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ABSTRACT

Introduction: Conventional magnetic reso-
nance imaging (MRI) features have difficulty
distinguishing glioma true tumor recurrence
(TuR) from treatment-related effects (TrE). We
aimed to develop a machine-learning model
based on multimodality MRI radiomics to help
improve the efficiency of identifying glioma
TuR.
Methods: A total of 131 patients were enrolled
and randomly divided into the training set
(n = 91) and the test set (n = 40). Radiomic
features were extracted from the postoperative
enhancement (PoE) region and edema (ED)
region from four routine MRI sequences. After
analyses of Spearman’s rank correlation

coefficient, and least absolute shrinkage and
selection operator, the key radiomic features
were selected to construct support vector
machine (SVM) and k-nearest neighbor (KNN)
models. Decision curve analysis (DCA) and
receiver operating characteristic (ROC) curves
were used to analyze the performance.
Results: The PoE model had a significantly
higher area under curve (AUC) than the ED
model (p\0.05). Among the models con-
structed with a single sequence, the model
using PoE regional features from CE-T1WI was
superior to other models, with an AUC of 0.905
for SVM and 0.899 for KNN. In multimodality
models, the PoE model outperformed the ED
model with an AUC of 0.931 for SVM and 0.896
for KNN. The multimodality model, which
combined routine sequences and the whole
regional features, showed a slightly better per-
formance with an AUC of 0.965 for SVM and
0.955 for KNN. Decision curve analysis showed
the good clinical utility of multimodal radio-
mics models.
Conclusions: Multimodality radiomics can
identify glioma TuR and TrE, potentially aiding
clinical decision-making for individualized
treatment. And edematous regions may provide
useful information for recognizing recurrence.
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Key Summary Points

Why carry out this study?

Abnormal enhancement following
radiotherapy is a typical secondary change
that requires timely identification of true
tumor recurrence from treatment-related
effects and tailored treatment plan
adjustment.

Advanced imaging techniques require
additional scans and impose a financial
burden on patients. Using conventional
MRI to construct a radiomics model may
provide a universal and affordable tool.

What was learned from the study?

The radiomics model exhibited optimal
discrimination for true tumor recurrence,
with equally strong performance in the
test set, and the edema area also provided
rich information related to tumor
recurrence.

The radiomic model assists clinicians in
efficiently and reliably evaluating
patients’ recurrence status and can help
personalize the management and
treatment of glioma patients.

INTRODUCTION

Glioma is the most common malignant primary
tumor in the brain, with a high recurrence rate
and mortality rate [1]. Generally, the main
treatment for newly diagnosed glioma is maxi-
mal surgical resection of the tumor lesion area
[2]. Due to the infiltrative proliferation of tumor
cells, these will inevitably remain in the area
between the major body of the lesion and the
peritumoral edema, resulting in difficulty of
complete surgical resection, and the prognosis

remains poor even after treatment with con-
current chemoradiotherapy [3]. After radio-
therapy, the expression levels of tumor necrosis
factor-a (TNF-a) are elevated in brain tissue [4],
which triggers the secondary upregulation of
vascular endothelial growth factor (VEGF) [5]
and increases the permeability of the blood–-
brain barrier. Different enhancement patterns
in the operative area are caused by contrast
leakage during magnetic resonance imaging
(MRI) enhancement [6]. This renders both true
tumor recurrence (TuR) and treatment-related
effects (TrE) appear occupied and abnormally
enhanced, thereby making them difficult to
distinguish promptly [7].

Notably, it remains challenging to differen-
tiate TuR from TrE depending on such
enhancement patterns on conventional MRI.
Thus, it tends to confuse early recurrence or
malignant transformation with treatment-re-
lated changes, yet their treatment strategies are
distinctive. Tumor recurrence necessitates more
vigorous anticancer treatment and, if possible,
reoperation [8]. In contrast, TrE show the effi-
cacy of the current treatment without the need
to adjust the treatment regimen, and symp-
tomatic treatment is sufficient. Hence, early
detection of TuR is essential for adjusting clin-
ical treatment plans [9–11]. Positron emission
tomography–computed tomography (PET-CT)
and MRI are currently the most commonly used
imaging techniques for the detection of glioma
recurrence. The Response Assessment in Neuro-
Oncology working group and the European
Association for Neuro-Oncology recommend
the use of PET-CT imaging for treatment
response assessment in gliomas, emphasizing
that PET-CT has a higher diagnostic accuracy
than MR in the identification of TuR and TrE
[12]. In this study, we have focused on patients
with grade II–IV gliomas, classified using the
World Health Organization (WHO) grading
system. These patients are often at a higher risk
for postoperative recurrence, necessitating
adjuvant radiotherapy or concurrent chemora-
diotherapy. Close monitoring and regular fol-
low-up imaging are vital to detect any sign of
tumor growth or recurrence. In comparison
with PET-CT, conventional MRI is more avail-
able in various hospitals, and does not expose
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patients to ionizing radiation, making it more
optimal for long-term monitoring of recur-
rence. Our objective is to build a model based
on conventional MRI sequences to identify
postoperative recurrence of grade II–IV gliomas,
whereas radiomics could improve diagnostic
accuracy by extracting high-throughput quan-
titative information from the region of interest
(ROI) in medical imaging [13]. Therefore, the
combination of multimodality imaging and
MRI radiomics is more suitable for clinical fol-
low-up to detect early tumor recurrence, which
has been previously employed in glioma recur-
rence studies [14–16]. In addition, research has
demonstrated that timely and accurate distinc-
tion between early TuR and TrE may improve
the life quality of individuals [17].

This study aims to develop a multimodal
MRI-based machine-learning model to assist in
identifying TuR from TrE, and to assess the
differences between PoE and ED regional
radiomics models in recognizing glioma recur-
rence status. We present this article in accor-
dance with the STARD reporting checklist.

METHODS

This study was approved by the institutional
ethics committee of the First Affiliated Hospital
of Xinxiang Medical University, China (No.
2020039). All data are anonymous, and the
requirement for informed consent was therefore
waived. In order to ensure the quality and reli-
ability of the data, all pathology results and
imaging findings underwent independent
review. This work was performed in accordance
with the 1964 Declaration of Helsinki and its
later amendments. The radiomics modeling
workflow are shown in Fig. 1.

Patients and Data Collection

We consecutively included 289 patients with
glioma who underwent MRI and presented
postoperative changes in our institution from
January 2018 to April 2022. A flow chart of the
study population is shown in Fig. 2. The inclu-
sion criteria were as follows: (1) patients
underwent surgical treatment; (2)

pathologically confirmed grade II–IV gliomas
according to the 2021 World Health Organiza-
tion classification of central nervous system
tumors [18]; (3) treated with radiotherapy or
chemotherapy; (45) performed MRI routine and
contrast-enhanced scans after adjuvant therapy;
and (5) received more than 3 months of follow-
up. The followings were the exclusion criteria:
(1) the lesion located under the curtain or in the
brain stem; (2) incomplete surgical resection;
(3) large artifacts or poor-quality images did not
meet diagnostic requirements; (4) had other
types of central nervous system diseases; and (5)
loss of follow-up. A total of 131 patients were
ultimately enrolled in the primary cohort and
their clinical characteristics, pathological
results, and MRI data were collected. Secondary
surgery or pathological puncture is the gold
standard for the diagnosis of glioma recurrence,
but is invasive. Therefore, we chose the
Response Assessment in Neuro-Oncology
(RANO) criteria to assess recurrence status based
on clinical characteristics and multiple MRI
findings. True tumor recurrence was identified if
a patient met one of the following criteria: (1)
after at least 3 months of follow-up without
additional intervention, an increase of 25% or
more in the area of the focal enhancing lesions
or an increase in the degree of enhancement
was observed on contrast-enhanced T1-weigh-
ted imaging; (2) an increase was observed in the
high signal area on T2-weighted fluid attenu-
ated inversion recovery; (2) new lesions were
identified; or (4) there was progression of the
mass effect or worsening clinical symptoms.

The primary cohort, which consisted of 72
patients with TuR and 59 patients with TrE, was
then randomized in a 7:3 ratio to the training
set (n = 90) and test set (n = 41). All patients
were scanned on 3.0 T scanners and the fol-
lowing four routine sequences were included in
the study: axial T1-weighted image (T1WI), T2-
weighted image (T2WI), T2-weighted fluid at-
tenuated inversion recovery (T2-FLAIR), and
contrast-enhanced T1-weighted image (CE-
T1WI). Detailed information on the MR
machine and sequence parameter is provided in
Table S1 in the Electronic Supplementary
Material (ESM).
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Image Processing and ROI Delineation

The study included MRI sequences that were
acquired no more than 3 months after the
patient had received therapy. In order to
decrease discrepancies in the grayscale values of
an image caused by different scanning equip-
ment, the signal intensities were processed with
Min–Max normalization. Then, the voxels were
resampled to 1 9 1 9 1 mm3 by using the near-
est neighbor interpolation to discretize the
grayscale data by 25 bin widths. We utilized
rigid and affine transformations (ANTS, v.2.4.3,
RRID:SCR_004757) to align CE-T1WI, T2-FLAIR,
and T2WI with T1WI before delineating the ROI
[19].

Under the guidance of a chief radiologist
with 30 years of experience in neurological
diagnosis, two radiology graduate students
manually outlined ROIs layer by layer using the
segmentation tool in 3D Slicer (v.4.13.0,
RRID:SCR_005619), primarily based on CE-
T1WI and T2-FLAIR to outline postoperative
enhancement (PoE) and edema region (ED),
while multiple sequences were cross-referenced
to define the boundaries. In a boundary con-
troversy, the chief physician was consulted for a
consensus. Two readers re-outlined the ROI
1 month later and kept good agreement
(ICC[0.75). The patient’s disease status was
not known to either reader during the outlining
of the ROI.

Fig. 1 Flow chart of patient selection for postoperative
glioma follow-up from January 2018 to April 2022. Based
on inclusion and exclusion criteria, 131 patients were

included in the primary cohort and randomly assigned to
the training and test sets

1732 Neurol Ther (2023) 12:1729–1743



Extraction of Radiomics Features

Radiomics features were extracted automatically
by the open-source software Pyradiomics
(v.3.0.1, https://pyradiomics.readthedocs.io/en/
latest) [20]. Three types of features were extrac-
ted from each sequence, including shape fea-
tures (n = 14), first-order intensity features
(n = 18), and texture features (n = 75). Firstly,
14 shape features were extracted from each
original image, and then 13 transformed images
were obtained after Wavelet and Laplacian of
Gaussian (LoG; sigma: 1, 2, 3, 4, 5) filters. First-
order features and texture features were

extracted from all images. Ultimately, a total of
1316 [14 ? (13 ? 1) 9 (18 ? 75)] features were
derived from each sequence. The ICC was uti-
lized to measure the consistency of the features
extracted by the two readers. Features with
ICC[0.75 were retained to ensure the study
stability. All collected features adhere to the
Imaging Biomarker Standardization Initiative
[21].

Fig. 2 Radiomics workflow. a After acquiring medical
images, preprocessing was performed, including image
registration, resampling, and grayscale discretization.
b Manually outline the areas of postoperative enhance-
ment and edema separately. c Enable Laplacian of
Gaussian and wavelet transform filters to extract first-
order and texture features from the region of interest.
d The least absolute shrinkage and selection operator was

used to filter radiomics features, and then higher weighted
features were further used to build machine learning
models. e Repeated construction of machine-learning
models based on imaging modalities and region of interest.
f Assessment of the model’s classification performance
using receiver operating characteristic curve and decision
curves
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Data Processing and Analysis

Initially, all missing data were removed. Then,
the data of all radiomics features were prepro-
cessed with Z-score normalization and utilized
Spearman’s rank correlation coefficient to
remove redundant features with strong correla-
tions. For correlation coefficients greater than
0.9, only one of the features was kept, and the
other was dismissed. The remaining features
were then further filtered by using the ten-fold
cross-validated least absolute shrinkage and
selection operator (LASSO) regression to select
features corresponding to the k values that had
the best prediction and the least model bias.

After ranking all features with non-zero
coefficients, key features with high weights were
selected. Features were categorized into 15
groups based on the imaging modality and ROI
type. Each group’s key features were then used
to develop support vector machine (SVM) and
k-nearest neighbor (KNN) models.

Model Development and Validation

In the training set, SVM and KNN classifiers
were developed with radiomics features extrac-
ted from the PoE and ED regions. Five-fold
cross-validation was used on all models to
ensure classification performance. The follow-
ing three strategies will assist in identifying and
validating models with good classification effi-
cacy for TuR.

I. Regional-level (PoE vs. ED vs. Whole). To
evaluate whether the subset of features
inside different regions could provide valid
information, the performance in recogniz-
ing TuR was separately assessed by using
features from PoE and ED. We further con-
structed a multimodality model with the
features from both areas to determine
whether the multi-area features could
improve the identification performance.

II. Sequence-level (T1WI vs. CE-T1WI vs. T2-
FLAIR vs. T2WI vs. Multimodality). Every
sequence was analyzed with features from
the same region to determine which one
has the best performance in identification.
Then, multimodality sequences were

combined and compared with a single
sequence to take advantage of MRI multi-
parametric imaging.

III. Model-level (SVM vs. KNN). All models
were based on SVM or KNN classifiers and
were compared. Consequently, the opti-
mal feature combination and classifier
model was developed and further validated
in the test set.

In the test set, receiver operating character-
istic (ROC) curves were used to evaluate the
accuracy, sensitivity, specificity and AUC of the
model. The clinical applicability of the model
was then accessed through decision curve
analysis (DCA) [22], which calculated the net
benefit of the model at different thresholds.

Statistical Analysis

SPSS 19.0 software (SPSS, Chicago, IL, USA) was
used for statistical analysis. Continuous vari-
ables in the clinical characteristic were analyzed
by using Student’s t test or Mann–Whitney
U test, while categorical variables were analyzed
by using the chi-square (v2) test. Univariate
logistic regression was used to assess the rela-
tionship between recurrence status and the
clinical characteristics of patients. ROC analysis
was used to evaluate the diagnostic effective-
ness of the SVM and KNN classifiers. DCA was
also utilized to determine whether the predic-
tion model has clinical application value on the
Python 3.7.12 platform. Analyses were deemed
statistically significant if p\0.05, and all tests
were two-tailed.

RESULTS

Characteristics of Patients

The clinical characteristics of all patients in the
training and test sets are presented in Table 1.
According to the RANO criteria [23], 72 patients
were considered to have TuR, and 59 patients
were considered to have TrE. In terms of clinical
characteristics, there were no significant differ-
ences between the training and test sets
(p[0.05).
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Feature Selection and Modeling

Firstly, the feature results extracted by the two
readers were evaluated for consistency by using
ICC. Features with ICC value greater than 0.75
were retained. There were 3441 features in the
PoE area and 3424 in the ED area. After Spear-
man correlation analysis, 794 features from the
PoE and 736 features from the ED region were
suggested to have no redundant information.

Subsequently, we used the LASSO algorithm to
carry out dimensionality reduction and to select
high-weighted features for the classification
model. However, considering that the number
of features used for the final model should not
exceed one-tenth of the sample size [24], 18 (10/
8, represents that ten features were from the PoE
region and eight features from the ED region)
features of T1WI, 17 (9/8) features of CE-T1WI,
17 (9/8) features of T2WI, and 20 (10/10)

Table 1 Clinical characteristics of TuR and TrE patients in the training and test sets

Characteristic Training set p value Test set p value

TuR TrE TuR TrE

Number, n (%) 47 (51.7) 44 (48.4) 25 (62.5) 15 (37.5)

Age, mean ± SD 54.3 ± 12.1 52.3 ± 11.3 0.89 54.4 ± 14.8 47.6 ± 7.6 0.23

Gender, n (%) 0.30 0.23

Male 32 (68.1) 26 (59.1) 13 (52.0) 10 (66.7)

Female 15 (31.9) 18 (40.9) 12 (48) 5 (33.3)

Location, n (%) 0.37 0.87

Frontal lobe 16 (34.0) 21 (47.7) 9 (36.0) 9 (60)

Parietal lobe 4 (8.5) 3 (6.8) 1 (4.0) 0 (0.0)

Temporal lobe 24 (51.1) 15 (34.1) 13 (52.0) 6 (40.0)

Occipital lobe 3 (6.4) 5 (11.4) 2 (8.0) 0 (0.0)

WHO grade, n (%) 0.83 0.60

II 8 (17.0) 9 (20.5) 2 (8.0) 3 (20.0)

III 24 (51.1) 16 (36.4) 14 (56.0) 6 (40.0)

IV 15 (31.9) 19 (43.2) 9 (36.0) 6 (40.0)

IDH status, n (%) 0.13 0.97

Wide type 25 (55.3) 15 (34.1) 2 (8.0) 3 (20.0)

Mutation type 12 (25.5) 15 (34.1) 14 (56.0) 6 (40.0)

Unknown 9 (19.2) 14 (31.8) 9 (36.0) 6 (40.0)

Ki-67, n (%) 0.08 0.25

\15% 9 (19.2) 15 (34.1) 3 (12.0) 4 (26.7)

C 15% 27 (57.5) 18 (40.9) 11 (44.0) 5 (33.3)

Unknown 11 (23.4) 11 (25.0) 11 (44.0) 6 (40.0)

p value was derived from univariate correlation association analysis between each characteristic and recurrence status
TuR true tumor recurrence, TrE treatment-related effects, IDH isocitrate dehydrogenase
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Fig. 3 ROC analysis of the classification performance of
each single sequence (a–d) and multimodal radiomics (e,
f) models based on SVM and KNN classifiers. SVM
support vector machine, KNN k-nearest neighbor, PoE

features from the postoperative enhancement regions, ED
features from the edematous regions, Whole includes
features of PoE and edematous regions, Multimodality
combine all sequences
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features of FLAIR were chosen to construct the
SVM and KNN models. Finally, we obtained a
dataset with 72 key radiomics features that
consist of 38 features from the PoE area and 34
from the ED area. These key features are shown
in Table S2 in the ESM.

Performance of Models

First, a region-level comparison was performed
among radiomics features from the PoE region,
the ED region, and the whole region. In the
training set, models constructed with features

from PoE or ED region alone showed good
classification performance (p\0.01). For the
model with features from the whole region, the
AUC of T2WI was the most improved, from
0.848 ± 0.075 (mean ± 95% CI) to
0.942 ± 0.041. The AUCs of other models also
increased with various degrees (Table S3 in the
ESM). In the test set, the highest AUC was
0.905 ± 0.115 for the PoE of CE-T1WI and
0.842 ± 0.119 for the ED of T2WI in the single
sequence. For the model with the whole region
feature, it had the best diagnostic performance
in both SVM and KNN, with AUCs of

Fig. 4 Representative MRI and radiomics feature maps.
Conventional MRI images (a) and radiomic feature maps
(c) of patients with true tumor recurrence. Conventional
MRI images (b) and radiomic feature maps (d) of patients
with treatment-related effects. Radiomics feature maps
from left to right are T1WI wavelet-HLL ngtdm Contrast,
CE-T1WI log-sigma-5–0-mm-3D firstorder Range, T2WI

log-sigma-1–0-mm-3D firstorder Kurtosis and T2-FLAIR
wavelet-LLH glrlm GrayLevelVariance. The area within
the yellow line represents the region of postoperative
enhancement, while the area between the red and yellow
lines represents the region of edema
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Table 2 Diagnostic performance of all models in the test set

Classifier Modality Region AUC 95% CI Acc (%) Sen (%) Spe (%)

SVM T1WI PoE 0.848 0.709–0.988 85.0 92.0 73.3

ED 0.691 0.516–0.866 62.5 52.0 86.7

Whole 0.851 0.706–0.995 82.5 80.0 86.7

CE-T1WI PoE 0.905 0.790–1.000 85.0 88.2 91.3

ED 0.803 0.652–0.954 77.5 72.0 86.7

Whole 0.939 0.828–1.000 95.0 96.0 93.3

T2-FLAIR PoE 0.836 0.706–0.966 77.5 94.1 73.9

ED 0.704 0.532–0.876 60.0 52.0 86.7

Whole 0.883 0.782–0.984 77.5 68.0 93.3

T2WI PoE 0.867 0.735–0.999 82.5 88.2 91.3

ED 0.780 0.618–0.942 57.5 64.7 100.0

Whole 0.917 0.825–1.000 80.0 80.0 93.3

Multimodality PoE 0.931 0.828–1.000 90.0 88.0 93.3

ED 0.899 0.806–0.992 82.5 68.0 100.0

Whole 0.965 0.896–1.000 90.0 100.0 93.3

KNN T1WI PoE 0.783 0.626–0.940 72.5 68.0 85.7

ED 0.715 0.555–0.875 62.5 76.0 60.0

Whole 0.791 0.620–0.962 77.5 84.0 84.6

CE-T1WI PoE 0.899 0.805–0.993 82.5 88.2 78.3

ED 0.844 0.704–0.984 77.5 76.0 85.7

Whole 0.923 0.812–1.000 87.5 84.0 100.0

T2-FLAIR PoE 0.859 0.752–0.966 72.5 100.0 56.5

ED 0.679 0.492–0.866 60.0 92.0 46.7

Whole 0.858 0.746–0.970 72.5 70.6 95.5

T2WI PoE 0.851 0.708–0.993 82.5 84.0 85.7

ED 0.842 0.723–0.964 77.5 76.5 78.3

Whole 0.917 0.830–1.000 77.5 96.0 73.3

Multimodality PoE 0.896 0.777–1.000 77.5 96.0 78.6

ED 0.853 0.738–0.969 70.0 60.0 93.3

Whole 0.955 0.887–1.000 85.0 100.0 86.7

SVM support vector machine, KNN k-nearest neighbor, PoE features from the postoperative enhancement regions, ED
features from the edematous regions, Whole includes features of PoE and edematous regions, Multimodality combine all
sequences, Acc accuracy, Sen sensitivity, Spe specificity
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0.939 ± 0.111 and 0.923 ± 0.111 in CE-T1WI
(Fig. 3), respectively, which was consistent with
the performance of the training set. From each
sequence, the feature with the highest weight
was selected for visualization. Figure 4 illus-
trates the feature maps of the four features used
in the machine-learning model to describe local
brain tissue differences.

The second was a sequence-level comparison
by using the same regional features of different
sequences to construct models. In the training
set, the model with multi-modality features
reached the highest AUC (0.994 ± 0.010). In the
test set, the highest AUC was 0.965 ± 0.069 and
0.955 ± 0.068 for the SVM- and KNN-based
multimodality models, respectively. The high-
est AUCs for T1WI, CE-T1WI, T2-FLAIR, and
T2WI were 0.851 ± 0.145, 0.939 ± 0.111,
0.883 ± 0.101, and 0.917 ± 0.087, respectively.
Among the models constructed with single
sequence, CE-T1WI showed the best
performance.

Finally, a model-level comparison was con-
ducted to determine which of SVM and KNN
models has better diagnostic efficacy. The clas-
sification efficacy of SVM models in the training
set were all higher than those of KNN models.
In the test set, the T2-FLAIR model in the PoE
region and the T1WI, CE-T1WI, and T2WI
models in the ED region based on KNN

outperformed the SVM model, while all other
SVM models outperformed the KNN models
(Table 2). Decision curves of three multimodal
models based on SVM were compared. The
results indicated that, if the threshold proba-
bility of clinical decision was greater than 0.05,
all models added more benefit than the
scheme of treat-none or treat-all patients. When
the threshold probability was over 0.31 for
identifying recurrence, the whole region model
brought more benefit than either the PoE or ED
model alone in most cases (Fig. 5).

DISCUSSION

In this study, we developed and validated a
machine learning model based on radiomics
features for detecting postoperative tumor
recurrence to aid in the timely therapeutic
adjustment of treatment strategies, which may
benefit some patients. Notably, results showed
that the PoE region provides abundant infor-
mation for identifying early tumor recurrence,
and that CE-T1WI contains more biological
information to accurately reflect regional tissue
heterogeneity. Therefore, the multimodality
based on the whole region best distinguished
TuR from TrE, while the CE-T1WI model based
on the PoE region only ranked second.
Although the model based on the ED region
showed a slightly inferior performance in clas-
sification (p\0.05), it still achieved 82.5%
accuracy, suggesting that the edema region
could also provide reliable information.

Moreover, most of the key features selected
in the tumor-enhancing and edema regions are
non-duplicative, indicating that the informa-
tion provided by these two types of features is
relatively independent. Additionally, most of
the features were derived from CE-T1WI and
T2WI. Owing to the utilization of exogenous
contrast agents with CE-T1WI and artificial
contrast increase, the information richness was
amplified and allow us to assess the extent of
blood–brain barrier impairment. T2WI depicts
the cellular proliferation state of neighboring
tissues via free water reaction. However, T1WI
and T2-FLAIR were underrepresented in terms
of feature count, due to T1WI’s scarcity of

Fig. 5 Decision curves for three models based on SVM
classifiers with different regional radiomics features
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heterogeneous data as a structural image and
T2-FLAIR’s liquid inhibition resulting in partial
information loss. Our findings corroborate this
observation. After visualization of the imaging
data, we noted that the visual patterns seen by
the naked eye were consistent with the corre-
sponding MRI findings, thereby improving our
comprehension of the physiological and
pathological connotations of these features.
These visualizations can serve as an invaluable
guide for research on specific feature classes or
types, which can enhance their interpretability
and replicability.

Our study indicated that both the KNN
model and the SVM model could identify tumor
recurrence based on the features of edema. This
result confirmed our hypothesis that the texture
information of the edema area could potentially
provide valid information for detecting TuR.
Furthermore, the SVM classifier demonstrated
exceptional robustness in our study, with satis-
factory performance in the majority of studies.
This finding suggests that the SVM model has a
broad range of applications and can facilitate
the development of dependable models.
Specifically, our observation implies that the
SVM model has a wide variety of applications
and can aid in creating stable models.

Additionally, it may assist patients with
postoperative glioma with risk stratification and
survival prediction [25, 26]. Recent studies
[27, 28] have shown that the recurrence risk of a
single tumor was 56% within 1.0 cm of the
initial lesion margin and 28% within 2.0 cm.
Since peritumoral edema is a typical symptom
of glioma and the region is prone to recurrence
[29], we intentionally included the region of
edema in contrast to previous studies [30, 31].
Furthermore, by merging the multimodality
imaging features of MRI, the best features from
each sequence were chosen independently to
ensure a comprehensive modeling. Global tex-
tural features were also used, which may reflect
the heterogeneity and aggressiveness of the
tumor. Currently, research on voxel-based
radiomics features has been conducted [32–34],
providing the ability to predict the risk of white
matter recurrence and the site of recurrence for
glioma patients. This may further advance the

application of radiomics models in clinical
settings.

In both the training and test sets, our model
is able to adequately distinguish between TuR
and TrE, and has diagnostic robustness. This
allows clinicians to identify patients who are
most likely to benefit from additional surgery.
Better diagnostic accuracy from multimodal
models could help doctors pinpoint which
patients will benefit from customized therapy
for glioma recurrence. In order to quantify the
clinical utility, we calculated the models’ net
benefit at different threshold probabilities
through DCA. The results confirmed that all
three SVM-based multimodal models provide
varying degrees of clinical usefulness at thresh-
old probabilities of 0.05–0.89, and the whole-
region features have better clinical utility in
most cases. This may help clinical doctors
develop personalized treatment plans, so that
some patients can benefit from extra treatment.

As IDH is a biomarker highly correlated with
glioma prognosis, we attempted to incorporate
patients’ IDH mutation status in this study.
However, some patients did not receive ade-
quate immunohistochemistry, resulting in it
not showing statistically significant differences
in the primary cohort. Therefore, we con-
structed the final model based on radiomics
features only, which has shown a high accuracy.
To enhance the model’s generalizability, the
ideal course of action would be to develop a
standardized scanning protocol based on a lar-
ger dataset. This approach will help ensure that
the model is applicable to a greater range of
clinical scenarios.

With the development of MRI techniques,
advanced MRI sequences can provide more
structural and metabolic information of the
lesion, and have yielded satisfactory results in
studies to identify suspected recurrent gliomas
[35–37]. The combination of advanced MRI and
radiomics could be used to further explore the
potential information within the images. How-
ever, few studies have been conducted to iden-
tify glioma recurrence.

Despite some success in tumor diagnosis and
evaluation, radiomics methods face several
challenges that hinder their clinical application.
These challenges include establishing large-
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scale imaging databases, implementing stan-
dardized image analysis algorithms, and ensur-
ing the security and confidentiality of data. For
ensuring the reproducibility and clinical utility
of the results, independent validation of the
model is essential. This study has the certain
limitations. First, since the investigation is ret-
rospective, there may be selection bias. Second,
the majority of patients with postoperative
glioma recurrence prefer radiotherapy or
chemotherapy, and only a small number of
patients receive secondary surgery or patholog-
ical puncture confirmation, which may lead to
inconsistent results as judged by RANO. Third,
we used single-center data, so the sample size
needs to be expanded. Hence, multicenter
research and larger samples are required.

CONCLUSIONS

Multimodality radiomics confirmed that fea-
tures of the enhanced and edematous regions in
the operative area can be used to identify early
glioma recurrence. This may facilitate timely
clinical intervention and treatment to benefit
some patients.
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