [30].

Inhibitors of Protein Synthesis

Tetracyclines

Tigecycline is the first member of the novel

glycylcycline antibiotic family with a broad

antimicrobial spectrum that inhibits protein

synthesis by blocking the entry of

aminoacyl-tRNA into the ribosome by

binding to the 30S subunit [31]. Apart from

possessing activity against a wide range of

gram-positive and gram-negative bacteria,

including multi-resistant strains, tigecycline

inhibits both toxin production and

sporulation of C. difficile in vitro [32, 33].

Although due to its wide spectrum tigecycline

may alter the intestinal microbiota

significantly, thus potentially facilitating

primary and recurrent CDI [34], there are

various reports about its efficacy as an

anti-CDI agent in both animal studies [35]

and the real-life clinical setting [36–40]. Solid

evidence originating from RCTs, however, is

still lacking. Consequently, the place of

tigecycline in the CDI treatment hierarchy is

still dubious, but it may be considered as a

good substitute for other broad-spectrum

antibiotics in appropriate cases when

withdrawal of concomitant systemic

antibiotic treatment at CDI diagnosis is not

possible.

Omadacycline is a new aminomethylcycline

antibiotic that binds to the tetracycline

binding-site of the bacterial 30S ribosome

subunit, and it has considerable potency

against gram-positive bacteria [41]. It also

demonstrated high in vitro activity against C.

difficile and was superior to vancomycin in

terms of survival in a hamster model of CDI

[42]. Its clinical evaluation in human CDI has

not yet been undertaken.

Other Agents

Fusidic acid is an inhibitor of elongation factor

G that can act in a bacteriostatic or bactericidal

manner depending on its concentration and

exhibits good in vitro activity against C. difficile

[43]. It was compared with vancomycin and

metronidazole in an RCT [44] and with

metronidazole in another one [45], showing

comparable efficacy to its comparators in both

studies. In one of these trials, however,

significantly higher CDI recurrence rates were

observed in patients receiving fusidic acid

treatment than in the vancomycin and

metronidazole groups [44]. Another concern

with regards to fusidic acid is the relatively

frequent emergence of resistant C. difficile

strains during treatment, which also limits its

routine use [46].

A semisynthetic thiopeptide antibiotic,

LFF571, interferes with bacterial protein

synthesis by inhibiting the delivery of

aminoacyl-tRNA to the ribosome. Its average

MIC values against C. difficile fall between the

ones observed with fidaxomicin and

vancomycin [47, 48], but it does not seem to

be affected by mutations conferring resistance

to these antibiotics [49]. It was tested against

and proved superior to vancomycin in a

hamster model of CDI in terms of survival and

recurrence [50], and it was non-inferior to

vancomycin in a phase II human study [51].

Novartis, the company behind LFF571, has not

announced forthcoming phase III trials with

this compound for the time being.

CRS3123 (previously REP3123) is an

experimental drug against CDI with a novel

mechanism of action, namely the inhibition of

C. difficile methionyl-tRNA synthetase, which is

an essential enzyme for bacterial protein
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synthesis. It proved to be highly active against

C. difficile without significantly affecting major

representatives of the normal intestinal

microbiota [52, 53]. The superiority of

CRS3123 to vancomycin and metronidazole

was demonstrated in terms of inhibition of

toxin formation and sporulation in vitro and

also in terms of survival in an in vivo model

[54]. According to the developer, Crestone

Pharma, phase I studies with CRS3123 are

currently underway [55].

RBx 11760, a biaryl oxazolidinone, was

synthesized by Ranbaxy Research Laboratories.

It inhibits sporulation and also has a

considerable effect on C. difficile toxin

production [56]. In an in vivo model of CDI

the hamsters treated with RBx 11760 had longer

survival than the ones receiving vancomycin or

metronidazole [56].

RBx 14255 is a new ketolide antibiotic

developed by the same company as RBx

11760. It showed similar in vitro activity

against C. difficile as vancomycin and

metronidazole, but proved superior to both of

them in terms of survival in an animal model

[57].

Since Ranbaxy merged into Sun

Pharmaceutical Industries in 2015, the future

fate of these last two investigational

compounds is unsure.

Antisense antibiotic therapy is a novel

antimicrobial treatment method that aims to

block the expression of key microbial genes by

means of the binding of single-stranded

oligomers to the corresponding

complementary mRNA of the microorganism

[58]. A recent study demonstrated the efficacy

of this novel therapy against C. difficile in vitro

[59]. The authors observed significant

inhibition of bacterial growth with the

addition of phosphorothioate gapmer

antisense oligonucleotides complementary to

C. difficile mRNAs coding essential bacterial

enzymes [59]. This revolutionary treatment

method has been tested in various animal

models of bacterial infections, but clinical

trials have only been undertaken in viral

infections until today [58].

Inhibitors of Metabolic Pathways

Nitazoxanide is a thiazolide antibiotic by

Romark Laboratories, which interferes with the

metabolism of anaerobic microorganisms by

inhibiting the pyruvate:ferredoxin

oxidoreductase [60]. This compound possesses

potent antiparasitic and antiviral properties [61]

and also showed potent activity against C.

difficile in vitro, including strains with reduced

metronidazole susceptibility [62, 63]. Clinical

trials comparing its efficacy with metronidazole

(phase II) [64] and vancomycin (phase III) [65],

however, were not conclusive, and the

company presently pursues indications other

than CDI for this drug [66].

Amixicile, a derivative of nitazoxanide with

enhanced water solubility, synthesized at the

University of Virginia, was comparable in terms

of clinical cure to vancomycin and fidaxomicin

in a mouse CDI model and resulted in lower

recurrence rates than its comparators [67]. It

does not appreciably affect intestinal

microbiota, and though a considerable

proportion of orally administered amixicile is

intestinally absorbed, it seems to have a more

favorable toxicity profile than nitazoxanide

[68]. Human studies have not been undertaken

with amixicile until today.

Inhibitors of Cell-Wall Formation

Glycopeptides

Glycopeptide antibiotics interfere with bacterial

peptidoglycan synthesis and consequently

10 Infect Dis Ther (2017) 6:1–35



inhibit cell wall formation. Apart from

vancomycin there are a number of newer

members of this family that have been tested

in the treatment of CDI with promising results.

Teicoplanin may be a good alternative to

vancomycin treatment, although save for a

recent observational study [69] no clinical

evidence has been published on its use in the

last 20 years. Theoretically teicoplanin may

even be superior to vancomycin in this setting

since it was reported to have lower MIC values

for C. difficile [70, 71] and patients treated with

teicoplanin had notoriously lower recurrence

rates than the ones receiving vancomycin in the

few RCTs conducted [44, 72, 73]. This difference

was not statistically significant in any of these

studies, but it is to be borne in mind that all of

them had a rather small number of participants.

A Cochrane meta-analysis, on the other hand,

showed significantly better bacteriologic cure

and a close-to-significant advantage in clinical

cure in patients treated with teicoplanin as

compared to the ones receiving vancomycin

treatment [74]. Teicoplanin has had a licensed

indication for CDI since 2013, and its oral

formulation is available in many countries

outside the USA [1].

Ramoplanin also has lower MICs against C.

difficile than vancomycin [75] and maintains its

activity even against strains with reduced

vancomycin susceptibility [76]. Its sporicidal

effect is superior to vancomycin as has been

demonstrated both in vitro and in vivo [77, 78].

A phase II study conducted more than 10 years

ago is the only experience with ramoplanin in

human subjects published [79], though

according to the website of its current

developer (Nanotherapeutics) a phase III RCT

has already been completed and a phase IIb trial

to evaluate its efficacy in CDI relapse prevention

is imminent [80].

A novel lipoglycopeptide, oritavancin,

showed 2–4 times lower MIC values against C.

difficile as compared with vancomycin in an

in vitro study [81]. It was tested against

vancomycin in a human gut model with

similar efficacy in the initial reduction of

toxin levels, but oritavancin impeded

recurrence after drug withdrawal to a greater

extent than vancomycin [82, 83]. In a hamster

model it also proved superior to vancomycin in

the prevention of CDI [84]. It seems that the

capacity of oritavancin to avoid CDI recurrence

lays in its adhesion to dormant C. difficile

spores, promptly eliminating cells at an early

stage of germination [85]. Human studies with

oritavancin in the treatment of CDI are,

however, still lacking.

Demethylvancomycin is a glycopeptid

antibiotic clinically used in China since the

1960s [86]. Certain N-substituted

demethylvancomycin derivatives showed

enhanced activity as compared to vancomycin

against C. difficile strains in an in vitro model

[87], though these findings have not been

verified in in vivo models.

Other Agents

A number of post-translationally modified

bacteriocins (lantibiotics) have been subjects

of research in the laboratories of Novacta

Biosystems in recent years, which showed fair

capacity to inhibit cell-wall synthesis.

Actagardine, though it is not very active

against C. difficile in itself, in combination

with ramoplanin showed a potent synergistic

effect against the majority of C. difficile strains

tested in vitro [88], and a mutant variant of it,

V15F, seems to be twice as active as actagardine

[89]. NVB302 proved to be non-inferior to

vancomycin in a human gut model of CDI

[90], and a successful phase I trial has also
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already been completed with this compound

[91].

A synthetic analog of the naturally occurring

nucleoside-based capuramycin, SQ641, targets

translocase-1, an essential enzyme in bacterial

cell-wall synthesis. It was originally intended to

be an anti-tuberculosis agent, but since it had

good in vitro activity against C. difficile it was

tested in a mouse model of CDI and was

superior to vancomycin in terms of 14-day

survival [92]. The company behind this

compound, Sequella, has not announced

forthcoming human studies for the time being.

Agents with Direct Effect on Cell Wall/Cell

Membrane

Surotomycin (MK-4261, previously CB-183,315)

is a membrane-active cyclic lipopeptide, whose

rights are owned by Merck since its acquisition

of the original developing company, Cubist

Pharmaceuticals, in 2015. It has potent

bactericidal activity against both growing and

stationary phase C. difficile [93]. It is also active

against Enterococci [94] and disrupts intestinal

microbiota only moderately [95, 96], although

this may be sufficient to bring forward

the overgrowth of extended-spectrum

beta-lactamase-producing Klebsiella in

surotomycin-treated patients [97]. On the

other hand, the emergence of resistant C.

difficile or Enterococcus strains during treatment

is possible but fairly unlikely [98, 99]. In a phase

II clinical trial CDI recurrence rates were

significantly lower and sustained clinical

response rates were significantly higher in

patients treated with surotomycin as compared

to the vancomycin-treated control group [100].

However, the results of one of the two recently

completed phase III trials [101] were recently

made public, according to which the

non-inferiority of surotomycin to vancomycin

could not be demonstrated [102]. These

disappointing results may be the explanation

for the absence of surotomycin in Merck’s latest

research pipeline chart [103].

Thuricin CD, a sactibiotic produced by

Bacillus thuringiensis, was proved to possess

narrow-spectrum activity against C. difficile

[104], having very little effect on the rest of the

normal intestinal microbiota [105]. According

to a recent study, the combination of Thuricin

CD with other anticlostridial antibiotics may

have a synergistic effect on biofilms formed by

certain C. difficile strains [106].

Clostridium difficile produces so-called phage

tail-like particles (PTLPs) that successfully

eradicated C. difficile in an in vitro model

[107]. In another study, administration of a

genetically modified PTLP (Avidocin CD), called

Av-CD291.2, successfully prevented C. difficile

colonization in mice without interfering with

the normal colonic flora [108]. The company

behind Av-CD291.2, AvidBiotics, is planning to

start human studies with this compound in the

near future [109].

PLyCD1-174 is the recombinantly expressed

catalytic domain of a prophage endolysin

identified in a C. difficile strain (CD630). It

exerted potent lytic activity against C. difficile

without significantly affecting other

components of the intestinal microbiota in an

ex vivo mouse model [110].

Hybrid Antibiotics and Other Agents

with Multiple Mechanisms of Action

Cadazolid is a new fluoroquinolone-

oxazolidinone antibiotic by Actelion, which

exerts its antibacterial effect principally by the

inhibition of protein synthesis and to a lesser

degree also interferes with bacterial DNA

synthesis [111]. Cadazolid not only has lower

MICs against C. difficile than vancomycin and
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even fidaxomicin [112, 113], but it is also highly

active against vancomycin resistant Enterococci,

a major threat in vancomycin-treated patients,

minimizing the risk of patient colonization by

this much-dreaded bacteria [114]. This,

combined with its potent activity against

toxin formation and sporulation, makes it a

promising new recruit among anticlostridial

drugs. It performed well in a phase II trial as

compared to vancomycin in first episodes or

first recurrences of CDI [115], and it is currently

being tested in two phase III clinical trials [116].

MCB3681, a novel

fluoroquinolone-oxazolidinone antibiotic by

Morphochem, also proved to possess excellent

in vitro efficacy against C. difficile [117]. In a

phase I study its water-soluble prodrug,

MCB3837, was administered intravenously to

healthy individuals and showed a marked

reduction of gram-positive organisms without

considerably affecting the gram-negative

portion of intestinal microbiota [118]. Based

on these data the Food and Drug

Administration recently granted Fast Track

designation to the compound, and the start of

a phase II clinical trial with MCB3837 seems

imminent [119].

MBX-500 (a.k.a compound 251D) is a novel

hybrid antibiotic that binds to three different

bacterial targets: its anilinuracil component acts

as a DNA polymerase inhibitor, and its

fluoroquinolone component blocks DNA

topoisomerase and gyrase enzymes [120]. Its

multiple-site action seems to make the rise of

resistant strains during treatment less probable

[120]. The in vivo efficacy of MBX-500 against

C. difficile was demonstrated in at least three

animal CDI models (hamsters [121], mice [121]

and piglets [122]), but human studies have not

yet been announced by its developer,

Microbiotix.

Ramizol is the first member of a new

antibiotic family that selectively targets the

mechanosensitive ion channel of large

conductance (MscL) in bacteria [123] and

possesses potent antioxidant properties as well

[124]. In a hamster model of CDI orally

administered Ramizol conferred lower 28-day

survival than vancomycin (57% vs. 86%), and

its spore-clearing capacity was also inferior to

that of vancomycin (29–57% vs. 100%) [125].

The company behind it (Boulos and Cooper

Pharmaceuticals), however, is currently working

on a formulation of enhanced efficiency of this

drug [125] and expects to initiate phase I

clinical trials in 2017 [126].

Human a-defensin 5 (HD5) is an enteric

representative of membrane-active

antimicrobial proteins and peptides (AMPs)

produced in the small intestine by Paneth

cells, forming an important, though not yet

truly understood role in host-microbiota

interactions [127]. Its role in C. difficile

toxin-neutralization was suggested by one

study [128], and direct C. difficile cell killing

was observed in another one with physiological

concentrations of HD5 [129]. Whether these

characteristics of HD5 may be exploited in the

fight against C. difficile is unclear.

Certain medium-chain fatty acids, such as

lauric acid derived from virgin coconut oil,

caused a significant inhibition of C. difficile

growth in an in vitro study [130]. It is

postulated that bacterial cell death is caused

by the incorporation of these fatty acids in the

bacterial cell membrane that brings forth a

substantial change in its permeability as well

as by a probable interference with cellular

metabolism [131]. In vivo studies on the

efficacy of virgin coconut oil or its derivatives

in the prevention or treatment of CDI have not

yet been undertaken.
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Agents of Unknown/Unclear Mechanism

of Action

Ridinilazole (previously SMT19969) is a

narrow-spectrum antibiotic with poor oral

bioavailability that exhibits 2–17 times lower

MIC values against C. difficile than vancomycin

[132–134]. Its precise mechanism of action is

not yet fully known, but it had a potent

bactericidal effect on C. difficile, caused

significant reduction of toxin levels and also

demonstrated anti-inflammatory activity

in vitro on human intestinal cells [135]. In a

hamster model, better 28-day survival rates

were observed in animals treated with

ridinilazole than in the ones given

vancomycin or fidaxomicin [136]. A phase II

RCT was completed recently, where ridinilazole

achieved the non-inferiority goal set in terms of

clinical cure and was superior to vancomycin in

terms of sustained clinical response after

30 days of follow-up [137]. Summit

Therapeutics is currently preparing phase III

RCTs with this compound [138].

Berberine is a natural substance already

utilized in ancient Chinese folk medicine. The

addition of berberine to vancomycin

significantly improved mortality, prevented

weight loss and decreased recurrence rates in a

mouse model of CDI [139]. The authors

speculated that berberine may counteract the

deleterious effect of vancomycin on intestinal

microbiota by inhibiting the expansion of

Enterobacteriaceae. A recent in vitro study,

however, showed a high berberine uptake of

germinating C. difficile spores where it may

reach elevated concentrations, inhibiting spore

outgrowth on its own [140].

The bacteriostatic effect of bovine lactoferrin

on Clostridium species has been known for more

than 20 years [141]. As a biomarker for

intestinal inflammation, its fecal

concentrations seem to correlate with CDI

severity [142]. Although it is postulated that

lactoferrin exerts its bacteriostatic activity by

acting as an iron-sequestering agent, in a recent

mouse model of CDI the administration of

iron-saturated—but not iron-depleted—bovine

lactoferrin successfully inhibited C. difficile

toxin production and delayed C. difficile

outgrowth, without significantly affecting the

rest of the intestinal microbiota [143]. A phase II

RCT on its efficacy in the prevention of

antibiotic-associated diarrhea in children is

currently underway [144].

A completely new approach is being

investigated under the aegis of Photobiotics

Ltd., which aims to eradicate C. difficile by

means of radical oxygen species produced by

light-activated photosensitizers. The method,

called Photodynamic Antimicrobial

Chemotherapy (PACT), involves the activation

of a light-sensitive dye (photosensitiser) by

visible light that utilizes the received energy to

generate radical species or singlet oxygen that,

in turn, leads to cell death [145]. In an in vitro

model, 99.9% of C. difficile colonies was

eliminated by this method without causing

appreciable harm to surrounding colon cells

[145], but in vivo studies have not been

conducted so far.

TOXIN-NEUTRALIZING AGENTS

Unlike the agents discussed above,

toxin-neutralizing drugs aim not to eliminate

C. difficile, but to prevent its cytotoxic effect on

colonocytes. These agents either sequester or

inactivate C. difficile toxins impeding them

from reaching their target cells, hence

preventing or alleviating the clinical

manifestations of CDI. Their use as

prophylactic or adjuvant therapy has a solid

scientific basis, but since they have no effect on
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either vegetative C. difficile or its spores they do

not prevent asymptomatic carriage and

transmission.

Toxin Binding

Cholestyramine, an ion exchange resin usually

used as a bile acid sequestrant, was the first one of

the agents in this category to be tested more than

35 years ago [146]. There were various cases of

recurrent CDI reported to respond to

cholestyramine treatment by that time

[147, 148], but the compound was never tested

in any formal clinical trial. It does not seem to be

suitable as an adjunct therapy to vancomycin,

since it not only binds C. difficile toxins but the

antibiotic as well [70]. Based on the encouraging

results of a recent pilot study it was proposed to

be used as primary CDI prophylaxis in patients

receiving long-term systemic antibiotic

treatment [149], but these findings will have to

be confirmed in larger RCTs.

Tolevamer, a toxin-binding polymer, was a

compound of great expectations during the first

decade of this century [150, 151]. The initial

enthusiasm, however, flagged considerably in

light of more recent studies that proved its toxin

neutralization capacity to be much lower than

previously thought [152], and its clinical efficacy

failed to match that of vancomycin or

metronidazole in two clinical trials [153]. In

these trials, however, CDI recurrence rates were

significantly lower in the subset of patients that

responded to tolevamer than in the subsets of

responders in the vancomycin and the

metronidazole group [154]. These data may

adumbrate a potential use of tolevamer in CDI

prophylaxis in the future, although Genzyme

(now Sanofi Genzyme) indefinitely halted its

development after the unsuccessful trials.

Calcium aluminosilicate anti-diarrheal

(CASAD) is a naturally occurring clay known

to possess considerable cation exchange

absorbent properties. Its potential as a

prophylactic agent in cancer-related diarrhea

was recently investigated by Salient

Pharmaceuticals, with inconclusive results

[155, 156]. However, because of its in vitro

capacity to sequester C. difficile toxins [157], a

phase II trial was initiated to investigate its

efficacy as an adjuvant therapy of CDI, which

was prematurely terminated because of slow

enrollment [158].

Premature Toxin-Activation

Clostridium difficile takes advantage of a host

cytosolic enzyme, inositol hexakisphosphate,

that triggers an autocleavage process of the

toxins once these become endocytosed into

colonocytes, which results in their activation

and the subsequent cytotoxic effect. A novel

approach endeavors to combat CDI by the

premature luminal activation of C. difficile

toxins using an inositol hexakisphosphate

analog (INS-5010) where some of the

phosphate groups were substituted by sulfate

groups for stability purposes. C. difficile-infected

mice treated with this compound showed a

significant reduction of histological signs of

colitis as compared to control subjects [159].

The Swiss company developing INS-5010,

Inositec AG, has not yet announced the

initiation of human studies [160].

Passive Immunization

The potential of colostrum of pregnant cows

immunized with C. difficile toxoids

(hyperimmune bovine colostrum, HBC) to

inhibit the cytotoxic and enterotoxic effect of

C. difficile toxins has been known for more than

2 decades [161, 162]. Recently, it was proved to

alleviate symptoms of CDI in gnotobiotic
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piglets without detectably affecting normal

intestinal microbiota [163]. Whey protein

concentrate derived from immunized cow milk

was proved to be safe and well tolerated in

human subjects with CDI as well [164]. A

randomized phase II study comparing the

efficacy of immune whey with metronidazole

in the treatment of recurrent CDI showed

similar clinical results to the two treatment

modalities, but was terminated prematurely

because of the bankruptcy of the sponsor

(Novatreat Ltd.) [165].

The use of intravenous immunoglobuline

(IVIG) in CDI has been subject to discussion for

decades, but in the absence of evidence from

RCTs its potential benefits remain controversial

[166, 167]. There are only two relatively small

retrospective matched cohort studies published

that compare the clinical efficacy of the

addition of IVIG to conventional

anti-clostridial treatment [168, 169]. Neither of

them found significant differences between the

compared cohorts in the main clinical

outcomes, though the authors of one of these

studies point out that in their IVIG cohort there

were significantly older patients with more

severe CDI than in the control group [169].

The results of the first study on the efficacy

of monoclonal antibodies against C. difficile

toxin A (actoxumab, previously MK3415) and

toxin B (bezlotoxumab, previously MK6072 and

MDX1388) in a hamster model of CDI were

published exactly 10 years ago [170]. In that

study enhanced efficacy was observed with the

combination of the two antibodies in terms of

both recurrences and mortality. In a phase II

trial with this combination (a.k.a. MK-3415A),

the addition of the neutralizing antibodies to

standard CDI treatment also significantly

lowered recurrence rates [171]. However,

although the efficacy of bezlotoxumab in

preventing CDI recurrence was confirmed in

two recently conducted phase III trials, its

combination with actozumab, surprisingly, did

not show any additional benefit in these studies

[172]. Based on these results the US Food and

Drug Administration (FDA) has very recently

approved bezlotoxumab, and it will be available

in the first quarter of 2017 [173].

There are several other companies and

research entities as well focusing on

monoclonal antibodies against C. difficile

toxins. A mixture of anti-A and anti-B

neutralizing antibodies of ovine origin

(PolyCAB) is under research by MicroPharm,

which showed a significant reduction of CDI

recurrence in a hamster model [174]. Phase I

trials with this product are currently ongoing

[175]. UCB Pharma financed an investigation

with UCB MAb, a mixture of three humanized

antibodies (two against toxin A and one against

toxin B) that proved to be superior in terms of

survival after 28 days as compared to

bezlotoxumab in hamsters [176]. Another

mixture of humanized anti-A and anti-B

antibodies (CANmAbA4 and CANmAbB4) by

Emergent BioSolutions recently demonstrated

excellent in vitro toxin neutralizing capacity

and also conferred protection against clinical

CDI in a hamster model [177]. BliNK

Biomedical SAS, in turn, is developing a

cocktail consisting of an anti-A and two anti-B

monoclonal antibodies of entirely human

origin (MAb A2 ? MAb B1 ? MAb B2) with

very promising results in an animal study

published last year [178]. A novel bispecific

single-domain antibody, referred to as ABA,

with binding domains for both toxin A and B

demonstrated excellent toxin neutralization

activity in vivo and achieved a 100% survival

in mice with fulminant CDI caused by the

hypervirulent strain BI/NAP1/027 [179]. A

modified version of ABA, VNA2-Tcd, has

recently shown an outstanding protective
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capacity against CDI in another animal model

[180]. Apart from these, various other

monoclonal or single-domain antibodies

against the toxins or other structural

components (surface-layer proteins, flagella,

etc.) of C. difficile are subjects of investigation

currently, but none of these are in the clinical

(and most of them not even in in vivo

preclinical) phase of development yet [181].

ACTIVE IMMUNOTHERAPY

The preparation of the host immune system for

a potential encounter with C. difficile and its

toxins is the objective of this therapy. The most

advanced vaccines elicit a potent immune

response against toxins A and B, but—similarly

to toxin-neutralization—they do not lower

colonization rates, and their preventive value

manifests itself only on an individual level as

the transmission risk remains unaffected. Other

interesting vaccine candidates—which are in

much earlier stages of development—targeting

different surface components of C. difficile may

offer certain advantages in this sense in the

future.

Toxoid and Recombinant Toxin-Based

Vaccines

ACAM-CDIFF is a toxoid vaccine against both

toxin A and toxin B of C. difficile developed by

Sanofi Pasteur. After positive immunological

and clinical results obtained in a hamster model

[182] and in two phase I studies [183],

ACAM-CDIFF recently passed a phase II trial

without any safety issues [184]. A phase III RCT

with this vaccine is currently ongoing [185].

Pfizer is developing another toxoid vaccine

(PF-06425090) with good results obtained in a

phase I clinical trial [186], and two phase II

trials with this product are currently under way

in healthy adults [187].

VLA84 (a.k.a. IC84), a recombinant protein

vaccine containing epitopes of toxin A and

toxin B developed by Valneva, showed

positive results in a recent phase II trial in

terms of safety, tolerability and

immunogenicity in both younger adults and

elderly volunteers [188]. The vaccine is soon

to be tested in a phase III RCT, according to

the company [189].

DNA Vaccines

DNA vaccines have the theoretical advantage

over conventional vaccination of inducing

not only humoral but also cellular immune

response. The first DNA vaccine candidate for

C. difficile encoded the receptor-binding site

(RBD) of C. difficile toxin A [190]. Inoculated

mice produced a potent antibody response to

toxin A, and up to 100% survival was

observed (depending on vaccine formulation

and mouse strain) after challenge with a lethal

dose of toxin A [190].

In another mouse model, apart from the RBD

of toxin A, the N-terminal enzymatic domain of

toxin B also showed a positive antibody

response [191]. The combination of the

antibodies elicited by these two DNA vaccines

conferred 100% protection against C. difficile in

the experimental animals [191].

More recently, promising results were

published with a novel DNA vaccine that

contains plasmids encoding optimized RBDs of

both toxin A and B of C. difficile [192]. The sera

of immunized animals (mice and primates)

showed potent toxin neutralization ability

in vitro, and the combined vaccine provided a

50–90% protection against a lethal dose of C.

difficile spores in mice [192].
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Vaccines Against C. difficile Surface

Antigens

Although toxin-based vaccine candidates may

successfully prevent toxin-mediated tissue

damage and lessen the clinical manifestations

of CDI, they do not prevent carrier status

because they have no effect on C. difficile

colonization. Vaccines targeting C. difficile

surface antigens (proteins or carbohydrates)

aim to offer a solution to this problem.

The surface layer protein (SLP) is the major

surface antigen of C. difficile. It is made up of an

outer layer formed by low-molecular-weight SLP

(LMW-SLP) and an inner layer formed by

high-molecular-weight SLP (HMW-SLP). These

two proteins are created from a common

precursor molecule (SlpA) that undergoes

enzymatic cleavage by a protease (Cwp84) once

SlpA reaches the cell surface. Intranasal or

intraperitoneal administration of crude SLP

(containing both HMW-SLP and LMW-SLP)

conferred only moderate protection against a

lethal C. difficile challenge in hamsters and mice

[193]. Intra-rectal vaccination with the precursor

protein SlpA in another animal study resulted in

slightly more favorable results, as it significantly

decreased the colonization level in the

vaccinated mouse group, though it also failed

to provide significant benefit in terms of survival

[194]. The immunogenicity and protective

ability of the protease Cwp84 have also been

investigated in hamsters: rectally administered

Cwp84 partially inhibited intestinal

colonization and significantly increased the

survival of hamsters challenged with C. difficile

in one study [195], and similar survival rates

(40%) were observed in another one with the

intragastric administration of the same vaccine

encapsulated in pectin beads [196].

Elements of C. difficile flagellum can also

be found among potential future vaccine

candidates. Recombinant flagellar cap

protein (FliD) in combination with either

Cwp84 or a mix of other flagellar proteins

administered rectally to mice resulted in

significantly lower colonization rates as

compared to control animals [197].

Intraperitoneal vaccination with

recombinant flagellin (FliC), on the other

hand, significantly improved survival in

mice and hamsters infected with C. difficile

in a recent study, while leaving the rest of the

intestinal microbiota apparently intact [198].

All three known surface polysaccharides of

C. difficile have been proved to be capable of

eliciting a certain level of immune response.

PS-I was first detected on the hypervirulent C.

difficile strain 027 but it is not specific to this

ribotype [199]. Conjugates of either synthetic

PS-I or its disaccharide minimal immunogenic

epitope with the diphtheria toxin variant

CRM197 proved immunogenic in mice [200].

Another murine model demonstrated the

immunogenicity of a conjugate vaccine of a

synthetic hexasaccharide epitope of PS-II with

CRM197 [201], and PS-II-specific immune

response was observed in swine as well after

being vaccinated with a non-adjuvanted PSI/

PSII preparation [199]. In a recent study a

conjugate vaccine of lipoteichoic acid (LTA,

a.k.a. PS-III) and CRM197 not only evoked

antigen-specific immune response in a mouse

model, but also significantly inhibited intestinal

C. difficile colonization [202].

There are a number of other potential C.

difficile vaccine candidates in the preclinical

phase of investigation that may be tested in

the clinical setting as well in the forthcoming

years [203, 204].
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RESTORATION AND MODULATION
OF THE INTESTINAL MICROBIOTA

Preservation and/or restoration of colonization

resistance of the intestinal microbiota is the

primary objective of the following therapies

with subsequent protection against toxigenic C.

difficile colonization or its elimination from the

colon. Among these methods there are some

that endeavor to offer the most complete

solution for the problem of CDI, aiming to

achieve clinical cure and the prevention of

carriage, transmission and recurrences all at

once.

Microbiota Restoration

The microbiota-restoring therapy par excellence

is intestinal microbiota transplantation, which

has been living a true renaissance in the last

years. Its excellent clinical efficacy is further

upheld by the observation that host intestinal

microbiota composition and diversity are

intimately linked to CDI severity and

recurrence risk [205].

That the restoration of an impaired intestinal

microbiota by transplanting feces of a healthy

individual may effectively cure CDI and prevent

recurrences is not questioned any more [1, 20].

Its efficacy was proven in two already published

phase II RCTs [206, 207], and another phase II

RCT performed on pediatric patients has also

recently been completed [208], whose results

are not yet available. Beside these completed

studies there are various ongoing phase II and

III RCTs with this treatment method [209].

With the demonstration that the efficacy of

previously recollected frozen and freshly

harvested microbiota have the same efficacy,

intestinal microbiota transplantation has

become a lot less cumbersome than before

[210, 211]. However, the manipulation of feces

and classical enteral administration methods

(i.e., by nasogastric tube, rectal enemas or via

colonoscopy) are not only laborious, but make

this procedure rather unattractive for physicians

and patients alike [212–214]. For this reason

there are a number of efforts being made to

enhance feasibility and social acceptance of this

highly efficient therapy. Oral administration of

capsulized intestinal microbiota is one of the

pioneer solutions for the above problem [215].

The elevated number of microbiota-containing

capsules to be administered, though, is a major

drawback of this method, which may be

improved by submitting microbiota to

lyophilization instead of simple freezing

[216, 217].

RBX2660 is a commercially available,

standardized microbiota suspension prepared

from human stool (Rebiotix Inc.) that

demonstrated its efficacy in a multicenter

open-label phase II study [218]. A phase IIb

RCT with this product has recently completed

enrollment, and if its results are favorable

RBX2660 is intended to enter phase III [219].

Seres Therapeutics has recently developed

SER-109, which contains around 50 species of

feces-derived Firmicutes spores after the

elimination of the rest of the microbiota with

ethanol. In an uncontrolled study, it was

administered orally in an encapsulated form to

30 patients with multiple CDI recurrences after

an appropriate response of standard of care

antibiotic treatment, and no further recurrences

were observed during the 8-week-long

follow-up in 96.7% of the subjects [220]. A

phase II trial to compare its efficacy with

placebo is currently recruiting participants

[221]. The same laboratory is investigating

another microbial preparation comprised of

spores of 12 different bacterial species

(SER-262) meant to prevent recurrence after

first CDI episodes [222]. An ongoing phase Ib
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RCT is currently evaluating the efficacy of this

product as compared to placebo [223].

MET-1 (Microbial Ecosystem Therapeutic-1)

is a defined intestinal bacterial culture

originating from a single donor. Two patients

with recurrent CDI who were treated with this

product experienced clinical cure in 2–3 days

and remained recurrence free for the 6

following months [224]. An open-label pilot

study is about to be initiated to demonstrate its

efficacy in recurrent CDI in comparison with

vancomycin [225].

The administration of nontoxigenic C.

difficile strains is another original approach to

prevent colonization by toxigenic C. difficile.

The most advanced research is being done with

the nontoxigenic C. difficile strain M3

(NTCD-M3, a.k.a. VP20621), with encouraging

results in animals [226] and in a recent phase II

placebo-controlled human trial as well [227].

Another nontoxigenic strain, CD37, also

provided significant protection against CDI in

a mouse model as observed by less weight loss

and less mortality in mice treated as compared

to untreated animals [228].

Bile Acid Therapy

The bile acid composition of the gut has an

important role in the upholding of colonization

resistance, as certain secondary bile acids

formed by members of a healthy microbiota

have an important role in the inhibition of C.

difficile spore germination [229]. The loss of this

effect due to the disruption of intestinal

microbiota by broad-spectrum antibiotic

treatment is a key factor in C. difficile

outgrowth, potentially leading to clinical CDI

[230]. A secondary bile acid, ursodeoxycholic

acid, was recently proved beneficial in a case of

refractory C. difficile-associated pouchitis [231],

but further evaluation of this compound in this

setting has not yet been undertaken. A

taurocholate analog, CamSA, is a potent

in vitro inhibitor of C. difficile germination

[232] that successfully prevented CDI in mice in

a dose-dependent manner [233]. Whether

secondary bile acids or their analogs will play

a role in CDI prevention or if they can also be

beneficial as adjunct in CDI treatment is still

unknown.

Intestinal Antibiotic Inactivators

CDI risk is intimately linked to the damage

systemic antibiotic therapy exerts on the

intestinal microbiota. Methods to avoid this

deleterious side effect by the inactivation of

antibiotics that reach the colon lumen promise

not less than the elimination of this single

major risk factor in cases when antibiotic

treatment is inevitable.

DAV132 is an activated-charcoal-based

product with enteric coating that successfully

adsorbs antibiotics such as amoxicillin or

moxifloxacin that reach the proximal colon

[234, 235]. This compound, developed by

DaVolterra, proved to prevent

moxifloxacin-induced CDI in an animal model

[236] and was demonstrated to be safe and

efficient in humans as well, in two phase I RCTs

[234, 235]. A dose-finding phase I RCT is

currently recruiting participants [237], and a

phase II trial in patients at risk of CDI is already

being prepared by the company [238].

The capacity of orally administered

beta-lactamase enzymes to inactivate

parenterally administered beta lactam

antibiotics secreted into the gut is the basis of

another approach to prevent antibiotic-induced

microbiota damage [239]. SYN-004 is a

recombinant beta-lactamase developed by

Synthetic Biologics that efficiently inactivated

intravenous ceftriaxone in the gut of dogs
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without interfering with serum antibiotic levels

[240]. Its efficacy and good tolerability were

recently proved by two phase I RCTs [241], and

three phase II trials are currently underway with

this product [241].

The same effect is sought by the research

group that colonized the gut of mice with

cephalosporinase-producing Bacteroides

thetaiotaomicron to evaluate its efficacy in

inactivating the intestinally excreted portion

of subcutaneously administered ceftriaxone

[242]. The investigators observed that the

cephalosporinase produced by B.

thetaiotaomicron successfully preserved normal

intestinal microbiota and prevented

colonization by both C. difficile and

vancomycin-resistant Enterococcus in treated

mice.

ENTEROPROTECTIVE AGENTS

These compounds are not explicitly

anti-clostridial agents, but seek to alleviate the

inflammation of the colon in CDI patients,

hence decreasing morbidity and improving

survival of severely ill patients.

Glutamine supplementation is traditionally

used to preserve and/or restore intestinal

mucosal integrity in patients with prolonged

parenteral nutrition, gastric ulcer,

chemotherapy, radiotherapy or intestinal

surgery, among other conditions.

Alanyl-glutamine is a bipeptide derived from

glutamine with enhanced stability and water

solubility. Its capacity both in vitro and in vivo

to counteract cytotoxic activity of C. difficile

toxins A and B was demonstrated in different

studies [243, 244]. In a mouse CDI model the

addition of alanyl-glutamine to vancomycin

treatment resulted in improved survival as

compared to vancomycin treatment alone

[244]. There is currently a phase II human trial

underway at the University of Virginia to test

the efficacy of alanyl-glutamine

supplementation in reducing mortality and

recurrences in CDI patients receiving standard

anticlostridial treatment [245].

The activation of adenosine A2A receptors in

macrophages and neutrophils has

anti-inflammatory and tissue-protective effects

by regulating the secretion of pro- and

anti-inflammatory cytokins. The combination

treatment with vancomycin and an adenosine

A2A receptor agonist (ATL370 or ATL1222)

resulted in less weight loss and better survival

in a mouse CDI model as compared with

vancomycin monotherapy [246]. Another

adenosine A2A receptor agonist, ATL313,

successfully prevented major damage of

murine ileal mucosa induced by C. difficile

toxin A [247]. The combination of

alanyl-glutamine and an ATL370 also

efficiently reversed histopathologic damage

caused by toxin A in another animal study

[248]. No human studies have been conducted

with these products for the time being.

CONCLUDING REMARKS

The number of potential therapies for CDI has

been growing steadily recently, and this trend

may continue for some years, as both the

incidence and severity of C. difficile keep

increasing, and current therapeutics cannot

offer a definite solution for this situation.

Antibiotic surveillance programs and more

directed anti-clostridial antibiotics have been

demonstrated to be useful, but the steadily

increasing number of susceptible hosts

(immunocompromised patients, elderly, etc.)

may prove these efforts insufficient to halt the

epidemic.
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It seems clear that none of the described

novel treatment methods will be able to deliver

the ultimate solution for CDI single-handedly,

since none of them can address all the

components of the compound objective of

CDI management, that is, primary

prophylaxis, cure and prevention of

recurrences. However, the more prophylactic

and therapeutic tools are available the more

efficient anti-CDI strategies can be tailored for

different patient populations in different

geographical areas with varying C. difficile

prevalence.

Certainly, the greatest impact on CDI

prevalence is to be expected from measures

that aim to prevent the infection by means of

active immunization or by protecting the

healthy intestinal microbiota. On the other

hand, the prompt restoration of a damaged

microbiota and potent and narrow spectrum

anti-clostridial antibiotics may guarantee a

quicker recovery in established CDI, hence

diminishing transmission and recurrence risk

alike. At the same time, anti-toxin and

anti-inflammatory treatment may improve the

clinical outcome in severe and/or complicated

CDI. As new therapeutic agents appear on the

market, efforts shall be made to find the optimal

way to combine them in a way that minimizes

incidence and horizontal transmission,

maximizes cure rates and keeps recurrences at

a minimum.
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