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Abstract Squeezing failure is commonly observed when 
excavating tunnels in weak rocks in high in situ stress condi-
tions. When the existing rock is removed from the rock mass, 
the in situ stresses redistribute itself, resulting in possible 
overstressing in the proximity of excavation with excessive 
deformation, which ultimately may lead to failure. Avoiding 
squeezing type failure is always a serious concern in tunnel-
ling and is a field of active research for decades. Researchers 
have come out with several solutions for the quantification 
of squeezing and the corresponding failure in squeezing 
type rocks. Despite many studies, squeezing failure is una-
voidable because most of the solutions might be lacking in 
comprehensive input parameters in reference to real-field 
conditions that influence excessive tunnel deformation. In 
the present study, key influencing parameters such as tunnel 
shape, in situ stress and rock mass characteristic are consid-
ered while doing numerical studies. Three tunnel shapes are 
analysed using the numerical tool FLAC under varying the 
above-mentioned parameters. The behaviour of rock mass is 
observed subjected to varying parameters, and the conclu-
sion is drawn based on the obtained results.

Keywords Tunnel · Squeezing rock · Stresses · FLAC · 
GSI · Overburden · Plastic zone radius · Tunnel strain

Introduction

Squeezing failure during tunnelling in weak rocks is always 
a serious problem in Himalayan region of India because of 
its frequently changing geology with rock formations of 
different ages. This squeezing phenomenon was defined 
by Weismann in 1912 as the redistribution of stresses and 
formation of a plastic zone around a deep tunnel [1]. Over-
stressing in the proximity of excavation may be one of the 
reasons leading to squeezing rock failure [2]. As per much 
of the literature, when the deformation of an unsupported 
opening exceeds 1% of the size of the opening, the ground 
is characterized as the squeezing ground which results in 
constructional problems [2–4]. Muirwood proposed an ana-
lytical approach using the ‘competency factor’ to estimate 
the tunnel stability, and the competency factor is defined as 
the ratio of uniaxial strength to overburden stress [5].

Analyses using an axisymmetric orthotropic elastic model 
and an elastoplastic model on tunnels in squeezing rock mass 
provided a qualitative explanation of the mode of deforma-
tion and buckling failure. But getting quantitative results is 
very complex because of the lack of data on geomechanical 
characteristics of rock mass and the natural state of stress [6]. 
Rock mass properties and in situ stresses play an important 
role in triggering the failure in massive rock mass [7]. The 
risk of tunnel failure can be minimized in certain cases by 
the use of numerical analyses with appropriate rock mass 
parameters [8]. Detailed numerical analyses were performed 
by a few researchers using the finite element method [9, 10] 
and the boundary element method [11]. Tunnel failure due to 
overstressing of the surrounding rock mass depends upon the 

(1)Competency factor =
uniaxial strength
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characteristics of the rock mass, the magnitude and direction 
of the in situ stresses, the shape of the tunnel and intensity and 
the orientation of the discontinuities [7]. The load imposed on 
support installed behind the tunnel face can be estimated by 
convergence confinement method (CCM) which is composed 
of three basic components, namely (i) the longitudinal defor-
mation profile (LDP), (ii) the ground reaction curve (GRC) 
and (iii) the support characteristic curve (SCC) [12]. CCM 
is a continuous approach that does not take into account rock 
wedges and one of the difficulties in applying this approach 
is defining how to adequately characterize strain-softening 
rock masses [13]. The empirical methods proposed by several 
researchers [3, 14–18] to quantify squeezing potential indi-
cate that the approaches are general estimates of squeezing 
[19]. The nature of in situ stresses and their redistribution upon 
excavation play a crucial role in inducing tunnel instability 
problems in the rocks prone to squeezing type failure. Hence, 
this study presents the effect of isotropic in situ stresses on 
three different tunnel shapes upon varying geological strength 
index (GSI) of rock mass and varying overburden (OB) depth.

In the present paper, a hypothetical model is built of three 
different tunnel shapes using numerical tool FLAC and each 
tunnel is analysed under varying overburden and GSI under 
isotropic stress state. Tunnel strain and radius of plastic zone 
are determined for the above mentioned conditions.

Numerical Model

The analyses are performed using a numerical tool FLAC 
(Fast Lagrangian Analysis of Continua), a two-dimensional 
explicit finite difference-based numerical tool. FLAC con-
tains a powerful built-in programming language FISH, 
through which tunnel closure and deformational behaviour 
of the tunnel can be analysed. FLAC is a continuum model, 
which uses the mixed discretization scheme for accurate 
modelling of physical collapse loads and plastic flows, 
whereas the explicit scheme can follow arbitrary nonlinear-
ity in stress/strain laws [20]. The rock mass is considered as 
a continuous medium in the present squeezing analysis con-
sidering the generalized Hoek–Brown (GHB) model (Eq. 2). 
GHB model is an alternative to the Hoek–Brown (HB) [20, 
21] model which allows the user to specify dilation options 
and include tensile strength limit. GHB parameters s, a and 
m

b
 can be found using intact rock characteristics and rock 

mass classification using geological strength index (GSI) 
(Eqs. 3, 4 and 5) [20]. The present study does not include 
the dilation behaviour of the rock mass.

where �1 = major principle effective stress at failure, 
�3 = minor principle effective stress at failure, �

ci
 = UCS of 

(2)�1 = �3 + �
ci

(

m
b
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�
ci

+ s

)a

intact rock, m
b
, s and a = Hoek and Brown material param-

eters which are functions of “D” (disturbance factor) and 
GSI (geological strength index).

Here, m
i
 represent intact rock parameter which is selected 

based upon the range of values available for intact rocks.
For verification purposes, a case study has been consid-

ered namely the nuclear power generating station located 
on the shore of Lake Ontario near Toronto constructed in 
1982. The tunnel named, ‘Darlington’ is excavated in lime-
stone rock mass using drill and blast method with inverted-D 
shape opening of 9 m span and 92 m length with varying 
overburden of 21 m to 36 m [22]. The study considers GHB 
constitutive model, and corresponding inputs parameters are 
presented in Table 1 which are generated from RocLab soft-
ware with the available parameters [22]. The state of in situ 
stress is remarkably anisotropic with a stress ratio of 10. 
The plane strain method is adopted where the displacements 
along the domain boundary are restrained in a direction per-
pendicular to the boundary. Anisotropic initial stresses are 
initialized in the model. The geometry of the model is shown 
in Fig. 1a. Obtained results show high inward horizontal 
displacement at the tunnel walls and less displacement at the 
crown and invert (Fig. 1b). Obtained displacements along 
crown and springline are compared with the displacements 
measured at the field (Fig. 2) and are found consistent with 
those observed values [5].

Numerical Analyses

Numerical analyses are performed by considering a sim-
ple tunnel model to observe the influence of factors such as 
tunnel shape, material property, overburden depth and iso-
tropic in situ stress for unsupported tunnel. Figure 3 shows 

(3)m
b
= m

i
exp

(

GSI − 100

28 − 14D

)

(4)s = exp
(

GSI − 100

9 − 3D
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1
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+
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6
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e
−GSI∕15 − e

−20∕3
)

Table 1  Rock mass parameters for Darlington tunnel [22, 23]

Compressive strength of rock mass, �
cm

 (MPa) 80

Poisson’s ratio 0.33
Young’s modulus, E (GPa) 30
Tensile strength, �

t
 (kPa) 4

GSI (geological strength index) 80



1176 Indian Geotech J (August 2024) 54(4):1174–1186

1 3

commonly adopted terminology in tunnelling and the same 
is followed in the entire discussion of this paper. Three tun-
nel shapes are considered here namely, circular, inverted-D 
and horse-shoe shape (Fig. 4). The analyses are performed to 
observe the tunnel closure and extent of plastic zone radius 
for all the three tunnel shapes under varying overburden 
depths, isotropic stress condition and material properties. 
Focus of the study is to understand the behaviour of tunnels 
excavated in squeezing rock mass. Since squeezing failure is 

observed in a weak rock mass [3, 24–28] such as shale, lime-
stone, gneiss with low strength, parameters for the present 
study are taken after a review of several tunnel case histories 
which underwent squeezing failure [2, 3, 7, 25–29]. Since 
the present simulation adopts the generalized Hoek–Brown 
constitutive model (Eq. 1.2), where all the parameters of this 
equation are influenced by GSI, the main focus in varying 
material properties is performed by considering different 
GSI values. The remaining relevant parameters of the GHB 

Fig. 1  a Geometry and b Obtained displacement pattern using FLAC

Fig. 2  Measured and obtained 
displacements for Darlington 
tunnel
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model are obtained by RocLab. Since squeezing failure in 
tunnels is associated with weak rocks (GSI < 30) to medium-
strength rocks (GSI > 30) and also it was observed that the 
GSI of rock mass where squeezing failure was encountered 
ranges from 5 to 43 [3, 7, 26–29], values of GSI in this study 
are varied from 10 to 40 in an interval of 10, where an aver-
age of three GSI is considered as shown in Table 2. Tunnel 
overburden depths of 100 m, 300 m, 500 m, 600 m, 800 m 
and 1000 m are considered which are the average values of 
50 m on either side for each overburden depth.

FLAC is an explicit code and hence solution to the prob-
lem requires several computational steps to reach the static 
solution stage (a state at which the model will be either in 
force equilibrium or a state of steady-flow of material). Since 
the objective is to analyse and comprehend unsupported tun-
nel behaviour subjected to varying overburden depth and 

material properties, calculation steps are kept constant for 
all the different cases considered. Two calculation steps 
are given for each case in such a way that the behaviour 
of rock mass within its yield limit and the behaviour at or 
after crossing the yield limit are observed. In this study, the 
tunnel is first checked under 150 calculation steps to show 
its behaviour before reaching yield limit (Before failure); 
later, it is verified under 500 calculation steps to observe the 
behaviour when it reaches or crosses the yield limit (when 
failure occurs/tunnel collapse).

The change in tunnel load that takes place due to tunnel 
excavation is simulated by the method of relaxation of forces 
where tractions are first applied to the tunnel boundary to 
provide an equilibrium condition at zero relaxation, and then 
tractions are gradually reduced. Since in reality, some relax-
ation of tunnel load takes place upon excavation, in the pre-
sent research work 100% relaxation is considered. The same 
procedure is followed for all the tunnel shapes under varying 
conditions. For building the mesh, a domain size of 20D 
(twenty times the tunnel width) is considered because the 
extent of the failure zone is larger in squeezing conditions. 
Since the tunnel width is kept constant at 5 m, the geometry 
of the model is built of size 100 m × 100 m with 16,900 
grids. The behaviour of rock mass around the vicinity of the 
tunnel is of prime importance and hence to obtain accurate 
results in this region, denser grids are assigned, whereas the 
grid size increases as it moves a certain distance away from 
the vicinity of the tunnel excavation. A quarter portion of 
the geometry of the circular tunnel with increasing grid size 
is shown in Fig. 5. The geometry of the numerical model 
(zoomed in) for three tunnel shapes is shown in Fig. 6.

Results and Discussion

Obtained results for all the three tunnel shapes under vary-
ing overburden depths and different GSI values are shown in 
Figs. 7, 8 and 9. The analyses are performed in two stages, 
firstly when the tunnel is within failure limits and then sec-
ondly when the tunnel reaches failure limit as explained in 
“Numerical Analyses” section. The behaviour in both cases 
for all the three tunnel shapes are observed to be different. 

Crown

65

87

4

3

21

Haunch

Spring line

Wall

Invert

Right side Le� side

Fig. 3  The terminology used in tunnelling

Fig. 4  Three tunnel shapes of hypothetical model. a Circular, b 
Inverted-D and c Horse-shoe

Table 2  Average GSI and 
overburden depths considered 
for the study

GSI Overburden (OB) (m)

GSI Mean GSI Mean OB Mean OB Mean OB Mean

5 10 25 30 50 100 450 500 750 800
10 30 100 500 800
15 35 150 550 850
15 20 35 40 250 300 550 600 950 1000
20 40 300 600 1000
25 45 350 650 1050
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Tunnel strain is calculated by dividing the obtained tun-
nel closure by tunnel width/diameter. The concept of an 
increase in tunnel strain with respect to a decrease in GSI 
value at different overburden depths is valid only when the 
tunnel is within the failure limit. Because of isotropic stress 
conditions, tunnel convergence of circular tunnels in the 
horizontal and vertical directions is equal. It was observed 
that in a circular tunnel, the rock mass with GSI 10 can 
sustain an overburden height of 200 m. If the overburden 
depth is further increased, the tunnel is on the verge of fail-
ure (Fig. 7b). The rock mass with GSI 20 fails at or above 
500 m overburden depth, whereas tunnel failure at or above 
overburden depth of 800 m was observed for rock mass of 
GSI 30, whereas the tunnel driven in rock mass of GSI 40 
is stable even at strain of 14% (Fig. 7b) with overburden 
1000 m. These obtained results indicate that the circular 
tunnel is stable even after reaching strain above 12% when 

the GSI of rock mass is 40 and above, whereas the rock mass 
with GSI 30 and below undergoes failure as the overburden 
depth increases.

As expected, the obtained results show that as the GSI 
value increases, tunnel strain decreases and the tunnels with 
higher GSI values can take higher strain before failure. Tun-
nel strain increases with increasing overburden depths for all 
GSI when the tunnel is within the yield limit.

Horizontal tunnel strains are measured at the sidewall 
and spring, whereas vertical tunnel strain is measured at 
the centre of the crown and invert for inverted-D shape 
and horse-shoe shape tunnel. The obtained strains indi-
cate that as the overburden depth increases, strain at tun-
nel wall increases when compared to horizontal strain at 
spring and vertical strain (Fig. 8b). Obtained horizon-
tal tunnel strain at spring and vertical tunnel strain are 
almost equal (Fig. 8b). Similar behaviour was observed 

Fig. 5  Geometry of the model 
with increasing grid size from 
circular tunnel boundary

Fig. 6  Geometry of numerical model for three tunnel shapes. a Circular, b Inverted-D and c Horse-shoe
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for the Horse-shoe shape tunnel (Fig. 9b). Observations 
with inverted-D tunnel reveal that tunnel with GSI 10 fails 
under overburden depth of 300 m and above which indi-
cate that these tunnels cannot take higher tunnel loads; 
however, upon an increase in overburden, the strain will 
not decrease (Fig. 8b), whereas in the horse-shoe tun-
nel, the strains will decrease when overburden depth is 
increased beyond 300 m (Fig. 9b) exhibiting behaviour 
similar to circular tunnel (Fig. 9b). Tunnel with GSI 20 
fails at overburden depth of 500 m and above, whereas 
tunnel with GSI 30 fails at overburden depth of 800 m and 
higher. However, no failure is observed for tunnel driven 

with rock mass of GSI 40 (Fig. 8b) showing similar behav-
iour as that of the circular tunnel (Fig. 8b).

Similar behaviour is observed for the horse-shoe tunnels 
(Fig. 9b). It was observed for both inverted-D tunnel and 
horse-shoe tunnel that tunnel strain increase as overburden 
depth increases (Figs. 8a, 9a) when the tunnel is within yield 
zone but contrary to GSI value, i.e. as GSI value decreases, 
tunnel strain increases. Here also it was observed that the 
tunnel driven in rock mass of GSI 40 is stable at all overbur-
den depths, whereas failure was observed at an increasing 
depth of overburden for GSI < 40 (Figs. 8b, 9b). Hence, it 
was concluded from the observations that the tunnel strain 

Fig. 7  Tunnel strains for the circular tunnel. a Within failure limit and b Until failure

Fig. 8  Tunnel strains for inverted-D tunnel. a Within failure limit and b Until failure
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at failure not only depends on overburden depth but also on 
the material strength.

Tunnel inward displacement, the radius of plastic zone 
and stress conditions for all three tunnel shapes for varying 
overburden depths and GSI values are observed. Figure 10 
shows one such observation for three tunnels at an over-
burden depth of 100 m with GSI 20. The radius of plas-
tic zone is measured from the centre of the tunnel along 
spring and crown for circular tunnel, whereas for inverted-
D and horse-shoe tunnel it is measured from tunnel centre 
along spring, wall, crown and invert. Inward displacement 
observed for all three tunnels shows that the entire tunnel 
cross section is displacing inward exhibiting squeezing type 
failure (Fig. 10a–c). The radius of the plastic zone for the 
circular tunnel is circular (Fig. 10d) with a radius equal to 
3.8 m which exhibit the plastic zone around the tunnel open-
ing. The rock mass beyond 3.8 m exhibits elastic behav-
iour. Because of the circular shape plastic zone, its radius is 
same both in horizontal and vertical directions of the tunnel. 
Influence of overburden depth and GSI of rock mass on the 
radius of the plastic zone for the circular tunnel is shown in 
Fig. 11. It is observed that for GSI < 30, tunnel fails at higher 
overburden depth of 300–500 m and above. Hence, plastic 
zone is disrupted because the tunnel has already crossed 
failure limit hence shown decline in the radius of the plastic 
zone (Fig. 11). For GSI ≥ 30, the radius of the plastic zone 
increases if no tunnel failure is observed, whereas for the 
tunnel that crosses the failure limit, the plastic zone is not 
disrupted and remains constant (Fig. 11). Hence, it can be 
stated that special consideration is required for tunnel exca-
vated in squeezing rock of GSI < 30 of overburden depth 
300 m and higher.

The plasticity zone for inverted-D tunnel and horse-shoe 
shape tunnel is in mushroom shape with symmetry along 
the vertical axis (Fig. 10e, f). Also, it is observed that the 
radius of the plastic zone is not equal in the horizontal and 
vertical direction which reads the value of 4.3 m at wall and 
spring, whereas invert exhibits 4.8 m radius which is more 
than the radius of 3.8 m at the crown for inverted-D tunnel 
(Figs. 10e, 11) and hence its radius is measured at two points 
along horizontal direction, namely at the wall, spring and 
at two points along vertical direction, namely at invert and 
crown (Fig. 12). The obtained radius of the plastic zone for 
inverted-D tunnel along horizontal (wall and spring) and 
vertical (invert and crown) direction is shown in Fig. 12a, 
b, respectively. It is observed that the zone of plasticity 
is higher at invert and wall when compared at spring and 
crown (Fig. 12a, b). The remarks made for the circular tun-
nel for GSI < 30 and GSI ≥ 30 imply for inverted-D tunnel as 
well. In a horse-shoe shape tunnel, the radius of the plastic 
zone at invert is higher when compared at the other three 
places (crown, wall and spring) along with tunnel opening 
(Fig. 13a, b). The behaviour of the plastic zone radius for 
GSI < 30 and GSI ≥ 30 is same as explained for the circular 
tunnel. Hence, engineers should be careful when design-
ing tunnel running in squeezing rock of GSI < 30 with high 
overburden. As the tunnel excavation proceeds, the in situ 
state of stress redistributes resulting with deformation of sur-
rounding rock, and the plastic zone which affects the stabil-
ity of surrounding rock will gradually develop. In the present 
paper, isotropic stresses are considered; however practically, 
stresses do not remain isotropic all time. Hence, knowledge 
on behaviour of rock mass subjected to anisotropic stresses 
upon excavation is important.

Fig. 9  Tunnel strains for horse-shoe tunnel. a Within failure limit and b Until failure
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Tangential and Radial Stress Distribution

The state of stress in the rock mass is in equilibrium state 
before excavation, whereas stress redistribution takes place 

in the surrounding rock mass after excavation. Strength of 
the surrounding rock decreases, radial stress reduces and 
reach zero value in certain cases at the vicinity of excavation 
and then gradually increases along with the radial distance 
of tunnel and approaches to in situ stress value at the elastic 
region of rock mass after crossing plastic zone. The tangen-
tial stress also decreases at the tunnel boundary; however, 
because of tangential stress concentration, stress increases 
at a certain distance from the tunnel boundary within the 
zone of plasticity, then gradually decreases and approaches 
the in situ stress value far away from the plastic zone (in the 
elastic region). The influence range of distributed stress on 
the surrounding rock is limited. The stress distribution in the 
surrounding rock tunnel and the size of the plastic zone is 
very important in designing adequate support for the tunnel 
in squeezing rock. Tangential stress and radial stress distri-
bution are obtained at spring and crown for circular tunnel, 
whereas for inverted-D tunnel and horse-shoe shape tunnel, 
it is obtained at spring, wall and crown.

Fig. 10  a, d, g Displacement, 
radius of the plastic zone and 
principal stress distribution for 
circular tunnel, respectively; 
b, e, h Displacement, radius of 
the plastic zone and principal 
stress distribution for inverted 
D tunnel, respectively; c, f, i 
Displacement, radius of the 
plastic zone and principal stress 
distribution for horse-shoe tun-
nel, respectively

Fig. 11  The radius of plastic zone around circular tunnel
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Distribution of radial and tangential stress along the radial 
distance of 30 m from the tunnel boundary around the vicinity 
of the circular tunnel for increasing overburden depth and GSI 
of 10 is shown in Fig. 14a, b. It is observed that the range of 
radial stress at the tunnel boundary is very less which gradu-
ally increases and approaches in situ state of stress at a radial 
distance of 12.5 m (5 times tunnel radius) from tunnel boundary 
for overburden of 100 m, whereas the radial distance at which 
radial stresses reach in situ state of stress increases to around 
22 m for overburden depth 300 m and higher (Fig. 14a, b). 
Tangential stress at tunnel boundary is lesser than in situ stress 
and then increases more than in situ stress at a radial distance 
of 2.5–3 m for all the overburden depths and then gradually 
decreases and approaches to in situ stress at the same radial 

distance as explained for radial stress distribution (Fig. 14a, b). 
Similar behaviour is observed for inverted-D tunnel and horse-
shoe shape tunnel. Radial and tangential stress distribution at 
crown occurs at a short radial distance when compared to wall 
and spring. The tangential stress for inverted-D tunnel at over-
burden depth of 100 m is a little higher than circular and horse-
shoe shape tunnel. The behaviour of tangential and radial stress 
distribution along the radial distance is same as that explained 
for circular tunnels. It is observed that the influence range of 
distributed stresses decreases for higher GSI values showing 
tangential stress concentration is a little higher and it is moving 
towards the tunnel boundary along with radial distance as the 
GSI value increases.

Fig. 12  The radius of plastic zone around inverted-D tunnel at a Wall and spring, b Invert and crown

Fig. 13  The plot of the radius of the plastic zone around the horse-shoe tunnel at a Wall and spring, b Invert and crown
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Radial Displacement

Displacements along the radial length for all three tunnel 

shapes for GSI 10 are shown in Fig. 15. For circular tunnel, 
displacements are obtained at spring and crown, whereas 
for inverted-D and horse-shoe tunnel, displacements are 

Fig. 14  Tangential and radial stress along the radial distance from tunnel boundary at GSI 10 for a, b Circular tunnel; c, d Inverted-D tunnel; e, 
f Horse-shoe tunnel
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Fig. 15  Displacement along with the radial distance from tunnel boundary at GSI 10 for, a, b Circular tunnel, c, d Inverted-D tunnel, e, f Horse-
shoe tunnel
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obtained at wall, spring and crown. Observations indicate 
that the displacement for the circular tunnel at an overburden 
depth of 100 m is very less, whereas displacements increase 
for higher overburden depths. Reduction in displacements is 
observed as GSI of rock mass is increased. Displacement for 
the circular tunnel at overburden depth of 800 m is 360 m 
for GSI 10 at tunnel boundary and the displacements are 
reduced which influences up to ten times the tunnel radius 
along with radial distance (Fig. 15b), whereas displacement 
is reduced to 340 m for GSI 30 where its influence in the 
radial distance of surrounding rock is also reduced to eight 
times the tunnel radius and further it reduced to 230 m for 
GSI 40 with the radial distance of four times the tunnel 
radius. Similar behaviour is observed for inverted-D tun-
nel and horse-shoe tunnel. For all three tunnel shapes, the 
influence range of displacement in the surrounding rock is 
decreasing for higher GSI values. Obtained displacements 
are higher at the tunnel boundary and further reduced with 
distance from the tunnel opening.

Conclusions

Numerical analyses are performed by considering a hypo-
thetical model with few assumptions to observe the tunnel 
behaviour under the influence of material strength, over-
burden depth and tunnel shapes. Tunnel closure, the radius 
of the plastic zone and stress distribution in the surround-
ing rock have been analysed for three tunnel cross sections, 
namely circular, inverted-D and horse-shoe shape tunnel 
under isotropic stress conditions for different overburden 
depths and GSI values. From the obtained results, it was 
observed that the tunnel shapes influence the tunnel closure. 
GSI values in another representation of the rock mass struc-
ture also exhibit their influence on tunnel behaviour; lesser 
GSI values exhibit more tunnel closure, whereas higher GSI 
values show relatively less tunnel closure. The radius of the 
plastic zone around the tunnel opening indicates the extent of 
the plastic zone in the surrounding rock mass which results 
in displacement and stress concentration. The stress distribu-
tion in the surrounding rock tunnel and the size of the plastic 
zone is very important in designing adequate support for the 
tunnel in squeezing the rock. The shape of the plastic zone 
for the circular tunnel is different from the inverted-D tun-
nel and horse-shoe tunnel. A circular shape plastic zone is 
observed for the circular tunnel, whereas a mushroom shape 
plastic zone is observed for inverted-D and horse-shoe shape 
tunnel. It is concluded that the tunnel strain for the circular 
tunnel is lesser than the horse-shoe shape and inverted-D 
tunnel, and the radius of the plastic zone is less for circular 
and horse-shoe shape tunnel when compared to inverted-D 
tunnel shape. As the stress concentration is higher at sharp 

edges where the radius of curvature is higher, the inverted-D 
tunnel and horse-shoe tunnel exhibit higher strain, especially 
at the invert compared to the circular tunnel. Also, adding 
to this, the stresses will be uniformly distributed along a 
circular surface than that of the straight surface (wall and 
invert in inverted-D and horse-shoe shape tunnel).

When analysing tangential and radial stresses for all 
the three tunnel shapes, it is observed that the radial stress 
decreases at the tunnel boundary and approaches to in situ 
stress value at a certain radial distance away from the tunnel 
opening. Tangential stresses decrease at the tunnel opening, 
and within a short distance, it increases above the in situ 
stress value and then gradually decreases to in situ stress 
range. This stress redistribution which is also called second-
ary stresses that occur after tunnel excavation is observed in 
the zone of plasticity, whereas these stresses reach the pri-
mary stress state at the elastic zone in the surrounding rock 
tunnel. The influence of stress and displacement range along 
radial distance from tunnel boundary is higher for lesser 
GSI, whereas its influence in the radial distance reduces as 
GSI increases. Displacement, the radius of the plastic zone 
and tangential stress increases as overburden depth increases 
and reduces as GSI increases. Hence, it is concluded that 
GSI, overburden depth and tunnel shapes play a major role 
in the overall behaviour of tunnels in squeezing rock mass. A 
circular and horse-shoe shape tunnel is suggested in squeez-
ing rock mass to avoid failure.

Further research is required to explore the behaviour of 
the rock mass up on excavation in squeezing rock subjected 
to anisotropic stresses including the crucial parameters such 
as rock mass characteristic, overburden and tunnel shapes.
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