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Abstract  In some situations, a foundation is built on or 
near the crest of a slope. As a result, the soil’s overall stabil-
ity and bearing capacity dramatically reduced, depending 
on many geometrical and geotechnical factors. This study 
consists of two main parts: numerical analysis and artifi-
cial intelligence prediction. In the numerical section, sim-
ple two-dimensional numerical models have been employed 
using Plaxis 2D software to examine the bearing capacity 
and slope stability of a continuous foundation placed near 
a slope. It specifies foundation width and depth, soil cohe-
sion, frictional and slope angles, and slope crest distances. 
A comprehensive database of simulated results was used to 
develop and validate ANN and EPR prediction expressions 
as well as the relevance of the input parameters. The results 
show that there is a positive relationship between all studied 
variables and (qu/γH) except the slope angle β. The FOS 
increases as the footing distance away from the slope edge 
increases up to a critical b/B ratio; LE methods, however, 
yield a higher FOS value than FEM as a result of their dif-
fering approaches. It was determined that the essential dis-
tance between the slope crest and the continuous foundation 
edge is 6B after which the slope’s impact diminishes. Based 
on the input variables sensitivity analysis, B, ϕ, and c were 
identified as the most effective input parameters. Finally, as 
a result of the case study analysis, the authors concluded 
that both ANN and EPR models are highly accurate with 

differences within 6%. The ANN model is superior to EPR 
but lacks a straightforward mathematical solution.

Keywords  ANN · Bearing capacity · EPR · Finite 
element · Slope surface · Strip footing
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Introduction

Bearing capacity (BC) and settlement estimation are key fac-
tors for geotechnical engineers to consider when designing 
a foundation. These design requirements are affected by the 

geotechnical properties of the soil, the geometric character-
istics of the footing, and the loading circumstances. How-
ever, due to the variability and anisotropy of soil formation, 
numerous methodologies have been developed to assess the 
BC of foundations on level ground under different circum-
stances [1, 2]. The foundation should be designed with an 
appropriate safety factor against shear collapse and permissi-
ble foundation settling. In hilly areas, the construction of the 
foundation on the slope is unavoidable. However, due to fast 
urbanization and population increase, many commercial or 
residential structures, such as bridge abutments, electric and 
mobile transmission towers, buildings, and elevated water 
tanks, will be located on or near the crest of earthen slopes. 
As a result, the behavior of the foundation on the slope crest/
face will alter in terms of BC and overall structural stability. 
The established passive resistance zone towards the slope’s 
face will reduce depending on the footing location from the 
slope edge and thereby the carrying capacity of earth slope 
footings will be less than that of level ground footings.

Several studies have published several methodologies and 
approaches for estimating the bearing resistance of founda-
tions situated on earthen slopes. These strategies include 
experimental model testing [3, 4]; theoretical and analytical 
research [5–8]; and numerical methods [9–11]. Artificial 
intelligence (AI) methods, particularly Artificial Neural 
Networks (ANNs) and Evolutionary Polynomial Regres-
sion (EPR), are now widely used in geotechnical engineering 
for their superior prediction abilities in simulating complex 
material behavior. Researchers in geotechnical engineering 
have utilized ANN and EPR techniques since the 1990s in 
foundation engineering, specifically to assess settlement [12, 
13] and estimate BC of individual shallow foundations rest-
ing on level ground [14–16].

Further, a broad variety of parameters have been studied 
using various hybrid learning models; such as the GWO-RF 
model to predict the splitting tensile strength of recycled 
aggregate concrete with glass fiber and silica fume [17]; 
PSO and BWOA techniques for predicting pavement mate-
rial resilient modulus (MR) under wet-dry cycles [18]; PSO-
RF and HHO-RF models to forecast pile set-up parameter 
`A` from CPT. However, HHO-RF is more efficient than 
PSO-RF, with R2 and RMSE both equal to 0. 9328 and 
0.0292 for training and 0. 9729 and 0.024 for test data, 
respectively [19]. All these prediction models aligned with 
experimental results using various assessment criteria and 
techniques, such as error criteria, Taylor diagrams, uncer-
tainty analysis, scatter index analysis, and error distribution.

Some researchers used the ANN and EPR to esti-
mate the bearing capacity (BC) on the sloped ground 
[10, 20–22], while others have applied EPR to evaluate 
various geotechnical engineering applications [23–25]. 
Nevertheless, in 2021, only Ebid et al. [22] used EPR to 
estimate BC factors for a strip foundation near an earthen 
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slope crest using Meyerhof’s approach. EPR models are 
offered in mathematical expression forms, making them 
simply accessible to the modeler. As a novel aspect of this 
study, two models have been constructed, utilizing ANN 
and EPR, to estimate BC on sloped grounds, which was 
not attempted in previous studies by Acharyya and Dey 
[21] and Acharyya et al. [10]. The current work seeks 
to examine the BC of individual continuous foundations 
set on an earthen-sloping crest through a comprehensive 
numerical analysis utilizing the PLAXIS 2D v20 finite 
element software. Many geometrical and geotechnical 
variables were investigated to achieve the study’s objec-
tives, including footing width (B), soil cohesion (c), soil 
friction angle (ϕ), footing embedment (Df/B), slope angle 
(β) and setback distance (b/B). Based on the paramet-
ric analysis results, two models were developed using 
ANN and EPR techniques to construct a mathematical 
expression for estimating the BC of individual continu-
ous foundations placed on an earthen slope. Further, to 
determine the relative relevance of the input parameters, a 
sensitivity analysis was performed on each model. These 
approaches greatly assist design and consulting engineers 
in estimating BC quickly and easily.

Method of Analysis

Model Geometry, Boundaries, and Meshing

As illustrated in Fig. 1, the slope model geometry was 
chosen so that isobar stresses would not reach the model’s 
borders. The model boundaries are selected with the bot-
tom boundary fully rigid and restricted in both vertical 
and horizontal directions. The vertical boundaries are 
fixed horizontally, but vertical deformation is allowed, 
while the slope face is kept free from movement.

Sensitive Analysis

The model is divided into finite elements for numerical anal-
ysis. The mesh must be fine for reliable results. A coarse 
mesh hinders capturing soil and foundation characteristics. 
A fine mesh creates more elements and requires longer 
processing time. Hence, a sensitivity analysis was done to 
determine the ideal mesh size for the FE model, considering 
PLAXIS meshing options. These meshes are categorized as 
very coarse, coarse, medium, fine, and very fine. To reduce 
reliance on the numerical model, the optimal mesh element 
size is determined using non-dimensional average element 
size (NAES). Figure 2 shows how the elements’ size affects 
the bearing pressure of the strip foundation on the earth’s 
slope. A fine meshing approach with NAES of 0.04 yielded 
favorable results and was used in the current numerical 
model study. After properly defining soil, foundation, loads, 
and slope boundaries, automatic mesh generation is done. 
Figure 3 shows the geometry and meshing of the Plaxis 2D 
FE model.

Constitutive Modeling

The hardening soil model with small-strain stiffness 
(HSsmall) is used to simulate backfill and foundation 
soils. It is an expansion of the hardening soil (HS) model, 
considering increasing soil stiffness at low strains. Most 
soils have more stiffness at small strain levels than at 
engineering strain levels, and this stiffness changes non-
linearly with strain. This behavior is given in the HSs-
mall model by two extra material parameters,Gref

0
 , and 

�0.7 where Gref
0

 is the small-strain shear modulus and �0.7 is 
the strain level at which the shear modulus has decreased 
to approximately 70% of the small-strain shear modu-
lus. This model has a cap yield surface (see Fig. 4) and 
accurately reproduces soil deformations better than other 
models because of its non-linear stress–strain relationship 
and calculated soil stiffness using various loading and 

q = applied pressure,

B = strip footing width,

Df = strip footing depth,

b = setback footing distance, 

 β = slope angle of the model, 

 ϕ = soil friction angle, and 

c = soil cohesion.

Fig. 1   Model geometry
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unloading techniques [26, 27]. This study uses 15-node 
triangular elements with 2 degrees of freedom per node 
for modeling soil elements. These elements have 12 stress 
points, providing quicker convergence and more accurate 
results compared to 6-noded elements. The linear elas-
tic (LE) model has been used for modeling the concrete 
foundation. Tables 1 and 2 display the soil and concrete 
foundation parameters employed in this study.

Finite Element Software and its Validation

In this work, PLAXIS 2D v20 software is used for numerical 
modeling and analysis. The software is a professional finite 
element package for the deformation and stability analysis 
issues in geotechnical engineering concerns such as tunnels, 
earth structures, deep excavations, etc. Many researchers 
have successfully utilized this program to explore the foun-
dation behavior on earth slopes, bearing capacity, and slope 
stability evaluation [28–30].

To ensure PLAXIS accuracy in analysis, the findings of 
Abed and Hameed’s [31] numerical analysis using PLAXIS 
3D and the experimental work described by Lee and Man-
junath [32] for a strip foundation set on an earth slope were 
used to verify the FE model. The comparison of analytical 
results in terms of load-deformation curves, as illustrated in 
Fig. 5a, revealed a close agreement in terms of both mag-
nitude and trend. Furthermore, the assessment of the slope 
stability of the present numerical analysis is verified with the 
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Limit Equilibrium Method (LEM) results conducted by [33]. 
The verification results exhibit good indication as illustrated 
in Fig. 5b. Thus, the verified model can be utilized for con-
ducting a parametric study to explore the numerous design 
parameters’ impact on the bearing pressure of a single strip 
foundation situated on a sloped soil surface.

Artificial Intelligence (AI) Techniques

Artificial Neural Networks (ANNs) Approach

ANNs are mathematical tools and data processing systems 
used to express complex, nonlinear processes by connecting 
inputs and outputs. They consist of interconnected neurons 
that are arranged in layers and are connected within each 
layer by weights. ANNs are suitable for modeling the com-
plex behavior of most geotechnical engineering materials 
with high variability, as they do not require making hypoth-
eses about fundamental laws and have an advantage over 
traditional modeling methods.

The dataset is divided into three divisions: training, vali-
dation, and testing, each taking a percentage of the total 
input data. Weights are adjusted at the training stage until 
desired outputs are achieved. After the training phase is 
complete, validation data are used to assess the model’s 

Table 1   Soil properties Parameters Name Backfill material Foundation material Unit

Material model – HSsmall HSsmall –
Material behavior type – Drained Drained –
Unsaturated soil unit weight γunsat 16 20 kN/m3

Saturated soil unit weight γsat 18 20 kN/m3

Secant stiffness in standard drained triaxial test E50
ref 3.0 × 104 3.0 × 104 kN/m2

Tangent stiffness for primary oedometer loading Eoed
ref 3.601 × 104 3.0 × 104 kN/m2

Unloading/reloading stiffness Eur
ref 1.108 × 105 1.2 × 105 kN/m2

Power for a stress-level dependency on stiffness m 0.5 1 –
Cohesion cref variable 40 kN/m2

Friction angle ϕ variable 24 °
Dilatancy angle ψ ϕ – 30 0 °
Shear strain at which Gs = 0.722 G0 γ0.7 1.5 × 10–4 1.0 × 10–3 –
Shear modulus at very small strains G0

ref 1.0 × 105 1.0 × 105 kN/m2

Poisson’s ratio ν΄ur 0.2 0.2 –

Table 2   Foundation properties

Parameters Concrete foundation Unit

Material model Linear elastic –
Material behavior type Non-porous –
Concrete unit weight,�conc. 24 kN/m3

Young’s modulus, E΄ 25 × 106 kN/m2

Poisson’s ratio, ν 0.15 –
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performance, and the testing dataset is used to find the ideal 
hidden layer node numbers.

There are several types of ANNs. The multilayer per-
ceptron network model is one of the most frequent and 
frequently used network models, with three layer types: 
input, hidden, and output layers. The proposed network’s 
input layer receives data, which is processed in the hidden 
layer(s), and the result is transferred to the output layer. The 
feed-forward–backward propagation (FFBP) algorithm is 
one of the most essential types of algorithms utilized in the 
ANN process [34, 35]. In this technique, the ANN must be 
fed input and output samples. The error-prone FFBP algo-
rithm predicts data output and compares it to the actual out-
put. When there is a mistake, the weights and biases of the 
various levels are reversed from the output layer to the input 
layer. This technique is repeated until the ANN error is as 
close to zero as possible. The network with the highest (R) 
value and the lowest error value gives the best ANN model, 
as judged by several metrics such as the correlation coef-
ficient (R), Mean Squared Error (MSE), Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and so on. The 
number of nodes in the hidden layer(s) is sensitive to the 
ANNs. Therefore, it should be optimal to maximize the per-
formance of the network; very few nodes may cause under-
fitting, meanwhile, many nodes may cause over-fitting, i.e., 
the training data will be modeled well, and the sum of the 
squared errors will be low, but the ANN will be modeling 
the noise in the data. As a result, the ANN’s testing data will 
be poorly generalized [36]. The general stepwise of the ANN 
model used in this investigation is shown in Fig. 6.

Evolutionary Polynomial Regression (EPR) Technique

EPR is an AI approach based on evolutionary computing, 
combining the least squares method and Giustolisi and 
Savic’s Genetic Algorithm (GA) to find optimal and sim-
ple scheme descriptions [37]. Unlike ANNs, EPR gener-
ates symbolic and straightforward mathematical models 
[38]. The EPR approach’s fundamental features can be 
expressed in two steps. First, the optimum model archi-
tecture in polynomial expression form is chosen using an 
evolutionary seeking technique via genetic algorithms [39]. 
Second, numerical regression is performed using the least-
squares technique.

Before beginning the EPR operation, some variables 
need to be modified to regulate the modeling architecture 
development process. These variables can be utilized to 
influence the optimization approach employed, such as the 
exponent ranges, the desired terms number in the mathe-
matical model(s), mathematical structures, and the function 
types to generate the models. Applying the optimization 
process, EPR finds the most accurate symbolic model(s) of 

the studied system using the stated parameters and the opti-
mization procedure.

Following calibration of the EPR model(s), the best (opti-
mal) model(s) from the chain of returning models can be 
chosen. The proposed EPR model(s) performance during 
the testing, validation, and training phases can be evaluated 
using analytical standard criteria (statistical measures) such 
as the correlation coefficient R, Coefficient of Determina-
tion (COD = R2), Mean Squared Error, MSE, and Root Mean 
Squared Error, RMSE [37]. The steps of the EPR method 
and the way it was applied in the study are illustrated in more 
detail by the flow chart shown in Fig. 7.

Results and Discussion

Numerical Results

Table 3 highlights the diverse geometrical and geotechnical 
soil variables utilized in the present research for the single-
strip foundation model presented in Fig. 3 to calculate the 
normalized bearing capacity qu∕�H of a continuous foun-
dation positioned on an earthen slope crest corresponding 
to a settlement of 5%B. The stated statistical information 
for all used data is presented in Table 4. The histograms 
combined with the normal distribution curve for inputs and 
output parameters are shown in Fig. 8.

Effect of Slope Angle and Foundation Setback

The effect of the foundation position b/B from the slope edge 
and the slope angle β on the qu∕�H of a continuous founda-
tion built on an earthen slope crest is depicted in Fig. 9. This 
graph illustrates that as the inclination of the slope increases, 
the qu∕�H value decreases. This is due to the free flow of 
dirt on the slope surface outward and a reduction in soil 
confinement or passive resistance from the side slope, which 
results in a decrease in footing bearing pressure. The out-
comes show that the qu∕�H value is strongly related to the 
b/B ratio up to a critical ratio. Hence, at a small setback dis-
tance ratio, slope instability increases, soil confinement, and 
passive resistance decrease, and the footing-soil system stiff-
ness is adversely affected, resulting in a drop in bearing pres-
sure. The slope angle impact fades away at around b/B = 6, 
and the qu∕�H does not vary significantly for the further b/B 
ratio. This conclusion supports the findings arrived by [20, 
21]. Furthermore, the qu∕�H improvement rate is greater on 
steep gradient slopes than on low (gentle) gradient slopes.

Effect of Soil Cohesion

Figure 10 highlights the combined impact of the soil cohe-
sion c variation and the b/B ratio on the qu∕�H ; it shows 
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that both have considerable influence on the qu∕�H value. It 
depicts that the c and b/B ratio positively correlates with the 
qu∕�H magnitude, the enhancement in the qu∕�H becoming 
insignificant after b/B = 6, and the impact being more tan-
gible at larger c values. Improvement of qu∕�H satisfies the 
reality that increases in soil cohesion include improvements 
in the shear resistance of the foundation soil.

Friction Angle Impact

Figure 11 depicts the combined effect of the friction angle 
ϕ and b/B ratio on qu∕�H value; both significantly impact 
the qu∕�H . It is claimed that the ϕ and b/B ratio have a pro-
portionate relationship with the qu∕�H value, the increase 
in the qu∕�H being inefficient after b/B = 6, and the impact 

became more pronounced at higher ϕ values. The increase 
in qu∕�H confirms that the changes in soil friction angle 
increase foundation soil shear resistance.

Embedment Depth Impact

Figure 12 depicts the combined influence of the footing 
embedment depth Df/B and the b/B ratios, both of which 
have a significant effect on the qu∕�H value. It is revealed 
that increasing of Df/B and b/B ratios increases the qu∕�H 
value. This is due to rising soil confinement, which raises 
the passive resistance zone. Furthermore, increasing qu∕�H 
value becomes invaluable after b/B = 6 and has a greater 
influence at a higher Df/B ratio.

Data gathering

Define input and output parameters

Start

Soil  cohesion 
(c)

Footing width 
(B)

Soil  friction 
angle (ϕ)

Footing embedment 
(Df/B)

Slope angle
(β)

Setback distance
(b/B)

Target  = Ultimate bearing capacity ( )

Normalization of data

Divide the data into 3 sets

Create feed forward-back propagation 
neural networks/ set  n = 1

Update n (number of 
hidden layer nodes) = n+1

Train the network

Check the criteria

Is
network criteria 

satisfied?

No Yes Select 
reference values

Create 
new networks

Obtain
the best model

Verify against numerical 
or experimental data

Compare with 
existing models

End

Fig. 6   Flow chart of the utilized ANN model for predicting the ultimate bearing capacity of strip footings
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Effect of Foundation Width

Figure 13 shows the combined impact of the foundation 
width B and b/B ratio on the qu∕�H value; it reveals that 
both have a significant effect on the qu∕�H value. The results 

observed that when the B and b/B ratio increased, so did the 
qu∕�H value, since a higher soil depth beneath the founda-
tion contributed to its ability to sustain the applied load. 
Because soil collapse at a small b/B ratio is caused by a com-
bination of bearing capacity and slope instability failure, the 

Fig. 7   EPR-MOGA analysis 
flow chart [40]

Table 3   Used variables in the 
numerical analysis
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influence is more noticeable for larger b/B ratio; however, 
this increases in the qu∕�H value diminished after b/B = 6.

Effect of Type of Soil

Figure 14 depicts the combined effect of soil shear strength 
parameters, c, ϕ, and b/B ratio on the qu∕�H value. In gen-
eral, for any soil type as the b/B ratio increases away from 
the slope crest the qu∕�H increases up to b/B = 6. In contrast, 
for constant b/B, soil B (c = 30 kPa, and ϕ = 32°) shows the 
highest qu∕�H value in comparison to soil A which has the 
lowest cohesion (c = 8 kPa) although (ϕ = 40°). This dem-
onstrates that the internal friction angle has more effect than 
soil cohesion. In other words, soil C shows the lowest qu∕�H 
value resulting from (a decreased internal friction angle of 
12° although the cohesion is increased to 40 kPa).

Slope Stability

Figure 15 depicts the safety factor with the b/B ratios. 
It clearly showed that the FS increases as the b/B ratio 
increases up to b/B = 3 and 6 for a 100 kPa loading and a 
pressure corresponding to 5% B settlement, respectively. 
After that, the slope effect disappears and the FS and the 
critical footing setback greatly depend on the applied load. 
This is due to the rise in the passive confining zone as the 
foundation moved away further from the slope edge, as pre-
viously indicated.

Failure Mechanism

In the current research, the soil failure pattern generated 
beneath a continuous foundation placed on the slope crest 
has been analyzed for various β and b/B ratios to determine 
the key b/B ratio; then, the impact of the β fades away. 
Figure 16 displays how the slope affects the passive zone 
formed under the foundation and that the failure pattern is 
one-sided only and toward the slope direction up to b/B = 6, 
affecting the soil bearing pressure and overall slope stability. 
The failure mechanism established at b/B ≥ 6 is analogous 
to the failure mechanism developed on level ground or flat 
topography.

ANN Model Results

In the current research, the varied parameters listed in 
Table 3 are used as input data to predict the qu∕�H out-
put of a continuous foundation situated on the slope crest 
by applying the ANN tool available in MATLAB software, 
which provides many training functions and algorithms. The 
FFBP algorithm with Levenberg–Marquardt (TRIANLM) 
training function has been found efficient in the training pro-
cess [35], and therefore, it is used to build the ANN model. 
Table 5 shows how the samples for training, testing, and 
validation are distributed using random division by the ANN 
“dividerand” function.

To assess the ANN performance, its predicted results, and 
the optimal hidden layer nodes (neurons), the R2 and MSE 
criteria are considered based on trial and error. According 
to this analysis, the ANN structure that best fits predicted, 
and numerical results comprises a 6–5-1 architecture (see 
Table 6 and Fig. 17).

ANN structure performance

Figure 18 depicts the outcome of the qu∕�H training, valida-
tion, and testing processes in agreement with their magni-
tudes obtained from the FE simulation and those predicted 
by the ANN model, with R2 values of 0.996, 0.995, and 
0.996, respectively. Thus, Tables 7 and 8 listed the optimal 
connection weights and biases among ANN layers acquired 
due to the training process and then employed in both the 
testing and validation stages.

First, the trained ANN model was coupled with the vali-
dation group data, which had been unused during both the 
training and testing processes, to create the ANN model. The 
validation phase process is useful in determining whether the 
ANN model can generalize the physical problem outcome. 
Figure 18b shows a superior match between those simulated 
by FE and the estimated qu∕�H magnitudes, emphasizing the 
best generalization capacity and performance of the 6–5-1 
ANN model architecture (see Fig. 19). Second, the trained 
ANN model and its optimum related weights and biases 
are considered for the testing phase to check the prediction 
capacity of the network. Figure 18c indicates a good match 

Table 4   Statistical information 
of input and target data used in 
ANN and EPR models

Input parameters Target

B (m) c (kPa) ϕ° Df/B β° b/B qu∕�H

Minimum 1 0 12 0 35 0 0.104
Maximum 2 40 40 1 60 7 5.548
Mean 1.5 21.183 30.317 0.5 44.883 3.5 2.352
Median 1.5 20 32 0.5 45 3.5 2.245
Standard deviation 0.5 12.137 8.864 0.408 8.307 2.292 1.013
Skewness 0 0.088 – 0.765 0 0.567 0 0.502
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Fig. 8   Histograms and normal distribution curves for inputs output parameters 
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between the FE simulation outcomes and those predicted 
by the ANN model. The high R2 value in the testing phase 
demonstrates a certainty that the trained ANN has excellent 
prediction ability.

Input Parameter’s Importance

The research required to sort the input factors, highlight-
ing their prioritized impact on the specific physical problem 
outcome, is known as "sensitivity searching." Such research 
helps in the "design of experiments" when a large number of 
physical or numerical simulations are needed, but only a few of 
them are chosen for real modeling due to the sensitive effect of 
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Fig. 9   Combined influence of β and b/B ratio on qu∕�H
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the contributing independent (input) variables. Thus, sensitiv-
ity analysis aids in reducing the model simulations’ number 
without affecting the generality of the conclusions. Many ways 
to differentiate the critical input variables (parameters) have 
been referred to in the literature [13, 41]. Garson’s algorithm 
has been employed in the current research to evaluate the rel-
evance of the input parameters. To accomplish this, first, com-
pute the products (Table 9) of the input-hidden (Table 7) and 
hidden-output (Table 8) connection weights and then, calculate 
the input parameter importance using the following formula:

(1)
InputX =

5�

N=1

��HiddenXN��
6∑

Z=1

�
�HiddenZN

�
�

(Garson�s Algorithm)

where HiddenXN = the absolute connection weight values for 
input to output nodes, and HiddenZN = the absolute product 
connection weights values for the input-hidden and hidden-
output nodes.

Figure 20 shows the results of the sensitivity assessment for 
the presented ANN structure as per Garson’s algorithm. It dis-
plays that the foundation width, B, the internal friction angle, 
ϕ°, and soil cohesion, c, are the most relevant impact input 
parameters on the qu∕�H value of the continuous foundation 
placed on the earthen slope crest.

Mathematical Expression Development for (qu/γH)

Based on the ANN model’s ideal biases and weights 
obtained from the trained neural network model 6-5-1, a 
mathematical prediction expression is constructed [15, 36, 
42, 43]. As shown in Eq. 2, it connects the input parameters 
(B, c, ϕ°, Df/B, β, and b/B) with the output qu∕�H value cor-
responding to the 5% B settlement.

(2)
(

qu

�H

)

= fsig

{

bo +

h∑

N=1

[

�Nfsig(bhN +

m∑

i=1

�iNXi)

]}

Fig. 16   Failure pattern generated under foundation with b/B ratio (B = 2m; Df = 0.0 B; ϕ = 40°; c = 8; β = 40°)

Table 5   Samples number used for strip foundation analysis

Performance Division % No. of samples

Training 70 2756
Validation 15 590
Testing 15 590
Total dataset 3936
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where qu∕�H = normalized bearing pressure; Xi = input 
variables; fsig = Tan-sigmoid transfer function; m = input 

variables number; h = hidden layer neurons; �iN = related 
weight between the ith input layer and Nth node of hidden 
layer; �N = related weight between Nth hidden layer node 
and output node; bhN = the Nth hidden layer bias (threshold); 
and bo = output layer bias.

The mathematical equation of the ANN model for qu∕�H 
of the strip foundation placed on the slope crest has been 
built with the weights and thresholds aid listed in Tables 7 
and 8, as per the following expressions:

(3)
A
1

= −0.0432B − 1.5697c − 0.8625� − 0.1421

(
Df

B

)

+ 0.5150� − 0.6604

(
b

B

)
− 3.4056

(4)
A
2

= − 0.1755B − 0.0510c + 0.2370� + 0.0501

(
Df

B

)

+ 0.0149� − 0.0224

(
b

B

)
− 0.9481

Table 6   Trials for selection of ANN model structure

Net name Training function Learning function Transfer functions Net structure Best validation parameters

Input to hidden Hidden to output MSE R2 Epoch

Network 1 TRIANLM LEARNGDM TANSIG TANSIG 6-1-1 0.1002 0.9503 940
TANSIG LOGSIG 1.2662 0.2272 5
TANSIG PURELIN 0.0873 0.9504 7
LOGSIG TANSIG 0.0957 0.9500 21
LOGSIG LOGSIG 1.2662 0.4270 5
LOGSIG PURELIN 0.0872 0.9504 8

Network 2 TRIANLM LEARNGDM TANSIG TANSIG 6-2-1 0.0391 0.9814 345
TANSIG PURELIN 0.0388 0.9809 87
LOGSIG TANSIG 0.0391 0.9814 302
LOGSIG PURELIN 0.0387 0.9810 169

Network 3 TRIANLM LEARNGDM TANSIG TANSIG 6-3-1 0.0185 0.9924 704
TANSIG PURELIN 0.0164 0.9929 1073
LOGSIG TANSIG 0.0185 0.9924 611
LOGSIG PURELIN 0.0165 0.9929 112

Network 4 TRIANLM LEARNGDM TANSIG TANSIG 6-4-1 0.0089 0.9959 218
TANSIG PURELIN 0.0147 0.9939 299
LOGSIG TANSIG 0.0114 0.9951 166
LOGSIG PURELIN 0.0074 0.9969 383

Network 5 TRIANLM LEARNGDM TANSIG TANSIG 6-5-1 0.0051 0.9978 438
TANSIG PURELIN 0.0126 0.9945 65
LOGSIG TANSIG 0.0073 0.9969 506
LOGSIG PURELIN 0.0097 0.9959 54

Network 6 TRIANLM LEARNGDM TANSIG TANSIG 6-6-1 0.0059 0.9975 32
TANSIG PURELIN 0.0090 0.9960 83
LOGSIG TANSIG 0.0056 0.9977 170
LOGSIG PURELIN 0.0079 0.9965 93

Fig. 17   The ANN model structure (single strip foundation)
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(5)
A
3

= − 2.106B − 0.0403c + 0.2104� + 0.0501

(
Df

B

)

+ 0.024� − 0.0467

(
b

B

)
− 3.0045

(6)
A
4

= − 3.1733B + 0.0360c − 0.2108� − 0.0545

(
Df

B

)

− 0.0425� + 0.1035

(
b

B

)
+ 4.9441

(7)
A
5

= + 0.0934B + 0.0710c − 0.2758� − 0.0535

(
Df

B

)

− 0.0105� + 0.0049

(
b

B

)
+ 0.7550

(8)B1 = −22.3421(eA1 − e−A1 )∕(eA1 + e−A1 )

(9)B2 = +183.1677(eA2 − e−A2 )∕(eA2 + e−A2 )

(10)B3 = −100.4545(eA3 − e−A3 )∕(eA3 + e−A3 )

(11)B4 = +135.6964(eA4 − e−A4 )∕(eA4 + e−A4 )

Fig. 18   Capability of ANN 
model for training, validation, 
and testing phases

Table 7   Input to hidden weights and thresholds (biases)

Xi N1 N2 N3 N4 N5

B − 0.0432 − 0.1755 − 2.1060 − 3.1733 0.0934
c − 1.5697 − 0.0510 − 0.0403 0.0360 0.0710
�
o − 0.8625 0.2370 0.2104 − 0.2108 − 0.2758

Df/B − 0.1421 0.0501 0.0501 − 0.0545 − 0.0535
β 0.5150 0.0149 0.0240 − 0.0425 − 0.0105
b/B − 0.6604 − 0.0224 − 0.0467 0.1035 0.0049
bN − 3.4056 − 0.9481 − 3.0045 4.9441 0.7550

Table 8   Hidden to output 
weights and thresholds (biases)

Y N1 N2 N3 N4 N5 bo

qu∕�H − 22.3421 183.1677 − 100.4545 135.6964 78.9862 − 157.3474
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where (qu∕�H)norm , in Eq. (14), is the normalized bearing 
capacity. To compute its value, before subjecting the input 
data for the parameters in Eqs. (3–7) to the network process, 

(12)B5 = +78.9862(eA5 − e−A5 )∕(eA5 + e−A5 )

(13)C1 = B1 + B2 + B3 + B4 + B5 − 157.3474

(14)(qu∕�H)norm = (eC1 − e−C1 )∕(eC1 + e−C1 )

it should be normalized according to the used transfer func-
tions between input and hidden layers (in this work, the 
TANSIG function is utilized), which normalizes the input 
parameters between ( − 1 and + 1) as per Eq. (15).

where Pa
i
 and Pn

i
 are the ith input or target vector components 

before and after normalization, respectively. Pmax
i

 and Pmin
i

 
are the maximum and minimum values before the normali-
zation of all input or target vector components.

The input and target dataset range of the present study are 
illustrated in Table 4, and the normalized expressions for the 
input parameters are displayed in Table 10.

Using the same Eq. (15) above, the final (de-normalized) 
qu∕�H is calculated as follows:

Substituting the target maximum and minimum values 
shown in Table 9, the final form of Eq. (16) can be written 
as follows (See Appendix A for calculation sample):

EPR Model Results

One of the advantages of EPR is the ability to generate many 
models for a particular physical problem. This provides the 
modeler with the resilience to select the appropriate expres-
sion from the developed expressions depending on a para-
metric study or engineering judgment. In this investigation, 
the model with the fewest terms (for simplicity or decrease 
in complexity) the highest coefficient of determination 
(COD = R2) value, and the lowest MSE (to ensure maximum 
possible fitness) will be chosen as shown in Fig. 21. As with 
the ANN technique, the total dataset is divided into three 
sets: 70% for training, 15% for testing, and 15% of the invis-
ible data in both the training and testing processes to validate 
the predicted EPR model. Trial-and-error is employed to get 

(15)Pn
i
=

2(Pa
i
− Pmin

i
)

(Pmax
i

− Pmin
i

)
− 1

(16)
(qu∕�H)denorm =0.5[(qu∕�H)norm + 1][(qu∕�H)max

−(qu∕�H)min] + (qu∕�H)min

(17)(qu∕�H)denorm = 2.722(qu∕�H)n + 2.826

Fig. 19   Best validation performance

Table 9   Input-hidden and hidden-output weights product

Xi N1 N2 N3 N4 N5

B 0.9651 − 32.1459 211.5572 − 430.6054 7.3737
c 35.0704 − 9.3331 4.0437 4.8866 5.6095
�
o 19.2710 43.4162 − 21.1346 − 28.6062 − 21.7852

Df/B 3.1737 9.1736 − 5.0352 − 7.3949 − 4.2229
β − 11.5053 2.7332 − 2.4063 − 5.7671 − 0.8300
b/B 14.7549 − 4.0993 4.6898 14.0473 0.3851
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Fig. 20   Rank of input parameters

Table 10   Normalized expressions for the input parameters

Parameter Normalized expression

B (m) Bnorm = 2B–3
c (kPa) cnorm = 0.05c–1
ϕ° ϕnorm = 0.0714ϕ–1.8571
Df/B (Df/B)norm = 2(Df/B)–1
β° βnorm = 0.08β–3.8
b/B (b/B)norm = 0.2857(b/B)–1
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the most effective (optimal) EPR model; Table 11 describes 
the parameters used to construct the EPR model.

The EPR model calculates the qu∕�H of a continuous 
foundation situated on an earthen slope crest, using the inputs 

B, c, ϕ, Df/B, β, and b/B. The best EPR model explored in this 
study to capture the specific geotechnical engineering issue 
under consideration is summarized in Eq. (18):

Figure 22 displays the comparison of outcomes deter-
mined using FE simulation with those predicted by the 
EPR model (Eq. 18) for the training, testing, and validation 
phases, respectively, with their corresponding correlation 
factors. As it appears in the figure, a strong relationship has 
been indicated between the FE simulation results and those 
prophesied by the EPR model.

The sensitivity analysis has been done using the one-factor-
at-a-time technique, which is considered one of the robust 
approaches [44] performed to understand the contribution of 
uncertainty of each input parameter to the model output. This 
method provides a clear indication of how a single parameter 
influences the overall outcome. This approach considered the 
variation range in input parameters of the standard deviation 
lower and upper than the mean [45]. The sensitivity evaluation 
results depict that the friction angle, cohesion, and foundation 
width are the most effective independent variables (inputs) 
that impact the dependent variable (target) for the proposed 
model as presented in Fig. 23.

Despite the two different approaches (Garson for ANN 
model and one-factor-at-a-time for EPR model) used in the 

(18)

qu

�H
= 0.72781

�
2

�2
+ 5.7045 ∗ 10

−2 c�

�

+ 2.0964 ∗ 10

−3B0.5

�
b

B
+ 3.5021

B�0.5Df∕B

�

+ 1.6175 ∗ 10

−4B1.5

�
2(
b

B
)0.5

Table 11   EPR setting parameters

Parameter EPR tuning

Expression structure Y = sum (ai*X1*X2*f(X1)*f(X2)) + ao

Function type No function
Terms 6
Exponents range 0; 0.5; 1; 1.5; 2; − 0.5; − 1; − 1.5; − 2
GA parameters 15: 40
Bias (ao) yes
Regression method Non-Negative Least Square
Input parameters B, c, ϕ, Df/B, β, and b/B

Fig. 22   Results comparison 
obtained by FE and EPR
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sensitivity analysis of the input variables, the outcomes of 
both are compatible except for parameters arrangement.

The Distinction Between ANN‑ 
and EPR‑Developed Models

Table 12 summarizes the performance evaluation of the con-
structed ANN and EPR models, whereas Table 13 depicts 
Pearson’s correlation heat map of input and output parameters. 
According to the stated evaluation indices, the ANN model 
performance is better than the EPR model in all phases. This 
indicates that the developed ANN model has more accuracy 
and capability to generate and predict outcomes than the EPR 
model, but with a more complex mathematical expression that 

is difficult to solve manually. This is because ANN does not 
generate a direct expression, whereas EPR generates a simple 
and clear mathematical equation that is easily solved manu-
ally. So in this regard, the EPR model has superiority over the 
ANN model. This conclusion is also supported by Fig. 24, 
which displays Taylor diagrams for both training and testing 
datasets, due to higher correlation and nearest standard devia-
tion to the simulated FE outcomes.

Zawita Case Study (Duhok City/Kurdistan Region 
of Iraq)

Site Location and Geology

The investigated area of the Zawita case study is located about 
60 km northeast of Duhok city in the Kurdistan Region of 
Iraq. It is a sub-district of Duhok City. Large parts of the soils 
in Duhok areas are interspersed with clay beds that vary in 
color from light brown to reddish brown. This soil is of vari-
able thickness, covering moderately deep inclined rock strata. 
Duhok geological successions are the Bekhair and Duhok 
Mountains. Late Cretaceous and Paleocene sediments over-
lay Bekhair’s anticline. In the northern part of Duhok City, it 
extends from the southeast toward the northwest, and in the 
southern part, it extends to Duhok Mountain. The southwest-
ern part of the investigated area is of low relief and dominated 
mostly by Quaternary deposits. These formations formed from 
alterations in sand, silt, and clayey silt. Such formations to some 
extent are unstable from an engineering perspective. So, addi-
tional precautions in the design of the foundation are necessary.

Results of Analysis

Figure 25 shows the geometry, boundary conditions, and 
finite element mesh of the Zawita case study. The FE bearing 
capacity analysis is conducted using Plaxis 2D in plain strain 
conditions with a fine element mesh produced by 15-node 
elements that could result in an extra accurate computation 
of strain. Whereas Plaxis 2D and SLOPE/W software are 
used for slope stability analyses. The hardening soil model 
with a small strain is used to simulate the behavior of the 

Fig. 23   Sensitivity evaluation of input variables for the EPR model

Table 12   Comparison between ANN and EPR models

Model Phase R2 MSE VAF A10-Index

ANN Training 0.996 0.005 0.996 0.955
Testing 0.996 0.005 0.995 0.947
Validation 0.995 0.005 0.996 0.953
Overall 0.996 0.005 0.996 0.954

EPR Training 0.957 0.045 0.956 0.905
Testing 0.959 0.045 0.957 0.893
Validation 0.964 0.038 0.963 0.905
Overall 0.958 0.044 0.957 0.903

Perfect value 1 0 1 1

Table 13   Pearson’s correlation 
heat map of input and output 
parameters

Item B (m) c (kPa) ϕº Df/B βº b/B (BC)FE (BC)ANN (BC)EPR

B (m) 1

c (kPa) 0 1

ϕº 0 –0.776 1

Df/B 0 0 0 1

βº 0 0.088 0.046 –0.001 1

b/B 0 0 0 0 0.001 1

(BC)FE 0.411 –0.132 0.425 0.275 –0.193 0.516 1

(BC)ANN 0.412 –0.132 0.424 0.276 –0.195 0.518 0.998 1

(BC)EPR 0.444 –0.163 0.446 0.279 –0.169 0.521 0.979 0.978 1
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selected slope. The model’s soil and concrete foundation 
properties are presented in Table 14.

Table 15 shows the bearing pressure results obtained 
using Plaxis 2D (FEM) for the various conditions of the case 

study slope model with those values derived from the ANN 
and EPR-developed models. The differentiation among the 
results displays acceptable compatibility despite the soil unit 
weight and slope angle of the chosen case study being not 

Fig. 25   Slope schematic of Zawita case study

Table 14   Soil and foundation 
properties of Zawita case study 
[46]

Parameters Backfill Material Concrete foundation Unit

Material model HS small Linear elastic –
Type of material behavior Drained Non-porous –
Unsaturated unit weight, γunsat, 20.1 24 kN/m3

Saturated unit weight, γsat 20.6 kN/m3

Secant stiffness in standard drained triaxial test, E50
ref 3.0 × 104 kN/m2

Tangent stiffness for primary oedometer loading, Eoed
ref 3.601 × 104 25 × 106 kN/m2

Unloading/reloading stiffness, Eur
ref 1.108 × 105 kN/m2

Power for a stress-level dependency on stiffness, m 0.5 –
Cohesion, c’ref 10 kN/m2

Friction angle,�′ 40 o

Dilatancy angle, ψ 10 o

Shear strain at which Gs = 0.722 G0, γ0.7 1.5 × 10–4 –
Shear modulus at very small strains, G0

ref 1.0 × 105 kN/m2

Poisson’s ratio, ν΄ur 0.2 0.15 –

Fig. 24   Taylor diagrams for the developed models, a Training data and b Testing data
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within the data range of the ANN and EPR selected models. 
It means that the selected models have a high capacity to 
generate plausible results.

Figure 26 illustrates the differences between ANN and 
EPR bearing pressure computed by FEM for Df/B equal to 
0 and 0.5. As shown, for Df/B = 0, and B = 1 m, the per-
centage differences in ANN bearing pressure with FEM are 
14.1, 7.7, and 7.4%, for b/B = 0, 2, and 4, respectively. The 
same slope status ratios decrease to 6.9, 1.8, and 4.8% when 
B = 2 m. Similarly, when Df/B = 0.5, and B = 1 m, the differ-
ences with FEM are 7.5, 3.9, and 4.7%, and when B = 2 m, 
these ratios decrease to 2.8, 0.9, and 4.0% for the same slope 
situations. On the other hand, when Df/B = 0, and B = 1 m, 
the EPR values differ from FEM by 8.8, 7.8, and 7.4%, for 
b/B = 0, 2, and 4, respectively. When B = 2 m, these ratios 

decrease to 9.7, 1.5, and 7.3% in similar situations. Also, 
when Df/B = 0.5, and B = 1 m, the differences with FEM are 
10.3, 7.9, and 6,4%, and when B = 2 m, these ratios decrease 
to 4.4, 2.1, and 7.5%, for the same b/B, respectively. As is 
evident from this figure, the average differences between 
both models are within 6% maximum, indicating that both 
models are highly accurate.

Based on Fig. 27, the contours of failure patterns devel-
oped under the foundation show that the failure is one-sided, 
toward the slope face, due to eliminating the passive zone.

Tables 16 and 17 and Fig. 28 depict the safety factor FOS 
of the slope stability analysis for various slope conditions 
of the case study using many approaches (FEM, Bishop, 
Morgenstern-Price, and Spencer). It was observed that for 
slope angle � = 31° and any foundation width considered, 

Table 15   Comparison of 
bearing capacity values (in kPa) 
at 5.0% B settlement

B (m) b/B Df/B = 0.0 Df/B = 0.5

FEM ANN EPR FEM ANN EPR

1.0 0.0 323.9 369.7 352.4 378.1 406.5 417.0
2.0 410.0 441.7 442.1 469.8 487.9 506.7
4.0 458.9 492.8 493.0 523.9 548.5 557.6

2.0 0.0 390.2 417.3 352.4 504.0 518.3 481.6
2.0 564.5 574.9 572.9 687.4 693.7 702.1
4.0 637.3 668.1 683.7 756.2 786.7 812.9
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Fig. 26   ANN and EPR bearing capacity percentage differences from FEM
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the FOS increases as the footing setback b/B distance 
increases. The same trend was noticed in all analysis meth-
ods. Table 17 shows that FEM yields a lower FOS value 
than all LE methods. This is attributed to their fundamen-
tally different approaches. Hence, the LE methods have 
more limitations than the FEM, resulting in a relatively 
defined critical failure surface, whereas the FEM showed 

a much wider and deeper zone of critical failure, and as a 
result revealed higher concentrations of plastic strain near 
the top of the slope. Also, LE methods do not consider the 
fundamental aspects of the stress–strain relationship, and 
thus, they cannot compute a realistic stress distribution [47, 
48]. A comparison of LE methods considered in this study 
shows that safety factors calculated by the Simplified Bishop 
Method are approximately 2–4% lower than those obtained 
by other methods. However, it cannot be accepted for com-
plex slopes with multiple failure factors, since it does not 
take into account interslice forces compared to Spencer’s or 
Morgenstern and Price’s methods that satisfy both force and 
moment equilibrium.

Fig. 27   Contours of failure patterns generated under the foundation of some case study situations

Table 16   Safety factors for 
Zawita case study without 
loading

FEM Limit Equilibrium 
Methods (LEM)

Bishop M-P Spencer

2.215 2.269 2.262 2.261

Table 17   Safety factors for 
Zawita case study at load 
corresponding to 5.0% B 
settlement

B (m) b/B Df/B = 0.0 Df/B = 0.5

FEM Limit equilibrium methods FEM Limit equilibrium methods

Bishop M-P Spencer Bishop M-P Spencer

1 0 1.139 1.17 1.189 1.199 1.185 1.415 1.443 1.34
2 1.342 1.477 1.505 1.54 1.376 1.625 1.638 1.705
4 1.458 1.837 1.836 1.879 1.542 1.87 1.87 1.906

2 0 1.11 1.107 1.128 1.144 1.185 1.39 1.417 1.355
2 1.317 1.538 1.566 1.594 1.373 1.653 1.664 1.694
4 1.45 1.908 1.909 1.898 1.562 1.955 1.962 1.986
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Conclusions

This investigation presents two models using ANN and EPR 
techniques to predict the normalized bearing pressure qu/γ H 
from data obtained by FE simulation of a continuous founda-
tion on the earthen slope crest using different geometrical 
and geotechnical parameters such as (B, c, ϕ, Df/B, β, and 
b/B). It is worth mentioning that the developed expressions 
are valid and accurate within the range of the parameters 
considered in this study, but outside of these limits, the 
foretelling must be validated. The following conclusions 
are drawn from the outcomes:

•	 The bearing capacity improved as B, c, ϕ, Df/B, and 
b/B increased but it negatively related to β.

•	 The critical b/B ratio was found to be 6, after which 
the slope inclination influence vanished, and the foun-
dation behaved like it was placed on the horizontal 
ground.

•	 The FOS increases as the foundation setback increases 
to reach the critical b/B ratio.

•	 The ANN and EPR techniques offer the best capable 
models to forecast the qu/γH of the strip foundation 

situated on the slope crest, based on the high R2 values 
achieved in the training, validation, and testing phases.

•	 The prediction precision of ANN and EPR models 
is close to each other; however, the EPR model can 
directly give a simple mathematical equation that is 
easily solved manually without needing to use any 
software, whereas the ANN model provides a complex 
expression that is difficult to solve manually.

•	 Based on the optimum weights and thresholds obtained 
from ANN and the more appropriate EPR model, an 
adequate mathematical expression for predicting qu/γH 
of strip foundations located on the slope crest has been 
provided. This mathematical prediction expression will 
serve as a simple and quick tool for the geotechnical 
practicing and consulting engineers included in the 
hilly area planning and design.

•	 The sensitivity analysis using Garson’s technique indi-
cated that the most important parameters that affect the 
qu/γH value are B, ϕ, and c.

•	 The results of the selected case study proved that the 
chosen models of ANN and EPR are powerful and give 
acceptable results.

Fig. 28   Some case study stability analysis at q corresponding to 5% B settlement
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Appendix A: ANN case study result calculation 
sample

B (m) c kN/m2 ϕ° Df/B βo b/B

2 10 40 0 31 0

Geometry and soil parameters.

The normalized input parameters in the range (− 1, + 1) 
according to Table 10.

Parameter Normalized expression Normalized input parameter 
values

B (m) Bnorm = 2B–3  = 2 (2)− 3 = 1
c (kPa) cnorm = 0.05c–1  = 0.05 (10)− 1 = − 0.5
ϕ° ϕnorm = 0.0714ϕ–1.8571  = 0.0714 (40)− 1.871 = 0.985
Df/B (Df/B)norm = 2(Df/B)–1  = 2(0)− 1= − 1
β° βnorm = 0.08β–3.8  = 0.08 (31) − 3.8 = − 1.32
b/B (b/B)norm = 0.2857(b/B)–1  = 0.2857(0) − 1 = − 1

Hid-
den 
layer 
no

Weights and bias for input-hidden layers from Table 6

B c ϕ° Df/B βo b/B Bias

N1 – 0.0432 – 1.5697 – 0.8625 – 0.1421 0.5150 – 0.6604 – 3.4056
N2 – 0.1755 – 0.0510 0.2370 0.0501 0.0149 – 0.0224 – 0.9481
N3 – 2.1060 – 0.0403 0.2104 0.0501 0.0240 – 0.0467 – 3.0045
N4 – 3.1733 0.0360 – 0.2108 – 0.0545 – 0.0425 0.1035 4.9441
N5 0.0934 0.0710 – 0.2758 – 0.0535 – 0.0105 0.0049 0.7550

A1 = − 0.0432 ∗ (1) − 1.5697 ∗ (−0.5) − 0.8625 ∗ (0.985)

− 0.1421 ∗ (−1) + 0.515 ∗ (−1.32)

− 0.6604 ∗ (−1) − 3.4056 = −3.403

A2 = − 0.1755 ∗ (1) − 0.051 ∗ (−0.5) + 0.2370 ∗ (0.985)

+ 0.0501 ∗ (−1) + 0.0149 ∗ (−1.32)

− 0.0224 ∗ (−1) − 0.9481 = −0.909

Weights and bias for hidden-output layers from Table 7

N1 N2 N3 N4 N5 Bias

– 22.3421 183.1677 – 100.4545 135.6964 78.9862 – 157.3474

(
qu∕�H

)

Min 0.104

Max 5.548

A3 = − 2.106 ∗ (1) − 0.0403 ∗ (−0.5) + 0.2104 ∗ (0.985)

+ 0.0501 ∗ (−1)

+ 0.024 ∗ (−1.32) − 0.0467 ∗ (−1) − 3.0045

= −4.915

A4 = − 3.1733 ∗ (1) + 0.036 ∗ (−0.5)

0.2108 ∗ (0.985)

− 0.0545 ∗ (−1) − 0.0425 ∗ (−1.32)

+ 0.1035 ∗ (−1) + 4.9441 = 1.549

A5 =0.0934 ∗ (1) + 0.071 ∗ (−0.5) − 0.2758 ∗ (0.985)

− 0.0535 ∗ (−1) − 0.0105 ∗ (−1.32)

+ 0.0049 ∗ (−1) + 0.755 = 0.600

B1 = −22.3421(eA1 − e−A1 )∕(eA1 + e−A1 ) = 22.293

B2 = +183.1677(eA2 − e−A2 )∕(eA2 + e−A2 ) = −131.976

B3 = −100.4545(eA3 − e−A3 )∕(eA3 + e−A3 ) = 100.444

B4 = +135.6964(eA4 − e−A4 )∕(eA4 + e−A4 ) = 123.982

B5 = +78.9862(eA5 − e−A5 )∕(eA5 + e−A5 ) = 42.412

C1 = B1 + B2 + B3 + B4 + B5 − 157.3474

= (22.293 − 132.976 + 100.444 + 123.982 + 42.412)

−157.3474 = −0.193

(
qu∕�H

)
norm

= (eC1 − e−C1 )∕(eC1 + e−C1) = −0.191

(

qu∕�H
)

denorm = 0.5[
(

qu∕�H
)

norm + 1][
(

qu∕�H
)

max

−
(

qu∕�H
)

min] +
(

qu∕�H
)

min = 2.307
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