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in the utilization of these additives for practical applica-
tions. Laboratory test results for various stabilized soils are 
interpreted by understanding the stabilization mechanism for 
their successful field application in the future.
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Introduction

Expansive soils, also known as swelling clays, pose a 
significant challenge in geotechnical engineering world-
wide. They are widespread in Australia, the USA, the UK, 
China, Canada, South Africa, Israel, Iran, and India. In 
India, expansive soil covers nearly 20% of the total land 
area, mainly in the states of Madhya Pradesh, Maharash-
tra, Gujarat, Andhra Pradesh, Telangana, and Tamil Nadu. 
These soils have the ability to undergo volumetric changes 
upon wetting and drying, leading to extensive structural and 
geotechnical problems. The volume changes associated with 
expansive soils are primarily caused by the presence of the 
clay mineral montmorillonite, which, when exposed to water 
absorbs it into the crystal lattice, causing the soil to swell. 
Conversely, the absorbed water molecules are released upon 
drying, resulting in soil shrinkage. This swelling-shrinkage 
behaviour can put immense stress on surrounding structures, 
causing significant damage over time. Some of the severe 
structural damages caused by expansive soils include foun-
dation cracks, cracking and heaving of pavements, defor-
mation of railway lines, differential foundation settlement, 
rupturing of canal linings, underground pipeline cracks, 
and distortion of building members [1–5]. These damages 
result in substantial economic loss and pose serious safety 
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hazards to the occupants. In the USA, damages incurred 
by the swell–shrink behaviour of expansive soils amount 
to several billions of dollars yearly, which is significantly 
higher than the damages incurred by natural calamities like 
earthquakes, floods, hurricanes, etc. [6]. This necessitates 
the improvement of such problematic soils to make them 
ideal for construction work. In this regard, soil stabilization 
is of great significance that aims to enhance physico-chem-
ical and mechanical properties of problematic soils through 
various treatment techniques. Several stabilization methods 
were developed and practiced in the past decades that had 
various advantages and disadvantages.

Mechanical or physical stabilization was a commonly 
used technique in the earlier days of expansive soil treat-
ment, which enhanced the behaviour of soils by altering their 
physical properties. Removal and replacement of expansive 
soil with non-problematic soil, pre-wetting the soil before 
construction, compaction, and soil reinforcement are some 
mechanical stabilization methods [2]. Chen [1] suggested 
that an expansive soil fill of 0.9–1.5 m can be removed 
and replaced by a non-expansive cushion layer. Though 
this method provides a simple technique for stabilization, 
it greatly depends on the availability of non-expansive soil 
nearby the site. The pre-wetting method is one of the old-
est established techniques, which involves wetting soil and 
allowing it to swell before construction so that no more 
water can penetrate the swelled soil [2, 7, 8]. This method 
was proven to be successful only for expansive soils with 
high permeability so that they can be wetted in a short period 
of time, which is unlikely in most cases. Holtz and Gibbs 
[9] studied the influence of dry density and moisture content 
on the swelling behaviour of expansive soils. They showed 
that the soil swelled considerably low when compacted at a 
density less than the maximum dry density and a moisture 
content more than the optimum water content. Apart from 
these mechanical methods, there are a few moisture control 
techniques, such as providing horizontal and vertical mois-
ture barriers and subsurface drainage systems that limit the 
increase in water levels in expansive soil layers [1, 2].

Evolution of Chemical Stabilization

In the later years, chemical stabilization of expansive soils 
gained interest among researchers with the introduction of 
calcium-based stabilizers. When added to soil in the pres-
ence of water, these calcium-based stabilizers initiate the 
following chemical reactions: Hydration, cation exchange, 
flocculation and agglomeration, pozzolanic reaction, and 
cementation [10–12]. Cement and lime are the two well-
established calcium-based stabilizers that were popularly 
known as traditional stabilizers [13, 14]. Lime, when added 
to soil, reacts with water to form hydrated lime or calcium 

hydroxide. This hydration product disintegrates into cal-
cium ions  (Ca2+) and hydroxide ions  (OH−). The first stage 
involves the cation exchange process, where  Ca2+ replaces 
the cations present on the surface of clay minerals. This 
results in a reduction of negative charges, thereby reducing 
the thickness of the diffuse double layer. The second stage 
involves the reaction of  OH− with silica and alumina present 
in the clay minerals to form cementitious compounds (cal-
cium silicate hydrate and calcium alumina hydrate). These 
compounds act as binders and contribute to the agglomera-
tion of soil particles, resulting in improved strength and 
volumetric stability.

Cement, on the other hand, with calcium silicates as 
a major constituent, reacts with water to form a binding 
agent called calcium silicate hydrate gel (C–S–H gel) and 
calcium hydroxide. The C–S–H gel is the primary binding 
agent that holds the soil particles together and contributes to 
the increased strength and stability of the stabilized soil. In 
addition to this, the calcium hydroxide that was formed as a 
hydration product disintegrates into  Ca2+ and  OH−. Similar 
to lime-stabilized soil, these products undergo pozzolanic 
reactions to form additional cementitious compounds that 
result in enhanced strength. The effectiveness of lime and 
Portland cement in expansive soil stabilization was exten-
sively studied [11–13, 15–17]. The studies revealed that 
the lime and cement stabilized expansive soil resulted in a 
reduction in liquid limit, an increase in plasticity index and 
shrinkage limit, increased unconfined compressive strength 
(UCS), and a considerable decrease in swell and shrinkage 
potential. However, the production of lime and cement has 
a severe negative impact on the environment. The produc-
tion process releases significant amounts of carbon dioxide 
(CO2) and other harmful greenhouse gases into the atmos-
phere [18–21]. In 2012, approximately 4 gigatonnes (Gt) of 
cement were produced globally, which emitted about 3 Gt 
of CO2 into the atmosphere, nearly 8% of the total annual 
 CO2 emissions caused by human activities worldwide [22]. 
To solve the environmental concerns raised by traditional 
stabilizers, eco-friendly and sustainable chemical additives 
(commonly grouped as non-traditional stabilizers) have been 
diligently studied to improve the behaviour of expansive 
soils.

Non-traditional stabilizers include, but are not limited to, 
a wide variety of chemical additives: Industrial by-products, 
synthetic polymers, bio-polymers, geopolymers, enzymes, 
resins, salts, and ionic stabilizers [23, 24]. Unlike traditional 
stabilizers, the mechanism involved in each category and 
the specific chemical within the category vary considerably. 
Implementation of these non-traditional stabilizers, espe-
cially for expansive soils, has been a highly researched area 
in recent years [25–32].

There are several state-of-the-art review studies avail-
able currently that deals with soil stabilization using 
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non-traditional additives [24, 33–36]. Barman et al. [5] 
reviewed the stabilization mechanism of expansive soils 
using various chemical additives (traditional and non-tradi-
tional) and also discussed on the efficiency of the additives 
in improving the geotechnical characteristics of expansive 
soil. Chang et al. [37] provided a state-of-the-art review on 
biopolymer additives for soil stabilization. Their effect on 
various engineering behaviour of soil was discussed, con-
sidering their sustainability and commercial viability. Huang 
et al. 2021 [38] provided a detail review on the utilization 
of polymers in soil stabilization by discussing their interac-
tion with soil particles and impact on geotechnical proper-
ties of soil. Still, a comprehensive review that focus solely 
only on expansive soil stabilization using emerging, eco-
friendly, and sustainable chemical additives are very limited. 
This paper provides a state-of-the-art review on sustainable 
chemical additives that are used currently for expansive soil 
stabilization. The effect of industrial by-products, synthetic 
polymers, biopolymers, geopolymers, and enzymes on the 
key engineering properties of expansive soil is discussed 
in detail through the results of state-of-the-art studies. The 
physico-chemical properties and the mechanism involved in 
the stabilization process of these additives is also explored. 
Finally, the overall efficiency and shortcomings of each sta-
bilizer is analyzed, which will be beneficial for the engineers 
for better utilization in filed applications.

Expansive Soil Mechanism

Expansive soils are mainly characterized by clay minerals 
belonging to the smectite or vermiculate group that are par-
ticularly recognized for their interlayer expansion. Montmo-
rillonite is one of the important members of smectite group 
that has a 2:1 layered structure (an octahedral alumina sheet 
sandwiched between two tetrahedral silica sheets). The two 
tetrahedral sheets are bonded by weak van der Waals force 
of attraction, thereby allowing the exchangeable cations and 
water molecules to enter the interlayer easily [2]. When iso-
morphous substitution takes place with replacement of cati-
ons with aluminum ions, a net negative charge is developed 
on the mineral surface. This negative charge is neutralized 
by the attraction of exchangeable cations, which is available 
within the clay-water network. The attraction of cations in 
turn, produces an irregular distribution of cations, with more 
concentration towards the clay surface and decreasing with 
distance from the clay surface. This redistribution of ions 
gives rise to the electrostatic property called diffuse double 
layer, and the quantity of cations needed to equalize this sub-
stitution is called the Cation Exchange Capacity (CEC) [1, 
39, 40]. When in contact with water, the diffuse double layer 
expands, leading to the separation of clay minerals and con-
sequent swelling of soil. Conversely, with the evaporation 

of water, the diffuse double layer contracts resulting in soil 
shrinkage and cracking. This altering behaviour of diffuse 
double layer of the expansive clay minerals is the fundamen-
tal cause for the volumetric instability of soils [8, 40, 41].

Sustainable Stabilizers

Industrial by‑Products

Industrial by-products (IBP), often regarded as industrial 
wastes or residues, are deposited in huge amounts as a result 
of various industrial processes. These by-products are often 
disposed in nearby fertile lands, thereby contaminating the 
land and ground water. Hence, studies were made on the 
utilization of the surplus waste generated in order to reduce 
the environmental damage. With both class F fly ash (FA-F) 
and class C fly ash (FA-C) gaining attention as an alternative 
additive over lime and cement, several researchers explored 
the possibility of utilizing other industrial wastes for sta-
bilization of problematic soils–silica fume (SF), Bottom 
ash (BA), cement kiln dust (CKD), ground granulated blast 
furnace slag (GGBS), rice husk ash (RHA), Bagasse ash 
(BAA), slag cement (SC), and copper slag (CS) are some of 
the commonly used industrial wastes in construction indus-
try. With their excellent binding ability and chemical reactiv-
ity, they have been proved to enhance the hydro-mechanical 
characteristics of soils [37, 38, 42–46]. Lignosulfonate (LS), 
a by-product of paper industry, has got more attention in 
recent years because of its remarkable stabilization abilities 
[47–51].

Synthetic Polymers

Synthetic polymers are human-made organic polymers with 
basic constituents derived from petrochemical feedstocks. 
They are composed of repeating units called monomers, 
each having distinct physical and chemical properties. These 
are available in both solid (powder, fibres) and liquid forms. 
Some of the synthetic polymers used as expansive soil stabi-
lizers are urea formaldehyde (UF), polyacrylamide (PAM), 
polyvinyl acetate (PVAc), polypropylene polymers (PP), 
polyvinyl alcohol (PVA), polymethylmethacrylate (PMMA), 
styrene co-butyl acrylate (SBA), and polyurethane. Table 1 
shows the physico-chemical properties of some of the com-
monly used synthetic polymers in the field of geotechnical 
engineering. In addition, there are several copolymers that 
are formed by the polymerization of two or more different 
monomers, which have been utilized in expansive soil stabi-
lization. Styrene acrylic is a widely used copolymer formed 
by the polymerization of styrene and acrylic monomers 
that offers excellent adhesion properties, rigidity, hardness, 
and flexibility. Al-Khanbashi and Abdalla [52] studied the 
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performance of styrene acrylic emulsion as a stabilizer for 
sandy soil. Inclusion of styrene acrylic altered both hydrau-
lic and mechanical characteristics of soil. Hydraulic con-
ductivity was found to reduce with increasing SA content, 
while strength and stiffness increased considerably. Due to 
its broad applicability as a stabilizer for various soil types, as 
demonstrated in Table 1, synthetic polymers have emerged 
as a promising additive for the stabilization of expansive 
soils.

Biopolymers

Biopolymers are natural polymers that are produced either 
by living organisms like plants, animals, microorganisms 
(bio-based) or chemically synthesized from a biological mat-
ter. Bio-based polymers can be classified into various types 
depending on their origin, which include polysaccharides, 
starch, chitosan, alginates, chitin, casein, keratin, etc. They 
are widely used in the medical industries, agricultural fields, 
textile industries, water treatment plants, etc. Some of the 
important biopolymers, their characteristics, and state-of-
the-art in soil stabilization is shown in Table 2.

Geopolymers

Unlike synthetic and biopolymers, geopolymers are inor-
ganic polymers belonging to the group of alkali-activated 
binders which are primarily used in the construction indus-
try. Extensive research on IBP as soil stabilizers revealed 
that many of the by-products were not able to exhibit binding 
characteristics without using a secondary activation addi-
tive such as cement, lime, or fly ash. This directed towards 
the introduction of using alkaline solutions to activate 
such binders. Geopolymers are formed by mixing alumi-
nosilicate source materials with alkaline activators, caus-
ing polymerization of the aluminosilicate units to form a 
three-dimensional network structure. Various materials 
such as metakaolin, red mud, fly ash, ground granulated 
blast furnace slag, rice husk ash, volcanic ash, and bagasse 
ash have been used as potential aluminosilicate source in 
geopolymer production. Metal hydroxides such as sodium 
hydroxide and potassium hydroxide, along with sodium 
silicate, are the commonly used alkali activators. Geopoly-
mers have emerged as an environment-friendly alternative 
to traditional calcium-based binders owing to its reduced 
carbon emissions and energy consumption. Davidovits [73] 
developed geopolymers initially as a new inorganic-polymer 
material to be applied in the fields of automobile, plastic, 
aerospace, metallurgy, and civil engineering. After that, over 
the last few years, various researchers studied the potential 
use of geopolymers for stabilization of soils [74–80]. It was 
used as a stabilizer for various soil types and was found 
to improve its engineering properties significantly, such as 

shear strength, wet–dry and freeze–thaw durability behav-
iour, compressive strength, tensile strength, resilient modu-
lus, and dynamic property.

Enzymes

Enzymes are natural organic molecules that act as catalysts 
for accelerating chemical reactions in all living organisms. 
Hence, they can be easily extracted form plants, animals, 
and other living beings using suitable technique. Typically, 
enzymes are composed of proteins, metal ions, and chains of 
amino acids. They are characterized by very specific func-
tions, allowing them to perform certain reactions and ensure 
effective chemical alteration. The distinct chemical composi-
tion of the soil offers the necessary location for reaction to 
occur, while the pore water system in the soil-matrix facili-
tates the movement of enzyme. There are various enzymes 
that are commercially available (e.g., Terrazyme, Eko Soil, 
Earthzyme, Permazyme) to perform specific functions in soil 
stabilization, such as altering the compaction characteristics, 
workability, water-absorbing ability, mechanical behaviour, 
and chemical reactions of a soil. These synthesized enzymes 
are mostly supplied in liquid state with good solubility in 
water, which makes it easy to mix with soil. Enzymes are 
often added to soil in terms of application mass ratio (AMR) 
and dilution mass ratio (DMR), where AMR is the mass of 
enzyme to dry soil mass, and DMR is the ratio of mass of 
enzyme to mass of water. Several researchers studied the 
potential use of enzymes as a sustainable soil stabilizer for 
various types of soils [81–88].

Mechanism of Stabilization

Industrial by‑Products

Industrial by-products contain adequate sources of silica, 
alumina, calcium oxide, iron oxide, and magnesium oxide 
that actively react within the soil matrix. The composition 
of these elements can vary widely depending on the source 
material of the IBP and the process by which it is obtained. 
The interaction of IBP with expansive soil particles has 
similarities with certain mechanisms involved when using 
traditional calcium-based stabilizers. Upon introduction 
into the soil–water matrix, pozzolanic reactions take place 
between the calcium ions and silica or alumina present in 
the soil matrix. This results in the formation of cementi-
tious products, such as calcium silicate hydrate (C–S–H) 
and/or calcium aluminate hydrate (C–A–H) [89–91]. Sharma 
and Sivapullaiah [90] observed distinctive peaks in x-ray 
diffraction (XRD) patterns that confirmed the formation of 
C–S–H and C–A–H compounds as a result of the pozzolanic 
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reaction between GGBS-flyash stabilizer and clay particles 
as shown by the following equations:

where Ca(OH)2 is a component in IBP; SiO
2
 and Al

2
O

3
 are 

the components in clay mineral.
On the contrary, non-calcium IBP in reaction with soil 

containing a considerable amount of calcium compounds 
also leads to the formation of C–S–H gel compounds 
[92–94]. These cementitious products play a vital role 
in linking the soil particles together and improving their 
mechanical strength. Kalkan and Akbulut [95] demonstrated 
that the silica present in silica fume reacted with calcium and 
hydroxide ions in the soil and formed C–S–H that enhanced 
their engineering behaviour. In addition to this, the presence 
of certain minerals, such as alkaline oxides, can induce the 
cation exchange process by reacting with water to disinte-
grate into their respective alkali ions. These ions replace the 
cations present in the diffuse double layer, thereby reduc-
ing its thickness and improving its stability against swelling 
and shrinking [96, 97]. Furthermore, the ion exchange might 
cause flocculation and agglomeration in the soil matrix, 
which aids in improving soil strength [98]. Through a series 
of scanning electron microscope (SEM) and XRD studies, 
Ogila [99] reported that all the major stabilization mecha-
nisms (hydration, cation exchange, pozzolanic reaction, floc-
culation, and agglomeration) had occurred in cement kiln 
dust stabilized expansive soil that caused the enhancement 
of its geotechnical properties.

Synthetic Polymers and Biopolymers

As discussed earlier, both synthetic polymers and naturally 
occurring biopolymers are composed of repeating monomer 
units that are basically organic in nature. These monomers 
are bonded by strong chemical bonds, resulting in long 
chains of polymers. Hence, the overall characteristics of a 
polymer are purely governed by the functional groups of the 
monomers. Still, the fundamental mechanism governing the 
interaction between these polymers and soil particles is simi-
lar to some extent due to the typical intermolecular forces in 
the polymer, the general physical and chemical properties of 
the polymer, and the presence of some common functional 
groups and their arrangement.

The net electrical charge of an organic polymer sta-
bilizer can be positive (cationic), negative (anionic), or 
neutral, depending on the type and charges of the mono-
mers in the polymeric chain. Montmorillonite clay min-
eral formed by the isomorphous substitution of aluminum 

(1)Ca(OH)2 → Ca
2+ + 2OH

−

(2)
Ca

2+ + OH
− + SiO

2
+ Al

2
O

3
→ C − S − H + C − A − H

ions by silicon ions, carries a net negative charge [2]. 
Other minerals, such as illite, can carry a net positive 
charge and are capable of attracting negatively charged 
polymer units. Adsorption, electrostatic interaction, and 
hydrogen bonding are the major phenomena that govern 
the stabilization process of these polymers in expansive 
soils. When introduced into the soil matrix, the positively 
charged polymer gets adsorbed to the clay surface due to 
the complementary charges. Subsequently, the adsorbed 
polymers fill up the voids and interlock the soil particles 
through van der Waals bonding and/or hydrogen bonding. 
This alters the clay structure by providing a more stable 
diffuse double layer, thereby reducing the swell–shrink 
nature of expansive soils. Also, through further floccu-
lation and agglomeration of soil particles, mechanical 
strength is improved considerably [100–103]. Similarly, 
when negatively charged polymers are added into the soil 
matrix, they get attracted to some positively charged soil 
particles and form bonds with them depending on the type 
of polymer functional group [104–111]. Soltani et al. [112] 
explains that negatively charged polymers like anionic 
PAM can be attracted to clay particles by the presence of 
some exchangeable cations (e.g.,  Ca2+,  Mg2+). The strong 
bonds developed by the interaction of these ions lead to 
flocculation and agglomeration of soil particles, which in 
turn reduce the swell–shrink potential of the treated expan-
sive soil. Hence, the efficiency of anionic polymer stabiliz-
ers depends on the presence of positive charges on the soil 
surface. The stabilization mechanism of neutrally charged 
polymers with expansive soils is basically driven more by 
physical interaction rather than electrostatic interaction.

Geopolymer

Geopolymer is synthesized through a chemical process 
called geopolymerization, which is a complex process and is 
still being studied. But commonly, the process involves three 
main stages: dissolution, polycondensation, and polymeri-
zation. Initially, when an alkali activator (NaOH or KOH 
with silicates) is mixed with a binder source material (e.g., 
slag, metakaolin, flyash, bagasse ash, rice husk ash, vol-
canic ash) in the presence of water, dissolution of alumina 
and silica occurs, leading to the formation of silicates and 
aluminates. This is followed by gel formation through the 
polycondensation reaction of the silicates and aluminates. 
In the case of expansive clay soils, silicates and aluminates 
inherently present in the minerals, such as montmorillonite, 
also take part in the polycondensation process [113]. Finally, 
continuous rearrangement of these monomers leads to the 
development of an amorphous, three-dimensional network 
of interconnected aluminosilicates, generally represented by 
the empirical relation (3):
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where M, z, n, and w denote the alkali cations, polyconden-
sation degree, Si/Al molar ratio, and molar water content, 
respectively [25, 114].

There are several studies in the literature that deal with 
the implementation of geopolymers in other construction 
materials such as concrete, bricks, and mortar. With the 
limited literature available currently for geopolymer-soil 
interaction, the basic mechanism involved in stabilization is 
discussed. Similar to IBP, the incorporation of geopolymer 
gel into expansive soils will initiate an ion exchange reaction 
with the cations in the interlayers, causing a reduction in 
swell potential. Cementitious products such as C–S–H and 
C–A–H may also be formed depending on the availability of 
calcium ions in the clay minerals. Further, the geopolymer 
gel infiltrates the pores, fills the voids, and finally wraps 
around the clay particles, making a strong interlock between 
them. This helps in improving the mechanical strength and 
overall volumetric stability of the expansive soil. Sahoo 
et al. [115] observed the presence of cementitious prod-
ucts (C–S–H, C–A–H, ettringite) in GGBS-NaOH-based 
geopolymer stabilized expansive soil from the XRD pat-
terns. Miao et al. [116] observed peaks in XRD patterns 
of volcanic ash-KOH-based geopolymer stabilized soil that 
indicated the transformation of montmorillonite into illite 
(illitization), thereby reducing the swelling nature of the soil 
significantly. Samuel et al. [25] reported that the addition of 
MK-KOH-based geopolymer in the soil reduced the diffuse 
double layer thickness through ion exchange reactions, lead-
ing to further flocculation of particles.

Enzymes

Studies related to the potential usage of enzymes as expan-
sive soil stabilizer are very limited, and this research area 
is still being explored. Also, the results of various labora-
tory tests from these studies are highly divergent owing to 
the unavailability of standardized testing methodology for 
enzyme stabilizers. A proper understanding on the inter-
action mechanism involved between soil–water system and 
enzyme is crucial to formulate a standard testing meth-
odology for enzyme stabilizers. This has become a great 
challenge because of the various contradictory hypotheses 
on stabilization mechanism of enzymes that are available 
in the literature till date [87]. One of the first and widely 
accepted hypothesis is that once introduced into the soil-
matrix, the enzyme binds with the adsorbed large organic 
molecules available on the surface of clay minerals. Then, 
these enzyme-encapsulated large positive molecules will 
surround the negatively charged clay minerals by displac-
ing the diffuse double-layer water molecules. This results 

(3)Mn

[

−
(

SiO
2

)

z
− AlO

2

]

n

⋅ wH
2
O

in the neutralization of charge, reduction in diffuse dou-
ble layer thickness, and thereby minimizing the affinity of 
clay mineral to water molecules [24, 85, 117]. Renjith [86] 
explains that the cation exchange process and alteration of 
diffuse double layer are highly dependent on the soil type. 
Soils with high swelling and plasticity characteristics have 
higher ability to undergo cation exchange reaction compared 
to soils with low plasticity and clay content. Another hypoth-
esis suggests that the enzyme does not take part directly in 
the cation exchange process, rather simply acts as a cata-
lyst in speeding up the cation exchange reaction between 
the organic molecules and clay minerals [118]. Few studies 
postulated that enzymes might behave as surfactants when 
added to soil-matrix, which reduces the water affinity of clay 
minerals by decreasing the surface tension [85]. Apart from 
these mechanisms, another hypothesis suggests that enzyme 
stabilizers might enhance the chemical bonding among par-
ticles, causing particle aggregation and reduction in porosity 
[87, 119]. This results in a denser soil structure, reduced 
water affinity, and thereby increased mechanical strength. 
Pooni et al. [119] performed various laboratory tests to study 
the chemical composition, microstructure, mechanical, and 
hydraulic behaviour of Eko Soil stabilized expansive soil. 
From the Fourier Transform Infrared Spectroscopy (FTIR) 
and XRD tests, it was showed that the enzyme stabilized soil 
did not have any new cementitious compounds or gels as 
observed in traditional stabilizers. Microstructural analyses 
confirmed the reduction in porosity because of the formation 
of aggregates. This change in the soil structure reduced the 
hydraulic behaviour and increased the mechanical behaviour 
of the treated expansive soil.

Effect on Engineering Properties of Expansive Soil

Consistency Limits

Atterberg liquid limit (LL), plastic limit (PL), and plasticity 
index (PI) are inherent characteristics of a soil that quan-
tify its ease of deformation and volumetric change. Hence, 
changes in these parameters due to the addition of stabilizers 
directly reflect their resistance to swell/shrinkage and stabil-
ity, especially for high swelling expansive soils.

The inclusion of IBP in expansive soils made noteworthy 
modifications to their soil behaviour in terms of consistency 
limits. Generally, both the liquid limit and plasticity index 
of expansive soils were found to decrease with increasing 
dosages of IBP. The addition of bottom ash to a highly plas-
tic silt (MH) soil reduced the liquid limit from 89 to 32% 
and the plasticity index from 42 to 12.5% with increasing 
dosages (0–20%) [27]. Similarly, silica fume-treated MH 
soil decreased the LL and PI considerably, thereby changing 
the soil to low plastic clay (CL) soil [28]. Figure 1 shows 
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the effect of various industrial-by-product stabilizers on the 
plasticity characteristics of expansive soil under optimum 
dosage conditions [27, 28, 89, 90, 97, 99, 120–125]. It is evi-
dent that, in most cases, the plasticity of the treated soils has 
been reduced, thereby improving their workability and water 
retention properties. Figure 1 also shows the comparison 
of the stabilizers with the most extensively used industrial 
waste, fly ash (often categorized as a traditional stabilizer). 
Even though the plasticity reduction capacity of the stabi-
lizers in Fig. 1 could not match the effectiveness of fly ash-
treated expansive soils, they could be considered a potential 
alternative to fly ash and other traditional stabilizers.

On the contrary, expansive soils treated with organic 
biopolymers show an increase in LL and PL with an increase 
in biopolymer content. The formation of viscous hydrogels 
by the biopolymers in reaction with the soil–water system 
led to an increase in the plasticity behaviour. For example, 
xanthan gum-treated expansive soil showed up to 117% and 
127% increase in liquid limit and plasticity index, respec-
tively, with increasing dosages (0–4%) [111]. Similarly, 
pectin-treated expansive soil had an increase in LL and PI 
of up to 45% and 102%, respectively, with increasing pec-
tin content. Figure 2 shows the LL and PI of untreated and 
organic polymer-treated expansive soils in a plasticity chart 
[101, 104, 106, 108, 109, 111, 126–130]. The effect of syn-
thetic polymers on the plasticity characteristics of expansive 
soils doesn’t show a consistent pattern like that of biopoly-
mers since it is highly dependent on the type of repeating 
monomer units and the net charge of the polymer. Soltani 
et al. [126] investigated the swell–shrink behaviour of a high 

swelling expansive soil treated with anionic PAM. Both LL 
and PI increased with PAM content up to an optimum dos-
age of 0.2 g/L, after which there was a marginal decrease in 
the water contents. The hydrophilic nature of the polymer 
and its ability to induce flocculation within the soil–water 
system are the primary causes for the increased plasticity 
behaviour of treated soils. While Zhou et al. [101] observed 
up to 4.7% and 50% decrease in LL and PI, respectively, for 
an expansive soil treated with cationic polyacrylamide.

Geopolymer, which is actually an IBP activated by an 
alkaline solution, was found to have an exceptional impact 

Fig. 1  Effect of IBP on liquid 
limit and plasticity index of 
expansive soils
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Fig. 2  Effect of synthetic polymer and biopolymer on liquid limit 
and plasticity index of expansive soils
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on the consistency limits of expansive soils. Figure 3 shows 
the LL and PI of geopolymer-treated expansive soils for 
optimum dosage in a plasticity chart [115, 116, 116, 131] 
observed a clear decreasing trend in LL and PI of VA-treated 
expansive soil with increasing KOH content. For instance, 
the PI of VA-treated soil decreased by 14%, while the PI 
of geopolymer-treated soil decreased by about 59% when 
compared to the PI of untreated soil. A similar pattern was 
reported by several researchers using different source materi-
als, alkaline solutions, and expansive soil.

From the limited studies available, enzymes are found 
to have a very minimal impact over the consistency limits 
of expansive soil. Rauch et al. [132] performed Atterberg 
limits tests to determine the effect of an enzyme stabi-
lizer on the plasticity characteristics of an expansive soil 
and observed an insignificant decrease in its liquid limit. 
Whereas Kushwaha et al. [133] observed a 19% decrease in 
liquid limit for Eko Soil stabilized expansive soil. Reduc-
tion in adsorbed water surrounding the clay minerals due to 
the ion exchange process was believed to be the reason for 
decrease in plasticity.

Compaction

The mechanical and hydraulic behaviour of stabilized soil 
is highly dependent on its compaction characteristics: com-
paction energy, maximum dry density (MDD), and opti-
mum moisture content (OMC). Depending on the type of 
IBP added, the MDD and OMC of IBP and geopolymer-
treated expansive soils vary with increasing additive con-
tent. Sharo et al. [89] reported an increase in MDD and a 
reduction in OMC with increasing dosage of cement kiln 
dust. Similar behaviour was observed for GGBS and fly ash 
amended expansive soil [90]. Increase in MDD in these soils 

is directly attributed to the high specific gravity of the IBP 
added. On the contrary, IBP with low specific gravity (e.g., 
silica fume, bagasse ash, rice husk ash, lignosulfonate) has 
caused a decrease in MDD, as reported by various stud-
ies [14, 27, 50, 94]. Also, the cation exchange reaction, 
followed by flocculation and agglomeration, results in the 
formation of coarse aggregates. These aggregates fill up 
only the large voids in the soil matrix, thereby increasing 
the soil porosity and reducing the dry density. Kishor et al. 
[134] showed that with increasing dosages of rice husk ash 
based geopolymer and sugarcane bagasse ash based geo-
polymer, maximum bulk density reduced up to 7.3% and 
8.2%, respectively. Similarly, the inclusion of biopolymers 
has mostly resulted in the reduction of MDD and increase in 
OMC of expansive soils. Hamza et al. [135] observed a 25% 
decrease in MDD and a 14% increase in OMC with an addi-
tion of 5% xanthan gum. Vydehi et al. [111] and Sathyapriya 
[130] also observed a similar decreasing trend in MDD of 
expansive soils with increasing dosages of guar gum. High 
affinity for water and the viscous nature of biopolymers lead 
to the formation of coatings around the soil particles. This 
results in reduced particle–particle interaction, which causes 
separation between the soil particles and finally reduces the 
MDD, whereas expansive soils treated with synthetic poly-
mers such as PAM have increased the MDD with increasing 
dosage [126]. For Eko Soil stabilized soil, MDD was found 
to increase with increasing dosage up to 4% (by volume of 
OMC), beyond which it decreased [133]. Pooni et al. [136] 
reported that the addition of 1% AMR Eko Soil increased 
the MDD by 3% and reduced the OMC by 7.4%.

Swell–Shrink Characteristics

The effectiveness of an expansive soil stabilizer greatly 
depends on its ability to restrain swelling and shrinkage. 
Swell potential, shrinkage strain, and swelling pressure are 
the critical parameters of an expansive soil that convey the 
susceptibility of soil to volumetric changes upon variations 
in moisture content. Swell potential and swelling pressure 
tests of a compacted soil specimen are often performed as 
per ASTM D4546 methodology. Several studies have con-
sistently reported a gradual decreasing trend in both swell 
potential and swelling pressure when expansive soils are 
treated with IBP (Figs. 4, 5) [27, 28, 89, 92, 94, 97, 137, 
138]. The addition of bagasse ash to a highly plastic clay 
soil, which was compacted at its OMC, reduced the swell 
potential from 10 to 0.8% with increasing ash content 
(0–25%) [94]. Al-Gharbawi et al. [138] observed a 62% and 
78% decline in swell potential and swelling pressure for an 
expansive soil treated with 9% silica fume. Also, compar-
ing the results with lime and cement stabilization for the 
same soil, silica fume was found to perform better than 
these traditional stabilizers. At a comparably low dosage, 

Fig. 3  Effect of geopolymer on liquid limit and plasticity index of 
expansive soils
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LS-stabilized soils have performed well in reducing swell 
potential and swell pressure. Fernandez et al. [31] observed 
a 44% decrease in swell potential at 5% LS content. LS-
stabilized expansive soil also showed resistance to repeated 
wetting–drying cycles. According to Alazigha et al. [14], 
untreated specimens had a maximum swelling and shrink-
age of 15.9% and 5.1%, respectively, in the third cycle. The 
addition of 2% LS reduced the swelling and shrinkage by 
42% and 26%, respectively. The formation of cementitious 
products and flocculation as a result of pozzolanic reactions 
in the soil-matrix induced the reduction in swelling behav-
iour of IBP-stabilized expansive soils. A few IBP were found 
to rather increase the swell potential of expansive soils. A 
high plastic silty soil treated with 9% copper slag increased 

the swell potential from 9.4 to 12% and the swell pressure 
by about 43%. A higher composition of sodium ions and a 
high cation exchange capacity of copper slag were reported 
as the primary reasons for such behaviour. Water content at 
which the soil was compacted for testing was found to have 
a notable impact on swell potential of soil. For instance, LS-
treated expansive soil showed a progressive increase in swell 
potential with decreasing water content below its OMC [14]. 
Punthutaecha [137] also reported that bottom ash-treated 
soil specimen compacted on the dry side of OMC showed 
an increased swell potential when compared to that of soil 
compacted at OMC.

Figures 6 and 7 show the swell potential and swelling 
pressure for various synthetic polymer-treated expansive 
soils at varying additive contents [104, 106, 128, 129, 

Fig. 4  Change in swell potential with increasing dosage of IBP stabi-
lized expansive soils
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139–141]. Vinyl copolymer, a liquid synthetic polymer, 
reduced the swell potential of a bentonite-clay mixture com-
pacted at OMC from 14.9 to 4.5%, and the swell pressure 
from 139 to 120 kPa [128]. Similarly, urea formaldehyde 
was found to be effective for various types of soils with vary-
ing clay content and plasticity characteristics. For soils com-
pacted at OMC with clay contents of 30%, 53%, and 73%, 
swell potential was reduced by 77%, 75%, and 60%, respec-
tively, when treated with 5% UF [139]. Also, UF-stabilized 
soils were found to be effective under cyclic wetting and 
drying. At the end of the first cycle, shrinkage strain was 
reduced by 86% for the soil with a 30% clay content. PAM 
was also proven to be efficient against cycle wetting and dry-
ing [126]. An exponentially decreasing trend of swelling and 
shrinkage strain was observed with an increasing number of 
cycles for soil treated with 0.2 g/L PAM. Figure 8 shows the 
response of various synthetic polymer stabilized soils sub-
jected to cyclic wetting and drying [126, 139]. As mentioned 
earlier, reduction in swelling behaviour is attributed to the 
formation of aggregates and thin film coats due to the elec-
trostatic interaction between the polymer and charged soil 
minerals. Even though the consistency limits of soils treated 
with biopolymers increased substantially, a decrease in swell 
potential was observed with increasing biopolymer content, 
as shown in Fig. 9 [108, 109, 135, 142]. On the contrary, 
for a soil with very low clay content and high sand content, 
an increase in swell potential was also reported [142]. This 
behaviour is attributed to the creation of hydrogels within 
the soil structure and an insufficient curing period.

Geopolymer stabilized expansive soils were found to per-
form tremendously in terms of reducing swell potential, as 
shown in Fig. 10 [25, 116, 134, 143]. Samuel et al. [25] stud-
ied the stabilizing effect of metakaolin based geopolymer on 

expansive clays at varying dosages and curing periods. Even 
at a very low geopolymer content (4%), vertical swelling 
strain and shrinkage strain of specimens compacted on the 
dry side of OMC (95% of MDD) were reduced by about 83% 
and 30%, respectively, when tested immediately without cur-
ing. Further reduction was observed with increasing cur-
ing periods and geopolymer content. Very few research has 
been done to study the performance of bio-enzymes on the 
swelling characteristics of expansive soils [132, 136]. From 
the available studies, bio-enzymes were found to reduce the 
swell potential marginally. With Eko Soil, a commercially 
available enzyme as a stabilizer, swell potential was reduced 
by 24% for 1% dosage diluted at 1:500 (Pooni et al. [136]). 
The ability of enzymes to reduce the affinity of clay particles 
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for moisture absorption was reported as the major reason for 
such behaviour.

Unconfined Compressive Strength

The UCS of expansive soils stabilized with the chemical 
additives under consideration was found to improve sig-
nificantly with an increase in stabilizer content and cur-
ing period. In the case of IBP, the C–S–H gels formed 
as a product of the pozzolanic reaction provide a strong 
bond between the clay particles, thereby improving their 
strength. Since the pozzolanic reaction progresses with 
time, the curing period has a notable influence on the UCS 
of stabilized soils. BA-stabilized expansive soil speci-
mens compacted at OMC and cured for 28 days showed 
an increase in UCS of up to 173% with increasing BA 
content [28]. CKD-stabilized expansive soil showed a 
similar increasing trend until 10% CKD content, beyond 
which a reduction in UCS was observed [89]. The main 
reason for this reduction in UCS is the segregation of soil 
particles caused by the excessive CKD that has not reacted 
with clay particles yet. Synthetic polymers and biopoly-
mers undergo ion exchange reactions with clay particles 
to form strong bonds that cause a notable increase in the 
soil strength. The effect of increasing stabilizer content 
and curing period on the normalized UCS of XG-treated 
expansive soils is shown in Fig. 11 [109, 111, 135, 144]. 
Normalized UCS is represented as a ratio of the UCS 
of treated soil at a particular dosage (q) to the UCS of 
untreated soil (q0). The cation exchange reaction between 
the carboxylic group of XG and charged clay particles cre-
ates ionic bonds in the soil matrix, thereby improving the 
strength significantly. GG-treated expansive soils showed a 
considerable increase in UCS at a comparably low dosage. 

Vydehi and Moghal [111] observed a 48% increase in UCS 
for 14 days cured GG-treated soil, and Acharya et al. [145] 
observed a 27.3% increase in UCS for 7 days cured GG-
treated soil compacted on the dry side of OMC, both at 
a dosage of 0.5%. Similarly, the ion exchange reaction 
between synthetic polymers and clay particles has also 
led to an increase in UCS of expansive soils. PAM [101, 
102], PVA [106, 127], PVAc [140], vinyl copolymer [128], 
and styrene acrylic [51] polymers have proven to consider-
ably improve the UCS of expansive soils up to an optimum 
dosage level. The inclusion of geopolymers as chemical 
additives has also proven to improve the UCS of expansive 
soil with increasing dosage and curing periods, as shown 
in Fig. 12 [25, 114, 115, 131, 134]. For instance, GGBS 
when activated with sodium hydroxide (NaOH) alone, has 
increased the UCS from around 350 kPa to 5100 kPa when 
cured for 28 days [115]. Improved UCS of geopolymer-
treated expansive soil is attributed to the dissolution of 
charged ions such as silicon, aluminium, calcium present 
in the IBP that form cementitious binding products. Also, 
compared to IBP-stabilized soil, geopolymer-stabilized 
soil showed a significant rise in UCS even when tested 
immediately without curing, mainly due to the quick reac-
tive nature of geopolymers. Normalized UCS of enzyme-
stabilized expansive soil is shown in Fig. 13 [118, 119, 
133]. Pooni et al. [119] studied the stabilization effect of 
a commercially available enzyme, Eko Soil on expansive 
subgrade soil. They observed a maximum of 24% increase 
in UCS for samples mixed with enzyme of 1% AMR and 
1:100 DMR, beyond which it had a negative impact.
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Challenges and Future Scope

Ensuring the long-term sustainability of the discussed 
chemical stabilizers is as important as their short-term per-
formance. Some of the synthetic polymers and most of the 
biopolymers are biodegradable under certain environmen-
tal conditions [146]. The breaking down of polymer chains 
by microbial activity is termed biodegradation. There are 
some crucial parameters regarding the biodegradability of 
organic polymers that need extensive study: rate of degra-
dation, toxicity of final degraded products, and the long-
term impact of non-degraded polymer elements in soil. The 
degradation process occurs over a certain period of time 
for each polymer, depending on the type of monomer units, 
concentration of polymer in the soil, presence of organic 
elements in the soil, temperature, humidity, and pH of the 
soil. The final products of degradation are mostly non-toxic, 
although some polymers with toxic monomer units, such as 
acrylamide [147], might produce harmful chemicals in the 
soil–water ecosystem, which needs serious attention. When 
the degradation rate is very low, the long-term presence of 
a polymer in the soil matrix should be studied to ensure its 
sustainability [148]. Moreover, the improvement in expan-
sive soil behaviour identified so far is based on only labo-
ratory test results. For a successful field application, more 
large-scale and in-situ tests have to be carried out. In the 
case of enzyme stabilizers, very limited test data is currently 
available, which makes them an unpopular choice of stabi-
lizer. Also, there isn’t a standard procedure to test and use 
these emerging chemical additives as soil stabilizers in the 
field or in the lab, which is a serious problem for field appli-
cation. Depending on the source material and manufacturing 
process, industrial by-products might contain traces of toxic 
elements. Though the major components of bottom ash are 
silica, calcium, and alumina, traces of heavy metals such as 

lead, cadmium, zinc, and chromium could also be present 
[149]. Hence, it should be ensured that the quantity of these 
heavy metals in the stabilizer is insignificant to avoid any 
leaching into the groundwater table.

Expansive soils are more problematic in areas with 
extreme weather conditions that are subjected to rainfall-
evaporation cycles, freeze–thaw cycles, erosion, etc. Hence, 
the durability of the stabilizers under such extreme envi-
ronmental conditions is an important area that needs better 
focus. For a better understanding of the behaviour of stabi-
lized soil under these varying climatic conditions, unsatu-
rated parameters such as the soil–water retention curve 
(SWRC), hydraulic conductivity function, and unsaturated 
shear strength parameters must be studied, which is very 
limited currently.

Summary and Conclusions

This paper provides a detailed review on emerging chemi-
cal stabilizers for expansive soil treatment that ensures both 
sustainability and efficiency. Stabilization mechanism of 
various categories of stabilizers including industrial by-
products, synthetic polymers, biopolymers, geopolymers, 
and enzymes, were discussed using the available literature. 
The influence of these stabilizers on the plasticity charac-
teristics, swell–shrink behaviour, unconfined compressive 
strength, and compaction characteristics of soil was thor-
oughly explored. Some of the key conclusions that are drawn 
from this study are listed below:

1. Depending on the source material, industrial by-products 
are composed of varying quantities of calcium, silica, 
and alumina compounds. When mixed with expansive 
soils, pozzolanic reactions take place over time, resulting 
in the formation of cementitious compounds in the soil-
matrix. This provided an improved cohesion and bond 
between the soil particles, thereby reducing the plastic-
ity of IBP-treated soils considerably. Subsequently, the 
swelling and shrinkage of soil were controlled due to 
the strong interlocking provided by these cementitious 
products in most of the IBP (bottom ash, lignosulfonate, 
silica fume, blast furnace slag, and cement kiln dust) 
stabilized soil. IBP-stabilized soils also showed a sig-
nificant increase in UCS with increasing curing periods 
and IBP content. The specific gravity of IBP was found 
to have a major influence on the compaction behaviour: 
for IBP with a high specific gravity, MDD was found 
to increase, while for IBP with a low specific gravity, 
MDD was reduced. Based on the experimental results, 
the optimum dosage of industrial by-products was found 
to be around 5–15%.
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2. Synthetic polymers and biopolymers share some com-
mon stabilization mechanisms due to the similarities in 
their physico-chemical properties. The addition of these 
polymers to the soil-matrix triggers cation exchange 
reactions between the charged polymers and clay min-
erals. Both cationic and anionic-type polymers were 
found to be involved in this electrostatic interaction and 
form strong chemical bonds with soil particles. Most of 
the biopolymers (xanthan gum, guar gum, and pectin) 
were found to increase the plasticity of soil by increas-
ing the liquid limit considerably. Still, they were found 
to be effective in reducing the swelling potential of soils 
with a high clay content. When added to expansive soils, 
certain synthetic polymers, like urea formaldehyde and 
vinyl copolymer, had a better effect than biopolymers on 
reducing the swelling potential and swelling pressure of 
the soil. The inclusion of xanthan gum has been found 
to increase the UCS of a wide variety of soils, with the 
optimum dosage mostly lying in the range of 1–2%. Syn-
thetic polymers and biopolymers have opposite effects 
on the compaction characteristics of expansive soils. 
Synthetic polymers were found to increase the MDD, 
while biopolymers have mostly reduced it.

3. Polymerization of a binder material (mostly an industrial 
by-product) with alkali activators results in the forma-
tion of geopolymers. Geopolymer gels, on addition to 
the soil-matrix, fill up the micro-voids between particles, 
thereby reducing the porosity and increasing the den-
sity. Also, based on the binder material, geopolymers 
undergo ion exchange reactions with clay minerals and 
form cementitious compounds that provide additional 
mechanical strength to expansive soil. Hence, they were 
found to perform exceedingly well in reducing the plas-
ticity and swelling-shrinkage strain of expansive soils. 
An increase in UCS was found to be better when com-
pared to IBP-stabilized soil. GGBS, metakaolin, and 
bagasse-ash-based geopolymers at an optimum dos-
age of 5–10% are some of the noteworthy stabilizers to 
improve the engineering properties of expansive soils.

4. Enzymes are non-toxic, biodegradable compounds that 
act as catalysts for chemical reactions in all living organ-
isms. Their eco-friendly chemical characteristics make 
them a great choice for expansive soil stabilization. With 
the available laboratory test results in the literature, they 
are found to reduce swell potential and increase the UCS 
of soil significantly at a very minimal dosage. It is found 
to have a minimal impact on modifying the plasticity 
of soil. Still, its influence on many other geotechnical 
properties (e.g., permeability, shrinkage strain, swell-
ing pressure, and shear strength) remains largely unex-
plored. Also, different researchers have provided varying 
reasons for the stabilization mechanism of enzymes in 
soil.

Considering the aforementioned, industrial by-prod-
ucts, synthetic polymers, biopolymers, geopolymers, and 
enzymes, all have great potential for sustainable stabili-
zation of expansive soils, more specifically in reducing 
their swell–shrink behaviour. However, further research 
is needed to overcome the various challenges mentioned 
earlier for successful field implementation.
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