
Vol.:(0123456789)1 3

Indian Geotech J 
https://doi.org/10.1007/s40098-024-00901-0

ORIGINAL PAPER

Using Novel Optimization Algorithms with Support Vector 
Regression to Estimate Pile Settlement Rates

Lu Sun1,2 · Tinghui Li3 

Received: 21 December 2022 / Accepted: 4 February 2024 
© The Author(s), under exclusive licence to Indian Geotechnical Society 2024

Abstract  To ensure structure safety, such as bridge struc-
tures, artificial intelligence ways are the most helpful way 
to predict failure factors such as pile settlement estimation. 
Various methods are taken into account for evaluating the 
movement of the piles, which helps to realize the future view 
of the project during the loading period. The most intelligent 
mathematical strategy to calculate the movement of the pile 
is applied. In this regard, support vector regression (SVR), a 
machine learning method, was used in this study, accompa-
nying two optimizers to accurately determine the key SVR 
variables. The marine predator algorithm (MPA) and the 
grasshopper optimization algorithm (GOA) were combined 
with SVR to create the SVR-MPA and SVR-GOA frame-
works. Additionally, several metrics were used to evaluate 
the model’s overall performance. The R2 for SVR-MPA in 
the training phase was found to be 0.997, showing a desir-
able modelling operation. At the same time, the RMSE was 
calculated 0.2843 mm and compared to the SVR-GOA, the 
differences are 1.16 and 106.38%, respectively, in favour 
of the former model. The comprehensive index of OBJ, 
including RMSE, MAE, and R2, was calculated at 0.2791 
and 0.581 mm for models optimized by MPA and GOA, 
alternatively.

Keywords  Pile · Structure settlement · Grasshopper 
optimization algorithm · Machine learning · Support vector 
regression · Marine predator algorithm

Introduction

Many methods evaluate the pile settlement (PS) from empir-
ical methods through experiments in an efficient way to gen-
erate the perspectives before operating projects, especially 
the bridged ones. Paying attention to assessing sensitive con-
structions dealing with people’s lives and considering intel-
ligent solutions can help us find their actual conditions and 
calculate with low energy, time, and cost. Using computer-
aid methods that are underlaid by the experimental data can 
give us a freer domain in terms of cost and time to realize the 
functioning of structures over the utilization period [1]. Sev-
eral researchers have studied pile motion using the popular 
finite difference and finite element methods [2–6]. The key 
role of estimating the PS is played by the inputs of a model 
that wants to find the logical relationships between initial 
entering variables [7, 8].

However, testing on large models or full-scale experi-
ments is required to adequately cover all aspects of pile-
moving behaviour. Because these large-scale experimental 
researches are difficult to perform and expensive, many stud-
ies in the literature contain various simplified and numerical 
methods for predicting pile behaviour. Many experts have 
suggested a simplified method for predicting the initial 
pile motion responding to load settlement, given the elas-
tic behaviour of the soil. In some simplified methods, piles 
are considered a means of reducing settlement [9], where 
the compacting ground soil layers support the pile struc-
ture’s bearing capacity, which is why the piles contribute 
to controlling the settlement rates. In another simplified 
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method, the load is distributed between the piles and foun-
dation regarding interactions between soil layers and pile 
[10]. Most simplified solutions do not adequately account 
for soil–structural interactions and cannot accurately predict 
the pile response to load settling.

In this regard, one article suggested a way to analyse the 
displacement of piles and presented the theoretical function 
for the examinations on earth pressure [11, 12]. Most experts 
assessed the PS, but all used the model that lacks the reflec-
tion of ground. However, artificial neural networks (ANNs) 
and techniques of machine learning have been operated 
in many types of research Lee and Lee [13], Hanna et al. 
[14], Liu et al. [15], Che et al. [16], and Shanbeh et al. [16]. 
Calibrating data for some research were used, and PS tests 
were done to generate the framework predicting the final 
capacity of the pile’s bearing. Samples from the in situ piles 
are selected to calibrate artificial intelligent (AI) developed 
models. The research used the technique of ANN to appraise 
the PS rates from some useful traits of piles socketed in 
rocks [17].

Several studies have broadly used methods related to 
functioning with regressions [18–26] regarding using regres-
sion methods such as stochastic regression machine of mini-
max, adaptive regression of multivariate spline, and Gauss-
ian trend regression [18, 23, 27, 28]. Also, many researchers 
use the powerful solution of support vector machines to 
compute the experimental parameters [29, 30]. The ability of 
this machine learning technique to estimate pile movements 
can be found in many studies with acceptable correlation 
results of more than 90 per cent [31, 32]. Further, one article 
evaluated the ultimate bearing capacity of piles using this 
method with desirable results [33, 34]. With this respect, the 
input dataset has properties of soil observed in a real field of 
projects, as the pile specimens should be provided.

Therefore, this study aims at estimating the PS factor as 
the key dependent variable in relation to many parameters of 
pile physical properties and the ground characteristics for the 
rocky region. For this reason, the support vector regression 
(SVR) as the means of model tries to indicate a perspective 
of pile movement over the operation period. As the novelty 
of the research and, secondly, estimating PS accurately, SVR 
is linked with the optimization algorithms to develop the 
SVR in the form of optimized frameworks with high accu-
racy besides the low-complex calculation net to compute 
PS in desirable conditions based on in situ measurements. 
SVR was coupled with marine predator algorithm (MPA) 
and the grasshopper optimization algorithm (GOA) to reach 
the goals. This study’s pile profiles and soil features data 
were collected from the Klang Valley Mass Rapid Transit 
(KVMRT) network in Kuala Lumpur, Malaysia.

Modifying the SVR-MPA and SVR-GOA models feeding 
data of KVMRT piles are used by the ratio of 70 for cali-
bration and 30 per cent for validation, respectively. In this 

regard, the ratio of pile length to diameter, the rock hardness 
level showing with UCS, load masses effect over the pile, the 
standard penetration test (NSPT) results for rocks, the pile 
length beneath the soil, and the length of the pile in the rock 
was fed to models to estimate the PS for the megaproject of 
KVMRT [35]. Also, the indices of R, OBJ, VAF, MAE, and 
RMSE were opted to evaluate the impact of each proposed 
optimizer in fining pile settlement rates.

Materials and Methodology

Case Study: Klang Valley Rapid Transit System 
(KVMRT)

Kuala Lumpur (Malaysia) has confronted many congestion 
issues as a populated city. Several projects have been done 
to solve these and are on the table to check the feasibility of 
executions. The Klang Valley Mass Rapid Transit (KVMRT) 
project was designed and constructed to reduce the traffic 
masses. The project of KVMRT was built to pass Kuala 
Lumpur’s Federal Territory and Selangor State, especially 
joining areas within the region of Klang Valley. The 51 km 
of KVMRT lines contain 35 stations in which the under-
ground and surface constructions are involved. The total 
length of the underground tunnel is about 9.5 km. This mega 
project of KVMRT in Kuala Lumpur to decrease the traffic 
jam issues, including many piles to supporting bridges, has 
been chosen as the case study. Figure 1 shows the KVMRT’s 
position in Kuala Lumpur.

Initial Data Set of Case Study

The 96 piles’ information in the KVMRT project were 
gathered into rocks like limestone, phyllite, sandstone, and 
granite. The San-trias class granite rocks were used for the 
KVMRT project piles. Materials and subsoil datasets were 
collected to reach the information on geological profiles. 
Based on the assessments done, the ground comprises resid-
ual rock materials. According to the dataset collected, the 
bedrock is placed between the depth of 70 cm underground 
and more than 1400 m.

The methodology for collecting field data sets for materi-
als and subsoil databases in infrastructure projects typically 
involves a combination of geotechnical investigation tech-
niques, such as drilling, sampling, and testing. The collected 
data includes information on the type and properties of soil, 
rock, and other subsurface materials, as well as their depth 
and location. However, the following lines provide informa-
tion on the field sampling and bore log data collected:

•	 The observed rock masses range from moderately to 
largely weathered.
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•	 The highest and lowest values for UCS, as per ISRM, are 
68 and 25 MPa, respectively [36].

•	 Bore log data taken to a maximum depth of 16.5 MPa 
shows the presence of highly weathered soil. The primary 
soil type is a hard sandy mud with a minimum and maxi-
mum NSPT of 4 and 167 blows per 300 mm, respectively.

•	 Subsoil materials with NSPT values greater than 50 blows 
per 300 mm are observed in most areas at ground depth 
levels between 7.5 and 27.0 m.

Based on the gathered data, the recorded rocks’ masses 
are weathered as moderate to extreme. However, the UCS 
parameter for the lowest and highest values of rocks was 
registered, respectively, from 25 to 68 MPa based on the 
parameter of ISRM [37]. Further, the parameter of NSPT was 
reported for at least 4 to a high value of 167, respectively, per 
30 cm. That the rock types vary, going from 750 to 2700 cm. 
Moreover, according to the registered data of bores under 
the depth of 16.5 m, the soil type is extremely weathered, as 
well as the soil type in, which is highly muddy with sand.

Making the leading dataset with effective impacts was 
the primary step to creating the predictive frameworks. 
It is fundamental to show the foremost vital variables 
processing the initial data of the model. The mentioned 

tests were performed utilizing analysis settings by Pile 
Dynamic, Inc. For this respect, several variables opted to 
investigate the outcomes of pile geometry: (1) Pile length 
to the diameter fraction (Lp/D); (2) pile length in the soil 
to the pile length in the rock layer ratio (Ls/Lr); (3) NSPT of 
rocks; (4) Qu, that is ultimate potential bearing (directly 
affects the pile motion rate); (5) UCS of rock. These 
parameters feeding models were used to simulate the PS 
values in this regard. Table 1 indicates the summary of 
inputs used for the developed models.

To estimate the settlement rate of a pile, the parameters 
that influence it are the length and diameter of the pile. 
Two specific parameters, the ratio of the pile length in the 
soil layer to the pile length in the rock layer ( Ls/Lr ) and the 
ratio of the total pile length to the pile diameter ( Lp∕D ), 
are analysed to determine the impact of pile geometry. 
Additionally, the model input for predicting pile subsid-
ence is the UCS, which has a significant effect. The value 
of NSPT is also considered as input to indicate the condition 
of the soil layer. The pile load is another important factor 
that directly affects the settlement, so the final pile-bearing 
capacity ( Qu ) is included as input as well. In summary, 
five variables are selected as inputs to evaluate the pile 
settlement (SP).

Fig. 1   The location of the study area KVMRT
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Also, Fig. 2 indicates measured inputs and target values 
(PSs) with a diagram in which each string shows one pile 
sample that, based on relevant PS, has a specific colour.

Support Vector Regression, SVR

The machine learning way of support vector regression 
(SVR) was designed to compute the regression boundaries 
[30]. SVR is operated for sorting regressions, in which the 
error range (ε) is considered to determine regressions. Cat-
egorizing classes of regressions can be operated for creating 
hyperplane boundaries. The SVR learning technique worked 
as the supervised and found the regressions explained in 
Eq. (1) [38].

where the variable of � shows the boundary violations; w 
represents the weight of inputs; C denotes modifying a vari-
able in order; b is the bias rate and denotes the rate of devia-
tion from the hyperplane boundaries is shown with �.

(1)minw,b =
1

2
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m∑
i=1

(
�i + �∗
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∗
i
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Table 1   The feeding dataset for 
developed models

Parameters Symbols Unit Max Min S. deviation Average

Fraction of pile length to diameter Lp∕D – 31.56 4.33 6.55 15.37
Settlement of pile PS mm 20.095 4.494 3.690 10.99
Uniaxial compressive strength UCS MPa 68.489 25.324 12.442 43.411
Standard penetration test N – 166.42 2.92 59.08 80.03
Ultimate potential bearing Qu KN 42,701 12,409 803 2454
Soil length to socket length ratio Ls∕Lr – 31.714 0.286 6.562 7.063

Fig. 2   The input and target value diagram: a Lp/D, b Ls/Lr, c NSPT, d UCS, and e Qu, f PS
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The fitness function has 2 terms that are explained as 
follows:

(2)
1

2
‖w‖2

(3)C

m∑
i=1

(
�i + �∗

i

)

Equation (2) was proposed for enhancing the area among 
the samples and boundaries of the hyperplane, afterwards 
preserving the intervals between the inputs with the bounda-
ries. Equation (3) works like the modifying tool. The weight 
and bias were generated over solving the objective function 
as the target of the hyperplane’s boundaries [24]. This article 
uses the quadratic objective function to do the dedicated 
tasks accurately. The crucial SVR duty has been to figure out 
the key components as optimal magnitudes. To achieve the 

Fig. 3   The flowchart of the 
marine predator algorithm 
(MPA)
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key factors mentioned, such as sigma, C, and ε needs a smart 
algorithm, the optimizing strategies of MPA and GOA were 
used to join with the SVR to appraise the above-mentioned 
factors at optimal rates.

Grasshopper Optimization Algorithm (GOA)

The grasshopper optimization algorithm (GOA), known 
as the colony base algorithm, can simulate the grasshop-
pers’ behaviour as insects to locate the best solution [39]. 
These creatures in adulthood reveal their colony base habits 
in going a long distance having traits of longer ranges and 
sudden motions. Equation (4) reveals the mathematical form 
of the habits.

In Eq. (4), the location of the grasshopper i is defined by 
xi and the social interaction of grasshoppers is shown by Si.

(4)xi = Si + Gi + Ai

In Eq. (5), dij represents the distance among grasshoppers 
of i and j ; also d̂ij reveals the vector as being a unit among i 
th and j th grasshoppers. Equation (6) considers the strength 
of the social force ( s).

where the parameters of f  and l refer to the intensity of 
attraction and length, alternatively. Notably, the Nymph 
types of grasshoppers do not have wings, which leads to the 
wind being an important factor in moving direction.

(5)
Si =

N∑
j = 1

i ≠ j

s
(
dij
)
d̂ij, dij =

|||xi − xj
|||, d̂ij =

xi − xj

dij

(6)s(x) = fe
−x

l − e−x

(7)Ai = uêw, Gi = −gêg

Table 2   Evaluating indices for analysing the proposed frameworks

Criteria Nomenclatures Equation Assessment

Variance account factor VAF (
1 −

var(tn−yn)
var(tn)

)
∗ 100

 (18)
Higher is desirable

Mean absolute error MAE 1

N

N∑
n=1

��pn − tn
�� (19)

Lower is desirable

Root-mean-squared error RMSE
�

1

N

N∑
n=1

�
pn − tn

�2
 (20)

Lower is desirable

Pearson’s correlation coefficient R2 ⎛⎜⎜⎝

∑N

n=1 (tn−t)(pn−p)��∑N

n=1 (tn−p)
2
��∑N

n=1 (pn−p)
2
�
⎞⎟⎟⎠

2

 (21)

Higher is desirable

Statistical parameters, including the various 
error indices

OBJ
(

ntrain−ntest

ntrain+ntest

)
RMSEtrain+MAEtest

R2
train

+1
+
(

2ntrain

ntrain+ntest

)
RMSEtest−MAEtest

R2
test

+1  (22)
Lower is desirable [42]

Fig. 4   Pile settlement rates 
measured in project KVMRT
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where Eq. (7), the parameters of gravity force and wind 
advection of grasshoppers are mentioned with G and A . The 
variables of u and g are known as, respectively, the wind 
drifts and the gravity constants. Moreover, the unit vector 
specifying the wind advection directions and the gravity 
force directions are represented via êw and êg . Consequently, 
by contributing Eqs. (5)–(7), grasshoppers’ behaviours can 
be formed with the below relation.

(8)
Xi =

N∑
j = 1

i ≠ j

s
(|||xj − xi

|||
)xj − xi

di,j
− gêd + uêw

Nonetheless, utilizing the mathematical model to tackle 
optimization problems is unfeasible as the grasshoppers 
promptly attain their comfort zone, and the swarm fails to 
converge towards a predetermined point. To address opti-
mization issues, a revised version of Eq. (8) is suggested as 
follows according to [39]:

where the parameters of the upper and lower boundary are 
indicated via ubd and lbd ; the d th dimensions values are 
represented by D̂d ; the population number is indicated via 
N ; c is a reducing coefficient that improves the exploitation 
as the iteration number goes up, and increasing the iteration 
leads to a balance of exploration and exploitation.

where for the current article, the values of cmax and cmin , 
respectively, are determined to be 1 and 0.0001.

(9)Xd
j
= c

⎡
⎢⎢⎢⎢⎢⎣

N�
j = 1

i ≠ j

c
ubd − lbd

2
s
����x

d
i
− xd

j

���
�xi − xj

dij

⎤
⎥⎥⎥⎥⎥⎦

+ D̂d

(10)c = cmax − Iter ×
cmax − cmin

M.Iter

Table 3   The key factors of variables magnitudes of each optimizer

SVR-MPA SVR-GOA

Training phase C 0.300 0.650
EPSILON 751.634 653.142
sigma 66.896 64.236

Testing phase C 0.300 0.650
EPSILON 1146 389.640
sigma 9.278 9.487

Fig. 5   The errors and PS rates 
modelled by: a SVR-MPA and 
b SVR-GOA
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Marine Predator Algorithm (MPA)

The novel metaheuristic algorithm of the natural marine 
predators algorithm (MPA) was developed by Faramarzi 
et al. [40]. In the marine predators’ interactions with prey, 
predators employ a wide range of foraging strategies called 
MPA-inspired Brown and Levy accidental migration. In 
hunting grounds, if the focus of the prey is higher, the 
predators will use the Brown way, and if the prey is little, 
the predator will use the Levy method. Levi’s movements 
include jumps and fast motions that enhance the explora-
tion speed. Brown motion involves fixed steps in the same 
task to optimize the work process. On the other hand, envi-
ronmental issues such as fish aggregating devices (FADs) 
and eddy formations are among the factors changing the 

behaviour of predators. Figure 3 shows the process of opti-
mization by MPA [41].

The MPA main stages are explained as follows [6]:
When prey moves with the Brown movement, upgrades 

the matrices of prey with the following relations:

The variable of RL denotes the vectors containing chang-
ing numbers based on the movement of levy type. Another 
population society can be upgraded as:

(11)�������⃗stepj =
���⃗RL ⊗

[
�������⃗elitej −

(
���⃗RL ⊗ �������⃗preyj

)]

(12)�������⃗preyj = �������⃗preyj +
(
P ⋅ R⃗⊗ �������⃗stepj

)

Fig. 6   The PS target values and modelled by: a SVR-MPA and b SVR-GOA
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Afterwards, the elite matrix is equal to multiplying by cf  . 
That the cf  is defined as follows:

The predator moves using the movement type of Levy, 
and then the matrix of Preys can be upgraded via the rela-
tions (16) and (17):

(13)�������⃗stepj =
���⃗RB ⊗

(
���⃗RB ⊗

�������⃗elitej

)
− �������⃗preyj

(14)�������⃗preyj =
�������⃗elitej +

(
P ⋅ cf ⊗ �������⃗stepj

)

(15)cf =
[
1 − (iter∕max × iter)

](2⋅iter∕max×iter)

After either of the iterations, the elite matrix would be 
upgraded, accompanied by the best answers, and the ulti-
mate answers are presented after the last iteration.

Evaluation of Models: SVR‑MPA and SVR‑GOA

Five indicators were used to evaluate the accuracy of mod-
els SVR-GOA and SVR-MPA to estimate the pile settle-
ment (PS) ranges in the calibration and validation phases, 
as revealed in Table 2.

In relations (18)–(22), the predicted subsidence of piles 
is indicated via pN ; target value of measurements is indi-
cated by tn ; t is showing the averaged pile settlement that 
is observed; the calculated PSs are indicated using p as the 
average value. Afterwards, alternatively, the number of sam-
ples gathered for the train and test phase is indicated by the 
ntrain and ntest variables.

Results and Discussion

SVR-MPA and SVR-GOA are hybrid algorithms combin-
ing SVR with a population-based metaheuristic optimization 
algorithm. While SVR-MPA mimics the hunting behaviour 
of marine predators, SVR-GOA simulates the swarming 
behaviour of grasshoppers. These algorithms have shown 
promising results in improving the performance of SVR in 
estimating pile settlement.

(16)�������⃗stepj =
���⃗RL ⊗

(
���⃗RL ⊗

�������⃗elitej

)
− �������⃗preyj

(17)�������⃗preyj =
�������⃗elitej +

(
P ⋅ cf ⊗ �������⃗stepj

)

Fig. 7   The error distribution of models with the normal distribution 
curve

Fig. 8   The difference in PS 
modelled using SVR-MPA and 
SVR-GOA
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The results of the PS model were generated via the SVR-
MPA and SVR-GOA frameworks, which have used the 
machine learning technique to estimate the rates of pile set-
tlements. Thus, we considered the modelling process to have 
the cost and complexity at the lowest level accompanied by 
the highest accuracy of PS estimation; this event is practical 
when using the optimization algorithms to modify SVR in 
solving kernels close to target values. Mathematics opera-
tions and models were performed in the MATLAB environ-
ment. Measured pile settlement rates for the project KVMRT 
as the case study are indicated using Fig. 4, in which 70% of 
data are considered for the training phase and 30% for the 
testing phase. As shown in Fig. 4, the placement of the PS 
rate for both testing and training phases ranges in various 
scales of values.

Table 3 shows the key variables of SVR optimized with 
MPA and GOA.

The error rates entered in the modelling process are 
shown in Fig. 5 for both SVR-MPA (a) and SVR-GOA (b). 
In this regard, the SVR-MPA (a) modelled pile settlement 
rates with lower errors than SVR-GOA (b). The former 
model has an error range of − 4 to + 7% of the suitable con-
dition, while on the other hand, SVR-GOA (b) has an error 
range of − 7 to + 15%. Extending the error range of 75% and 
more than 100% for mentioned lowest and highest bounds 
can signify the MPA optimization algorithm’s capability to 
remove the error rates rather than the GOA method. How-
ever, the overestimated and underestimated PS values can 
be found in both the validation and calibration stages. For 

SVR-GOA (b), the 80th pile is calculated with the highest 
error rate and for another model.

Focusing on the error, matters are discussed, and 
showing the target values with the modelling PS val-
ues can help us understand the models’ performance 
to appraise the PS magnitudes. For this respect, Fig. 6 
indicates the modelled PS magnitudes with the meas-
ured ones as the target values. Regarding the objective 
rates of PS based on Fig. 6, SVR-MPA (a) shows a better 
coincidence for a continuous blue solid line with a red 
dashed line representing the measured PSs. However, this 
status is conducted for two phases of training and testing. 
On the other side, SVR-GOA (b) could not do modelling 
operations as well as the others. According to Fig. 6 (b), 
overlapping the two lines mentioned above is not fitted 
as happened for SVR-MPA. Actually, in the calibrating 
phase, the GOA optimizer made the highest mistake com-
puting the PS rates, especially for the piles of 78–82, with 
approximately 12% error rates. In comparison, this rate 
for the model with MPA optimizer was 5%. Therefore, 
the difference of 140% between the two models shows 
the goodness of the MPA algorithm.

As seen in the presented figures, the modelling process 
is so important that in this part, Fig. 7 tries to show the 
error distribution based on the relevant frequency. The 
condition of error distribution for both models does not 
obey a typical rule to create a tall bar showing the con-
centration of errors around a certain number, especially 
zero. In this regard, both optimization algorithms have 

Fig. 9   Modelled PS with the measured values for a SVR-GOA and b SVR-MPA
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the most error accumulation, around − 4%, with about 27 
counts as the frequency. This event has led to creating the 
short-height bars for either proposed framework.

For comparing the differences of models to estimate 
the pile settlement rates, Fig. 8 is attempted to show the 
discrepancy percentage in simulations. Regarding Fig. 8, 
most of the piles experienced high rates of differences in 
modelling PS that reached 7 per cent for the pile number 
of 34. However, in some cases in which the PS estimated 
by two models are close to each other, reducing the dif-
ferences near the zero line, such as 10, 12, 16, and 22, 
totally the average amount of differences reaches 3 per 
cent.

Figure 9 shows the best-fit line between the measured 
PS (horizontal axis) against the modelled one (vertical 
axis). In the light of the lower error rate for SVR-MPA 
(b), the best-fit line for the PS points is closer to the 
bisector line, rather than SVR-GOA with more error rates. 
Moreover, the correlation index of R2 shows that the MPA 
algorithm has done its job better than the GOA optimizer. 
This fact results from the error rates shown via MAE and 
RMSE that are high for SVR-GOA, respectively, with 102 
and 108% differences compared to SVR-MPA.

From the OBJ indicator viewpoint, which encompasses 
the error indexes of RMSE, MAE, and correlation fac-
tor of R2, the SVR-GOA framework (a) was rated for 
0.581, about 108 per cent higher than the SVR-MPA with 
a value of 0.279.

Conclusion

Assessing the immunization of constructions such as 
bridges and buildings over the operation stage is para-
mount for experts and engineers. Considering essential 
factors such as the rate of piles’ settlement (PS) as a vital 
issue in projects should be investigated before operating 
them. Various items have to be used to examine the pile 
movement, and these measures can help us realize the 
perspective of projects over the operation of the project. 
In this regard, several intelligent solutions are designed 
to calculate the rates of pile motions. Thus, the current 
research used machine learning SVR to model the mag-
nitude of PSs for the constructed project of KVMRT 
in Malaysia. Two optimization algorithms, the marine 
predator algorithm (MPA) and the grasshopper opti-
mization algorithm (GOA), were utilized to accurately 
determine SVR’s main variables. The optimizers were 
combined with SVR to create SVR-MPA and SVR-GOA 
frameworks. To examine the capability of developed 
models, five metrics were considered apprising the PS 

magnitudes. In this regard, the R2 correlation index of 
SVR-MPA in the training phase was calculated at 0.996 at 
the desired level and 0.985 for SVR-GOA. These values 
for the testing phase were calculated with a 0.72% dif-
ference in favour of SVR-MPA, obtained at 0.998, and 
for SVR-GOA, 0.991. In the training stage, the RMSE 
index was calculated for SVR-MPA as 0.286 mm, while 
SVR-GOA was 0.590 mm with 106.38%. This index for 
validation for SVR-MPA was calculated at 0.281 mm and 
for SVR-GOA at 0.596 mm with a 112.5% difference. In 
addition, using the OBJ that includes the error criteria 
in both training and testing phases, the SVR-MPA was 
rated at 0.279 and the SVR-GOA 0.581. The condition of 
error distribution for both models did not obey a typical 
rule showing the concentration of errors around a certain 
number, especially zero. In this regard, both optimization 
algorithms had the most error accumulation, around the 
− 4%, with about 27 counts as the frequency. In summary, 
the SVR-MPA model could remove the most errors seen 
in SVR-GOA through a better simulation process. Exist-
ing the error range of − 7.34 to 14.48% entered by GOA 
compared to the MPA with the errors of − 4.14 to 6.68% 
implies the latter model’s accuracy and higher capability 
to reduce error rates.

Considering the project directly related to people’s 
lives earns high attention. However, covering all aspects 
of pile settlement behaviour on a large and full scale is 
difficult and requires a large cost range regarding energy, 
time, and finance. To cease these costs and reach an ade-
quate estimation of pile settlement, introduced models in 
the present study proved an acceptable convergence rate 
of estimation which defines their workability and perfor-
mance in estimating pile settlement behaviour without 
mentioned costs and difficulty. Therefore, it is suggest-
ible that these models and specially SVR-MPA, in practi-
cal situations and projects.
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