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using the evaluation metric of R-squared value. Furthermore, 
the developed model outperforms other machine learning 
methods proposed by previous studies in terms of predicting 
the soil settlement caused by liquefaction.
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Introduction

Liquefied soil settlement is a geotechnical phenomenon 
that occurs when saturated soil loses its strength and 
behaves like a liquid, leading to ground settlement or 
sinking. Liquefied soil settlement can have detrimental 
effects on buildings, infrastructure, and the overall stability 
of the affected area. It can result in tilting, cracking, and 
even collapse of structures. Therefore, the prediction of 
liquefied soil settlement becomes very important and has 
great significance in the geotechnical field. Many studies on 
liquefied soil have been carried out from in-situ tests [31, 35] 
and laboratory experiments [15, 16, 19, 26], to numerical 
simulation methods [4, 5, 20, 24]. Since a growing number 
of documents were from these testing results, some recent 
studies have developed an effective way to use automated 
computational methods to analyze or predict soil behavior 
from previous databases for future applications [21, 44].

Nowadays, in the era of big data combined with the 
strong development of computer hardware, machine learning 
approaches have been widely used in many different fields 
such as medical application [9–11], structural sector [22, 37], 
or geotechnical aspect [18, 30, 32]. Based on the amount of 
data obtained from the conventional methods of laboratory 
tests or simulation analyses, the machine learning approach 
can be used to evaluate soil conditions including settlement, 
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liquefaction, or landslide [14, 17]. Park et al. [27] conducted 
a comparative study on seven convolutional neural networks 
including Xception, VGG16, InceptionV3, MobileNet, 
DenseNet121, NASNetMobile, EfficienNetB0 with seven 
optimizers, namely SGD, AdaGrad, RMSprop, Nadam, 
Adam, Ftrl, Adamax to classify the settlement level of the 
ground. The study result pointed out that the DenseNet121 
architecture using the Adam optimizer performed the highest 
accuracy. Fang et al. [6] proposed a new approach using 
Artificial Neural Network combining with transfer learning 
to investigate the liquefaction potential of soil. Various soil 
liquefaction test results from the shear wave velocity test, 
standard penetration test, cone penetration test, and dynamic 
penetration test were considered. This study found that 
while less amount of data was investigated, the prediction 
was more highly accurate in comparison with other 
available models such as probabilistic model [3, 13, 28] 
or deterministic model [31]. Moreover, other two machine 
learning techniques, namely Artificial Neural Network and 
Support Vector Machine, were conducted by Samui and 
Sitharam [33] to predict the soil liquefaction susceptibility 
by using two variables of standard penetration test and cyclic 
stress ratio. The authors concluded that while the result 
highlighted the capacity of the developed models, Support 
Vector Machine was a better method for the investigation of 
the soil liquefaction potential.

Based on the literature outlined, conclusions can be 
drawn: (1) various developed models having its capacity 
for a specific task; (2) an effective approach using machine 
learning even with limited database; (3) predicting 
accurately soil ground conditions based on its properties 
depending on the proposed method. However, few studies 
have been conducted on using machine learning approach 
to predict the settlement of ground induced by liquefaction 
under the earthquake motion.

The aim of this study was to propose a multilayer 
perceptron (MLP) with optimized hyperparameters through 
Bayesian optimization to predict liquefaction-induced 
settlement due to the Pohang earthquake in South Korea. 
By considering different soil characteristics, unit weight, soil 
layer depth, standard penetration test blow counts, and cyclic 
stress ratio were applied as input parameters for this study. 
Notably, Bayesian optimization has been widely used owing 
to several advantages over grid search and random search for 
hyperparameter tuning of MLP models. In practice, it was 
often favored when computational resources were limited or 
seeking the best possible configuration within a reasonable 
time frame was applied.

The rest of the paper was organized as follows: A brief 
introduction to the MLP architecture, Bayesian optimization, 
and model performance evaluation metrics is presented 
in Sect.  "Preliminaries." Section  "Proposed model and 
Experiments" describes the used dataset, experimental 

results, and discussion. The conclusions are drawn in 
Sect. "Conclusion."

Preliminaries

Fundamental concepts are briefly introduced including 
multilayer perceptron (MLP) network, Bayesian 
optimization, and evaluation metrics.

MLP Architecture

A multilayer perceptron (MLP) is a specific type of feedfor-
ward neural network architecture that consists of multiple 
layers of neurons, including an input layer, one or more hid-
den layers, and an output layer [29]. Figure 1 illustrates an 
MLP architecture with two hidden layers. Adjacent layers 
of artificial neurons are interconnected with learned weights 
and biases, using activation functions to introduce non-lin-
earity. The network learns to make accurate predictions for 
tasks by adjusting its internal parameters to minimize pre-
diction errors during training process.

The MLPs are versatile and widely used model for 
various machine learning tasks, including classification 
and regression, by adjusting their architecture and 
hyperparameters. They have been foundational in the field 
of deep learning and have paved the way for more complex 
neural network architectures like convolutional neural 
networks and recurrent neural networks.

Bayesian Optimization

Bayesian optimization has been known as a popular tech-
nique for tuning hyperparameters of machine learning mod-
els [7]. It is an iterative optimization method that uses Bayes-
ian inference to build a probabilistic model of the objective 

Fig. 1   MLP architecture



Indian Geotech J	

1 3

function (e.g., model performance) and then employs this 
model to efficiently explore the hyperparameter space.

By iteratively selecting hyperparameters to evaluate 
based on a surrogate model, Bayesian optimization can 
efficiently search the hyperparameter space, often requiring 
fewer evaluations compared to grid search or random search. 
It is a powerful approach for finding optimal hyperparameter 
settings in machine learning models [39, 40, 42].

Evaluation Metrics

The evaluation of model performance is a critical step 
in the machine learning approach. Several common 
evaluation metrics were applied in this study to evaluate the 
performance of regression models including mean square 
error (MSE), root mean square error (RMSE), mean absolute 
error (MAE), and R-squared (R2). These evaluation metrics 
are expressed by the following equations:

where, n referred to the number of data points; yi referred to 
the actual value at the ith sample; ŷi referred to the predicted 
value at the ith sample; y referred to the mean true values.

Proposed Model and Experiments

Dataset

For a comparative study with other researches, the same 
dataset with Park et al. [25], which is found in Appendix 
A, was applied in this study. The dataset was obtained from 
the UBCSAND constitutive effective stress model [23]. 
The UBCSAND model estimates the shear-induced defor-
mation on the basis of standard penetration test (SPT) data 
from in-situ test. The SPT data were gained from five dif-
ferent borehole locations near the epicenter of the Pohang 
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Earthquake in South Korea. It consisted of 100 data points 
(20 data points for each borehole) along with correspond-
ing settlement values. The distribution of settlements (bar 
charts) in the dataset normalized by the total area of the his-
togram equaling to 1 and its distribution estimated by a ker-
nel density estimator (solid line) using Seaborn library [41] 
are presented in Fig. 2. It indicates that while the ground 
settlement was in a wide range of between 0.0 and 3.5 mm, 
it showed a high density from 0.0 to 0.9 mm in which soil 
layers revealed a slight effect by Pohang earthquake.

For each sample, unit weight (γ), soil layer depth (d), 
standard penetration test blow count (N1(60)), cyclic stress 
ratio (CSR), and liquefaction-induced settlement (S) were 
obtained. The correlation between the variables γ, d, N1(60), 
CSR, and S is shown in Fig. 3. The correlation coefficient 
was in the range [− 1, 1]. A negative value indicated a nega-
tive correlation, and vice versa for negative value. A value 
of zero represented no correlation between variables. It was 
observed that γ and d had a more impact on S than N1(60) and 
CSR. It was worth noting that γ was positively correlated, 
and d was negatively correlated.

Noting that four soil characteristics including γ, d, N1(60), 
and CSR were considered as input parameters in this study, 
while S value was the output parameter of the MLP model. 
All input parameters were on a similar scale to prevent 
certain features from dominating the learning process due 
to their larger values. MinMaxScaler technique was used to 
normalize these input parameters to a range from − 1 to 1. 
For training purposes, the data set was divided into three 
subsets including the training set containing 64 samples, the 
validation set consisting of 16 samples, and the rest for the 
testing set. The training set and the validation set were used 
to train the model and tune the model’s hyperparameters, 
respectively, whereas the testing set was used to evaluate 
the trained model.

Tuning Hyperparameters

To select suitable hyperparameters for the proposed model, 
the search space was taken into account depending on the 
complexity of a specific task to help avoid an unnecessary 
computational expense of the model in terms of estimat-
ing optimal or near optimal hyperparameters. From the lit-
erature, eight hyperparameters were exhibited in this study 
including the number of dense layers, the neurons per dense 
layer, activation per dense layer, dropout rate, optimizer, 
learning rate, epochs, and batch size [1, 10, 22, 29, 38]. 
The present study used Bayesian optimization method with 
Optuna library to estimate the best set of hyperparameters of 
the model. Due to the mathematical tractability and simplic-
ity [8, 36], the normal distribution is used as a prior distribu-
tion to optimize the hyperparameters of the MLP model. The 
objective function applied in this study was the mean square 
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error. The search space and optimal hyperparameters are 
detailed in Table 1. It was clearly found that while different 
hidden layers between 1 and 3 were utilized, an optimal MLP 
model contained two hidden layers. The first hidden layer 
had 13 neurons by using the selu activation function, regard-
less of dropout rate. However, the second hidden layer had 8 

neurons by using the elu activation function with a dropout 
rate of 0.1. Regarding the search space for the optimizer, the 
search space with four selected optimizers, namely SGD, 
AdaGrad, RMSprop, and Adam was examined. The Bayes-
ian optimization process indicated Adam algorithm as the 
estimated optimizer. As a result, the compiling and training 

Fig. 2   Histogram of settle-
ments with kernel density 
estimator

Fig. 3   Correlation between 
variables
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process of the present model used Adam optimization with 
an initial learning rate of 0.01. The batch size and epochs 
were set up to 64 and 1700, respectively.

For a better understanding of optimization procedure, the 
history of the optimization process is presented in Fig. 4. 
The process of optimizing the hyperparameters was per-
formed with 100 trials based on Bayesian optimization 
method to minimize the mean squared error on the vali-
dation set. It can be seen that the best value of the objec-
tive function converged to almost zero after about 50 tri-
als. Noting that different hyperparameters may have less or 
more effect on the objective value or the performance of the 
model. Therefore, the influence of the hyperparameters on 
the objective value was conducted and is shown in Fig. 5. It 
is clearly seen that the learning rate has the greatest effect 
on the objective value, which accounted for a value of 56% 
followed by the dropout rate of 23%. By contrast, a minor 
effect was found from the number of dense layers and the 
batch size by a value of less than 1%.

Performance of MLP

The optimized MLP model, which had the estimated 
hyperparameters as shown in Table 1, was used for the 
task of predicting settlement caused by liquefaction. The 
convergence history in loss values is shown in Fig. 6. The 
result revealed that overfitting and underfitting problems 
did not occur during the training and validation processes. 
The loss values on both procedures decreased rapidly from 
the initial stage to a few epochs and steadily converged to 
approximately zero after obtaining about 500 epochs. The 
convergence was quite stable, and the apparent fluctuation 
in the loss values for both training and validation sets was 
not found. This pattern resulted in the high performance of 
the developed model. Table 2 represents the performance 
evaluation metrics of the proposed method using mean 
square error (MSE), root mean square error (RMSE), mean 
absolute error (MAE), and R-squared (R2). The proposed 
MLP provided 0.201 MSE, 0.084 RMSE, 0.289 MAE, and 
0.895 R2.

Table 1   Search space 
and optimal results of 
hyperparameters

Hyperparameter Search space Optimal result

Number of hidden layers [1, 2, 3] 2
Neurons per hidden layer [4:16], step = 1 13; 8
Activation per hidden layer [sigmoid, tanh, relu, elu, selu] selu; elu
Dropout rate [0:0.5], step = 0.1 0.0; 0.1
Optimizer [SGD, AdaGrad, RMSprop, Adam] Adam
Learning rate [0.0001; 0.001; 0.01] 0.01
Epochs [500:2000], step = 100 1700
Batch size [8, 16, 32, 64] 64

Fig. 4   Optimization history after 100 trials
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The outperformance of the proposed model can be com-
pared to the existing machine learning methods applying to 
geotechnical engineering. A new approach was developed 

by Fang et al. [6] named Fang’s model using transfer learn-
ing and fine-tuning with a pre-trained model via the Artifi-
cial Neural Network. A total of 1069 cases were applied to 
predict the liquefaction potential of soil using shear-wave 
velocity test dataset. Fang’s model performance provided 
76% accuracy. Furthermore, a comprehensive study was 
conducted on Fang’s model using other sources of stand-
ard penetration test, cone penetration test, and dynamic 

Fig. 5   Influence of hyperparameters on objective values

Fig. 6   Loss history

Table 2   Performance statistics 
of the proposed MLP model

MAE MSE RMSE R2

0.201 0.084 0.289 0.895
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penetration test, applied by other methods. Fang’s model 
showed a high accuracy even using 20% dataset for fine-
tuning compared to other approaches using full database. 
Although the present proposed model using MLP to pre-
dict the liquefaction-induced settlement outperforms Fang’s 
model using ANN to predict the soil liquefaction potential 
based on the accuracy metric, the performance of the devel-
oped model highly depended on the specific task and the 
dataset quality as aforementioned discussion in the literature. 
However, the inadequate validation for the present study was 
only based on Fang’s model.

Moreover, a similar approach to Fang’s model can be 
seen from Park et al. [25] named Park’s model by using the 
Artificial Neural Network for the same database with the 
current study to predict the earthquake-induced settlement. 
However, Park’s model suggested two models with different 
variables: model 1 using d, N1(60), CSR, and model 2 using 
d, N1(60), CSR. An R-squared value of 0.86 and 0.74 was 
obtained from model 1 and model 2, respectively. Moreover, 
the same goal and dataset to Park’s model and the present 
study’s model were also conducted by Ahmad et al. [1] 
named Almad’s model. Two machine learning methods of 
random forest and reduced error pruning tree were presented 
in Almad’s model. An R-squared value of 0.78 and 0.60 
was obtained from Random Forest model and Reduced Error 
Pruning Tree model, respectively. The findings found from 
the literature using different approaches such as Artificial 
Neural Network, Random Forest, or Reduced Error Pruning 
Tree for the same or different dataset validated the efficiency 

of the proposed method in the present study. In other words, 
it is highly recommended to develop a suitable model with 
limited data.

For a better understanding of the settlement prediction 
for the purpose of geotechnical engineering, the comparison 
between the predicted values obtained from the model and 
the actual values of settlement in the testing set is illustrated 
in Fig. 7. A better model was obtained when the data points 
were as close as to the line y = x, which was displayed by an 
R2 value closer to 1. These values are represented in Table 3. 
It was found that while some predicted values obtained from 
MLP model were highly deviating from the actual values, 

Fig. 7   Comparison of predicted 
values and actual values

Table 3   Comparison of predicted values and corresponding actual 
values

Point Actual
settlements 
(mm)

Predicted
settlements 
(mm)

Point Actual
settlements 
(mm)

Predicted 
settlements 
(mm)

1 1.9 1.55 11 0.3 0.45
2 0.5 0.54 12 0.0 0.11
3 0.6 0.67 13 0.0 − 0.12
4 1.8 2.08 14 0.0 0.08
5 2.0 2.33 15 0.6 0.62
6 0.0 0.01 16 3.3 2.58
7 1.6 0.82 17 0.0 − 0.20
8 0.5 0.74 18 0.0 − 0.16
9 0.4 0.24 19 0.2 0.16
10 0.5 0.65 20 0.0 0.01
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Fig. 8   Comparison of predicted values and actual values in six various models
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an overall accuracy of high R2 value indicated a high per-
formance of the proposed model. A higher accuracy was 
expected by large amount of experimental data for the con-
fident application of machine learning approach to evaluate 
the settlement of the ground in the field based on another 
available test database.

As aforementioned discussion in the literature, a com-
parative study using different models was conducted 
on the same database. The results of the proposed MLP 
model were compared with five other well-known machine 
learning models including linear regression, support vec-
tor machine, robust regression, elastic net regression, and 
polynomial regression. The architecture of these models 
can be found from the previous studies [2, 12, 34, 43]. The 
comparison between the actual values and the correspond-
ing predicted values in different machine learning models is 
shown in Fig. 8. It can be seen qualitatively that the polyno-
mial regression model and the proposed MLP model predict 
better outcomes than the others.

For an accurate and comparative assessment of the 
robustness of the regression models, the quantification of 
the goodness of the models represented by the R2 value is 
summarized in Table 4. The proposed MLP model gives 
superior results with an R2 value of 0.895, followed by 
the polynomial regression model and the support vector 
machine with R2 values of 0.808 and 0.663, respectively. 
The remaining three models show a poor prediction result 
with R2 values less than 0.5.

Conclusion

This study proposes an MLP model where the hyperparam-
eters are optimized through Bayesian optimization to predict 
the liquefaction-induced settlement due to the Pohang earth-
quake. The experimental results show that the learning rate 
has the greatest influence on the model performance. The 
proposed optimal MLP model accurately predicts the set-
tlement values as indicated by the R2 value of 0.895, which 
is better than five other machine learning models, namely 
linear regression, support vector machine, robust regression, 
elastic net regression, and polynomial regression in the same 
task. The proposed model is simple and has a high gener-
alization ability on new datasets. Moreover, as the limita-
tion of a relatively small samples (only 100 data points), the 
model developed in this study outperforms existing models 

proposed by other authors with the same databases. How-
ever, it should be noted that while the effectiveness of the 
proposed model uses MLP method combining with Bayes-
ian optimization in the prediction of liquefied soil settle-
ment, it may be unable to perform a high accuracy for other 
assessments of soil conditions such as slope stability, land-
slide, or seepage analysis. Additionally, the present study 
can be referred to further studies for a more comprehensive 
approach regarding the machine learning application in geo-
technical engineering.
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