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Abstract In the present study, the limit equilibrium

method combined with the pseudo-static seismic loading

approach and applying the simplified Coulomb failure

mechanism were employed for calculating the bearing

capacity of nonhomogeneous and anisotropic soils on

slopes. It was assumed that the cohesion coefficient was

nonhomogeneous and anisotropic and anisotropy effect

was ignored for the friction angle. For estimating optimal

bearing capacity values, the particle swarm optimization

algorithm was used. Comparing the results of previous

researchers with those of the present study for isotropic and

homogeneous soils indicated that the present solution

provided acceptable values for the bearing capacity of

shallow foundations. The effect of anisotropy ratio and the

nonhomogeneous coefficient on the seismic bearing

capacity was evaluated and found that decreasing the ani-

sotropy ratio and increasing the nonhomogeneous coeffi-

cient cause an increase in the seismic bearing capacity.

Furthermore, the results showed that the depth of the

failure zone decreases with increasing the nonhomoge-

neous coefficient, the anisotropy ratio, and the seismic

acceleration coefficient, while the depth of the failure zone

increases with an increase in the slope inclination.
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List of Symbols

ci The cohesion corresponding to an

inclination i

cv The cohesion coefficients in the

vertical direction

ch The cohesion coefficients in the

horizontal direction

K The anisotropy coefficient

t The nonhomogeneous coefficient

i The angle between the horizontal

direction and the maximum

principal stress

Nc Bearing capacity factor

Nc Bearing capacity factor

c The unit weight of the soil

ch0 The cohesion coefficient in the

horizontal direction in h = 0

k The variation of the cohesion

coefficient with depth

B0 Width of the footing

PU The ultimate vertical load on the

foundation

b The slope inclination

qult The ultimate bearing capacity of the

strip footing

aA Slip surface angle in the active zone

aB Slip surface angle in the passive zone

u Angle of internal friction of soil

d The friction angle along the surface

between the active and passive zones

Pa The active thrust
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Pp The passive resistance

kv The vertical seismic acceleration

coefficient

kh The horizontal seismic acceleration

coefficient

h The depth of failure zone

WA Weight of triangular wedge AEC

WB Weight of triangular wedge BEC

CAE, CEB and CCE The cohesion coefficient components

Introduction

The ultimate bearing capacity of a shallow foundation is a

very important concept that every civil engineer faces

when designing the structures. Many investigators have

studied the static and seismic bearing capacity of shallow

foundation rested on the horizontal ground [1–10]. Because

some structures are built near the slope or on the slope,

many authors [11–13] evaluated the behavior of shallow

foundations near or on slopes under static conditions. Some

researchers have analyzed the seismic bearing capacity of

shallow strip footings near the slope or on the slope using

the pseudo-static approach combined with different solu-

tion techniques such as limit equilibrium method [14–22],

the method of stress characteristics [23–26], the lower

bound [27–32], and the upper bound [33–39]. The studies

indicated that the seismic bearing capacity of a shallow

foundation located near the slope was significantly affected

by the slope angle, the seismic acceleration coefficient, the

distance between the shallow foundation edge, and the

edge of the slope. Also, they have shown that the bearing

capacity of a footing decreases with an increase in the

horizontal seismic acceleration coefficient. Natural soil

deposits are anisotropic and nonhomogeneous with respect

to the cohesion coefficient [40–43]. Anisotropy as a basic

property of materials considerably affects the bearing

capacity of foundations [44]. Due to soil anisotropy, the

undrained shear strength changes with failure plane ori-

entation. In the problem of bearing capacity, along with

any assumed failure surface, the direction of the principal

stresses varies from one point to another. Hence, using the

strength values of each orientation of the failure surface

would result in more realistic results. Calculation of bear-

ing capacity in this manner is of great importance, partic-

ularly for analytical solutions in which the undrained

bearing capacity highly depends on one soil parameter (i.e.,

undrained shear strength) [45].

A few studies have evaluated the effect of nonhomo-

geneity and anisotropy on the bearing capacity of

foundation on the horizontal ground rested on clay [46–61]

and (c-u) soil [62, 63].
Skempton [60] calculated the bearing capacity of a

foundation on nonhomogeneous clays using empirical

formulas. By considering the circular mechanism failure,

Raymond [52] provided a solution for estimating the

bearing capacity of surface footing on a frictionless soil,

assuming a linear cohesion coefficient variation with depth.

Bearing capacity of shallow strip footings on nonhomo-

geneous and anisotropic clays was analyzed by Sreeniva-

sulu and Ranganatham [61] on the assumption of the

cylindrical failure surface. By using the limit equilibrium

approach and considering a circular failure surface, Men-

zies [51] presented a correction factor for the effect of

cohesion coefficient anisotropy on the bearing capacity of a

foundation. Reddy and Srinivasan [55, 56] analyzed the

bearing capacity of footings over a single layer and also a

two-layered nonhomogeneous and anisotropic clay by

assuming a circular failure mechanism. By using circular

failure mechanism, Reddy and Srinivasan [54] evaluated

the effect of nonhomogeneity and anisotropy on the bear-

ing capacity of c-u soils, including u = 0 conditions of

soils. By considering a circular failure mechanism and

using the upper bound analysis, Chen [59] analyzed the

bearing capacity of footing on a single layer and a two-

layered nonhomogeneous and anisotropic clay. Although

the mathematical analysis is simplified by using the cir-

cular mechanism, the best solution is not provided by this

mode of failure. Using the slip-line method, a correction

coefficient for the bearing capacity foundation on aniso-

tropic clays as a function of the soil strength parameters

was proposed by Davis and Christian [48]. Appling the

method of characteristic line, Davis and Booker [47]

studied the effect of nonhomogeneous clays on the bearing

capacity of foundation. Salencon [57] analyzed the bearing

capacity of clay taking the variation of cohesion with depth

as linear by using upper bound limit analysis. Using limit

analysis and assuming a mechanism similar to Prandtl-type

mechanism, Reddy and Rao [53] analyzed the bearing

capacity of strip footing resting on nonhomogeneous and

anisotropic clays. Gourvenec and Randolph [49] analyzed

the bearing capacity of strip foundations and circular

foundations on nonhomogeneous clays by applying the

finite element method. By applying the upper bound

approach of limit analysis and considering a translational

failure mechanism, Al-Shamrani [46] presented closed-

form solutions for the undrained bearing capacity of shal-

low strip footings on anisotropic clays. Al-Shamrani and

Moghal [45] presented a closed-form solution based on the

kinematical approach of limit analysis for the undrained

bearing capacity of strip footings on anisotropic cohesive

soils. Using the discrete element method (DEM) in the

framework of the upper bound theory of limit analysis,
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Yang and Du [58] investigated the effect of nonhomoge-

neous and anisotropic soils on the bearing capacity coef-

ficient of strip foundation. By applying the limit

equilibrium method associated with the Coulomb failure

mechanism, Izadi et al. [50] evaluated the effect of varia-

tion of cohesion coefficient of marine deposit with a depth

on seismic bearing capacity. Meyerhof [62] obtained the

bearing capacity of soils with anisotropy in friction by the

conventional Terzaghi’s type approach. For this purpose,

two extreme values of u for the outer zones and equivalent

u for the radial shear zone was considered. Applying the

upper bound approach of limit analysis and a mechanism

similar to Prandtl-type mechanism, Reddy and Rao [63]

evaluated the bearing capacity of nonhomogeneous and

anisotropic (c-u) soils. All mentioned investigations indi-

cate that nonhomogeneity and anisotropy have a

notable effect on the bearing capacity of the soils.

However, not much research has been done on the effect

of nonhomogeneous and anisotropic soil on the bearing

capacity of a foundations near or on slopes. Halder and

Chakraborty [64], using the lower bound limit analysis

technique, evaluated the bearing capacity of a strip footing

placed over an embankment of anisotropic clay. It was

shown that the anisotropy ratio has a significant effect on

the bearing capacity of the shallow foundation. The main

objective of the present research is to evaluate the effect of

anisotropic and nonhomogeneous soil on the bearing

capacity of a strip foundation on a slope. For this purpose,

the simplified Coulomb failure mechanism and the limit

equilibrium method of analysis, which have not been used

in any of the previous studies for this purpose, were uti-

lized. The cohesion coefficient was assumed to be nonho-

mogeneous and anisotropic. A two-wedge failure

mechanism, proposed by Richards et al. [6], was adopted.

It should be noted that this failure mechanism was applied

by Ghazavi and Eghbali [65] and Ghosh and Debnath [3] to

evaluate the bearing capacity of a shallow foundation res-

ted on the horizontal ground. Comparing the results

obtained by these researchers with the Finite Element

analyses revealed that using this failure mechanism pro-

vided acceptable results. The PSO algorithm and

MATLAB MathWorks were applied for the optimization in

the present solution. Comprehensive comparisons were

made with the results of previous studies. Furthermore, the

effect of the nonhomogeneity and the anisotropy on bear-

ing capacity factors and the depth and path of the failure

zone was evaluated.

Anisotropy and Nonhomogeneity of Soil

Figure 1 presents the changing pattern of cohesion coeffi-

cient anisotropy, based on Casagrande [41], Livneh and

Komornik [42], Reddy and Rao [53, 63], and Livneh and

Greenstein [66]. The variation of cohesion coefficient with

the angle of inclination (i) is given by:

ci ¼ ch þ ch � cvð Þ sin2 i ¼ ch 1þ K � 1ð Þ sin2 i
� �

ð1Þ

where ci is the cohesion corresponding to an inclination i,

ch and cv are the cohesion coefficients in the horizontal and

vertical directions, respectively, i is the angle between the

horizontal direction and the maximum principal stress and

K is the anisotropy coefficient, which is cv/ch.

The changing pattern of the nonhomogeneity of the

cohesion coefficient is shown in Fig. 2.

From Fig. 2, it is clear that the variation of the cohesion

coefficient with depth is assumed as linear. The cohesion

coefficient at depth h from the surface is given by:

ch ¼ ch0 þ kh ð2Þ

where ch0 is the cohesion coefficient in the horizontal

direction at h = 0 and k is a variation of the cohesion

coefficient with depth, which is suggested to be in the

Fig. 1 Anisotropy of the cohesion coefficient

Fig. 2 Variation of cohesion coefficient with depth
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range of 0.6–3 kPa/m by Tant and Craig [67] and 5 kPa/m

by Wood [68].

Model Definition and Analysis of Procedure

In this study, a footing with the width of B0 was placed

horizontally on an inclined ground surface (Fig. 3). The

bearing capacity of the strip footing (qult) is normally

computed using the following basic formulation:

qult ¼ cvNc þ
1

2
B0cNc ð3Þ

where Nc and Nc are bearing capacity factors and c is the

unit weight of the soil.

The failure mechanism presented in Fig. 3 is almost

similar to the original two-wedge slip surfaces proposed by

Richards et al. [6]. Here, PU is the vertical load on the

foundation and b is the slope inclination. As shown in

Fig. 3, the vertical surface CE is assumed to behave like a

vertical retaining wall. At the failure stage, the weight of

the wedge ACE and active pressure resulting from qult are

applied from the left side on the wall. On the right-hand

side, the weight of the wedge CBE applies lateral passive

pressure on the virtual wall. To satisfy equilibrium, the

active and passive thrusts acting on the virtual wall must be

equal.

In the analytical solution, it is assumed that the failure

mechanism consists of an active and passive wedge with

their inclination angles considered as the variable of the

present analysis. To determine the coefficients of bearing

capacity, the failure-wedge geometry of the problem is

depicted in Fig. 4. In this figure, u is the friction angles of

the soil; aA is the slip surface angle in the active zone; aB is

slip surface angle in the passive zone; d is the friction angle

along the surface between the active and passive zones; kv
is the vertical seismic acceleration coefficient; kh is the

horizontal seismic acceleration coefficient; and h is the

depth of failure zone.

Pa is the active thrust that acts on the active zone and Pp

is the passive resistance exerted on the passive zone.

Using the limit equilibrium method and equating forces

on the active and passive zones, the bearing capacity factor

is obtained. In the active zone (Fig. 4a), by writing the

forces in horizontal and vertical directions, Pa is obtained

from Eqs. (4)-(9).
X

H ¼ 0

) RA sin aA � uð Þ � CAE cos aA � Pa cos d
þ Pu þWAð Þkh

¼ 0 ð4Þ
X

V ¼ 0

) RA cos aA � uð Þ þ CAE sin aA þ CCE

� Pu þWAð Þ 1� kvð Þ þ Pa sin d
¼ 0 ð5Þ

CAE ¼
ch 1þ K � 1ð Þ sin2 aA
� �

hþ 0:5kh2

sin aA
ð6Þ

CCE ¼ chhK þ 0:5h2 ¼ cvhþ 0:5kh2 ð7Þ

WA ¼ 1

2
B2
0c tan aA ð8Þ

Pa ¼ Pu þWAð Þ 1� kvð Þ sin aA � uð Þ þ kh cos aA � uð Þ
cos aA � u� dð Þ

� �

� ch 1þ K � 1ð Þ sin2 aA
� �

h
sin aA � uð Þ þ cot aA cos aA � uð Þ

cos aA � u� dð Þ

� �

� kh2
sin aA � uð Þ þ 0:5 cot aA cos aA � uð Þ

cos aA � u� dð Þ

� �
� Kchh

sin aA � uð Þ
cos aA � u� dð Þ

ð9Þ

where h ¼ B0 tan aA is the depth of the failure mechanism.

The same procedure is followed for the passive zone

(Fig. 4b) and Pp is obtained from Eqs. (10)-(15).

Fig. 3 Failure mechanism and

wedges assumed in the present

analysis
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X
H ¼ 0

) Pp cos d� RB sin aB þ uð Þ � CEB cos aB þWBkh
¼ 0

ð10Þ
X

V ¼ 0

) RB cos aB þ uð Þ �WB 1� kvð Þ � Pp sin d
� CEB sin aB � CCE

¼ 0 ð11Þ

CEB ¼
ch 1þ K � 1ð Þ sin2 aB
� �

h1 þ 0:5kh21
sin aB

ð12Þ

h1 ¼
B0 tan aA tan aB
tan aB þ tan b

ð13Þ

WB ¼ 1

2

cB2
0 tan

2 aA
tan aB þ tan b

ð14Þ

Pp ¼ WBð Þ 1� kvð Þ sin aBþuð Þ� kh cos aBþuð Þ
cos aBþuþ dð Þ

� �
þ 1

2
kh2

sin aBþuð Þ
cos aBþuþ dð Þ

þ ch 1þ K� 1ð Þsin2 aB
� � B0 tanaA tanaB

tanaBþ tanb

� �
sin aBþuð Þþ cotaB cos aBþuð Þ

cos aBþuþ dð Þ

� �

þ 1

2
k

B0 tanaA tanaB
tanaBþ tanb

� �2
sin aBþuð Þþ cotaB cos aBþuð Þ

cos aBþuþ dð Þ

� �

þKchh
sin aBþuð Þ

cos aBþuþ dð Þ

ð15Þ

Given the equilibrium of two wedges, the active

pressure and the passive resistance are equated.

Therefore, by equating the active pressure and passive

resistance, the ultimate bearing capacity (qult) can be

obtained as follows:

Pa ¼ Pp ð16Þ

qult ¼ cvNc þ
1

2
B0cNc ð17Þ

Nc ¼ v
f

a

� �
þ e

a
ð18Þ

Nc ¼
b

a
ð19Þ

where t ¼ kB0

ch

� �
is the nonhomogeneous coefficient.

Detailed equations for a, b, d, e, and f are given in the

‘‘Appendix’’ section.

From Eqs. (18) and (19), it can be stated that the bearing

capacity factors depend on c, u, cv, ch, kv, kh, B0, t, K, aA,
aB, k, and b. Here, all the parameters are constant except

aA and aB. Therefore, to find the optimum values of Nc and

Nc, the optimization process is performed in terms of aA
and aB.

The particle swarm optimization (PSO) algorithm and

MATLAB MathWorks were applied for the optimization.

The PSO, initially developed by Kennedy and Eberhart

[69], is a stochastic optimization technique that has been

inspired by the behavior of bird flocking, fish schooling and

swarming theory. In PSO, a group of specks flies in the job

lookup distance to detect their optimum berth. Typically,

this optimum berth is characterized by the optimum fitness

function. In the PSO, some candidate particles or the

potential solutions fly in the problem search space to ensure

that their positions are optimum. This optimum position is

usually characterized by the optimum of a fitness function.

Let V and X denote a particle’s velocity and position in a

search space, respectively. Then, the velocity of the ith

particle is delimited by Vi = (vi1; vi2; vi3;...; vid) and the ith

particle may be interpreted as Xi = (xi1; xi2; xi3;...; xid).

Also, d denotes the dimension of the problem. The best

previous particle of the ith particle is recorded and

expressed as Pi = (pi1; pi2; pi3;...; pid). Here, the index of

the best particle among the studied population is repre-

sented by Pg = (pg1, pg2, pg3...pgd). The position and

velocity of each particle can be estimated using Eqs. (20)

and (21):

Xid ¼ Xid þ Vid ð20Þ

Vid ¼ x� Vid þ c1 � rand� Pid � Xidð Þ þ c1 � rand

� Pgd � Xid

� �

ð21Þ

In these equations, c1 and c2 are position constants

known as acceleration coefficient, rand is a random number

within the range [0,1], and x is the inertia weight

Fig. 4 Free body diagrams of

the active and passive wedges
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coefficient, which is calculated using the following

equation:

x gnð Þ ¼ xmax �
xmax � xminð Þ

NI

� 	
� gn ð22Þ

where gn is the generation.

The PSO is an appropriate algorithm to solve the low-

dimensional problems like the topic of the present study.

The efficiency of this algorithm to calculate the bearing

capacity of the foundation was proved by Ghosh and

Debnath [3] and Debnath and Ghosh [70, 71].

Comparisons

The results of estimated bearing capacity in the presence of

kh and b were compared with those of Hansen [12], Vesic

[72], Zhu [10], Kumar and Rao [23], Kumar and Kumar

[19] and Yamamoto [39] for the shallow foundation rested

on anisotropic and nonhomogeneous soil. The comparison

of the results is presented in Figs. 5 and 6. As can be

inferred from Figs. 5 and 6, using different approaches for

estimating the bearing capacity of shallow foundation

rested near or on slopes gave a wide range of values for the

bearing capacity factors. In some cases, the difference

between the reported values is even more than 100%. This

difference, in addition to the different approaches of

determining the bearing capacity, is also related to using

different failure mechanisms.

(a) (b)

(c) (d)

Fig. 5 Comparison of Nc with kh and b for a u = 30�, b = 10; b u = 30�, b = 20; c u = 40�, b = 15; d u = 40�, b = 30
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Delta (d) is a very effective parameter in the present

analysis. Therefore, the results were assessed for three

cases, namely d = 0.5u, d = 0.75u, and d = u.
Figure 5 shows that the values of Nc provided by Kumar

and Rao [23], who applied the method of stress charac-

teristics, vary within the range of the present results from

the cases d = 0.5u and d = 0.75u. As reported by Kumar

and Kumar [19] and Kumar and Ghosh [35], who,

respectively, used the limit equilibrium method and the

upper bound theory, the values of Nc obtained by them

were close to those of Kumar and Rao [23]. Furthermore,

Hansen [12] solution overestimated that of Kumar and Rao

[23]. Overall, it can be concluded that when d = 0.5u, the
present solution is conservative. Moreover, when u = 40�
and d = u, the present solution overestimates those of

Hansen [12] and Kumar and Rao [23]. One explanation for

the difference between the results of the present study and

those of the previous works may be using different failure

mechanisms and methods. Figure 6 shows that when

u = 30�, the values of Nc obtained by the present solution

are close to those of Kumar and Rao [23] for the case

d = 0.5u; however, when d = 0.75u, the values of Nc of

the present study are in good agreement with those of Zhu

[10]. It should be noted that Zhu [10] employed the

equivalence of limit equilibrium method and limit analysis

to determine the bearing capacity factor, Nc. Furthermore,

Hansen [12] and Kumar and Rao [23] have minimum

values under static and seismic conditions, respectively.

When u = 40� and b = 10�, the values of Nc obtained by

Kumar and Rao [23] are within the range of the present

results from the cases d = 0.5u and d = 0.75u while the

results Zhu [10]and Yamamoto [39] are slightly higher

than the present result for d = 0.75u. It is of note that the

solutions reported by Yamamoto [39] are based on the

(a) (b)

(c) (d)

Fig. 6 Comparison of Nc with kh and b for a u = 30�, b = 10; b u = 30�, b = 20; c u = 40�, b = 15; d u = 40�, b = 30
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 Comparison of Nc with kh and b for a u = 10�, d = 0.5u; b u = 20�, d = 0.5u; c u = 30�, d = 0.5u; d u = 40�, d = 0.5u; e u = 10�,
d = 0.75u; and f u = 20�, d = 0.75u; g u = 30�, d = 0.75u; h u = 40�, d = 0.75u

1326 Indian Geotech J (December 2021) 51(6):1319–1337

123



upper bound method. By increasing the slope inclination to

20�, the results obtained by Hansen [12], Zhu [10], Kumar

and Rao [23], Kumar and Kumar [19], and Yamamoto [39]

are close to the present results for d = 0.5u. According to

Figs. 5 and 6 and considering that the obtained results

depend on the amount of d, it seems that acceptable values

of the Nc and Nc can be obtained between the results

reported for d = 0.5u and d = 0.75u.
As the merit of this study, the geometry of the failure

mechanism is defined by only few angular parameters and

the reason is employing the simple failure mechanism.

Moreover, since other techniques need several other

assumptions, the features of those solutions might be

changeable.

Results for Homogeneous and Isotropic Soil

The variation of the bearing capacity coefficient with kh for

different b and u is provided in Figs. 7 and 8, respectively.

As can be noticed, regardless of the values of b and u, Nc

and Nc decrease constantly with an increase in kh. The

decrease in Nc and Nc with kh tends with increasing the kh
values.

Results for Nonhomogeneous and Anisotropic Soil

The nonhomogeneous coefficient and anisotropy ratio only

affect the Nc. To observe the effect of nonhomogeneous

coefficient and anisotropy ratio on static bearing capacity

coefficient, the anisotropy and nonhomogeneity bearing

capacity factor, and the ratio of anisotropic and nonho-

mogeneity bearing capacity factor to isotropic and homo-

geneity bearing capacity factor is presented in Tables 1 and

2, respectively. This seismic bearing capacity factor for

anisotropic and nonhomogeneous soils is presented in

Figs. 9 and 16. Ranges of various parameters are as

follows:

u¼30and40 d¼0:5and0:75 b¼10;20;30;40and50

kh¼0:1;0:2and0:3 t¼0;0:5and2 K¼0:8and2 kv¼0

According to Table 1, Nc increases with increasing t and
decreasing K. Also, as expected, the bearing capacity

increases with increasing u and decreasing b. From

Table 2, it can be concluded that when soil is

homogeneous and anisotropic with the anisotropy ratio of

0.8, the Nc is 8.5% to 19% greater than that of the

homogeneous and isotropic soil. Meanwhile, Nc for the

homogeneous soil with an anisotropy ratio of 2 is 17.5% to

39% less than Nc of the homogeneous and isotropic soil.

Hence, this difference shows that the anisotropy of soil has

a considerable effect on the value of bearing capacity

factor. Similar to the static condition, increasing the

nonhomogeneous coefficient and decreasing the

anisotropy ratio led to an increase in the seismic bearing

capacity. Also, the seismic bearing capacity factor

decreased with an increase in the horizontal seismic

acceleration coefficient. On the other hand, when t = 0.5,

Nc is 6% to 36% more than that of the homogeneous soil,

and this difference increases to about 15% to 125% when

t = 2. This demonstrates that the nonhomogeneity has a

significant effect on Nc.

As can be seen from Figs. 9, 10, 11, 12, 13, 14, 15, and

16, when the anisotropy ratio is greater than 1 and it

couples with the seismic acceleration coefficient, the value

of Nc reduces drastically. Comparing all graphs in each of

Figs. 9, 10, 11, 12, 13, 14, 15, and 16 demonstrates the

effect of the nonhomogeneous coefficient and the aniso-

tropy ratio on Nc. For example, it can be concluded from

Fig. 9 that, when kh = 0 and b = 10�, Nc increases about

43% with an increase in the nonhomogeneous coefficient

from 0.5 to 2, and the increase rate of Nc decreases to 17%

with increasing kh to 0.3. It means that the seismic accel-

eration coefficient decreases the effect of the nonhomoge-

neous coefficient on Nc. Furthermore, it can be found from

Fig. 9 that for a constant value of the nonhomogeneous

coefficient, for example t = 0.5 and when kh = 0 and

b = 10�, Nc increases about 43% with decreasing the ani-

sotropy ratio from 2 to 0.8. Under these conditions, the

reduction tends to increase with an increase in the value of

kh such that it reaches 51% for kh = 0.3. Thus, overall, the

positive effect of the nonhomogeneous coefficient and

anisotropy ratio on Nc tends to decrease with an increase in

kh.

The effect of both kh and kv in the value of Nc is pre-

sented in Fig. 17. As we expected, the effect of both the

seismic acceleration coefficients leads to a more drastic

reduction in the value of Nc. The effect of kv is exactly the

same as the effect of kh, suggesting that kv reduces the

positive effect of the nonhomogeneous coefficient and

anisotropy ratio on the value of Nc.

Tables 3 and 4 indicate the effect of the nonhomoge-

neous coefficient and anisotropy ratio on aA, aB and

h. Here, it is assumed that u = 10� and 20�, B = 2 m, and

kh = 0. As can be seen from Tables 3 and 4, the active and

passive angles and the depth of the failure zone decrease

with increasing nonhomogeneous coefficient and aniso-

tropy ratio. The decrease in failure depth with increasing

the nonhomogeneous coefficient is in agreement with

physical principles since failure takes place in the weaker

upper part of the slope. To better understand the effect of

anisotropy ratio and the nonhomogeneous coefficient on

the location of failure surface, failure surfaces for two

conditions of nonhomogeneous and anisotropy are shown
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 Comparison of Nc with kh and b for a u = 10�, d = 0.5u; b u = 20�, d = 0.5u; c u = 30�, d = 0.5u; d u = 40�, d = 0.5u; e u = 10�,
d = 0.75u f u = 20�, d = 0.75u; g u = 30�, d = 0.75u; h u = 40�, d = 0.75u
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in Fig. 18 using the results of Tables 3 and 4. When

b = 10� and 30� and u = 10� and 20�, it is clear that the

active zone shrinks and the passive zone moves to the

bottom of the slope with increasing the anisotropy ratio.

Furthermore, when b = 10� and u = 10� and 20�, both of

the active and passive zones shrink with an increase in the

nonhomogeneous coefficient. A similar trend is observed

when b = 30� and u = 10�. In comparison, when b = 30�
and u = 30�, the effect of nonhomogeneous coefficient on

the pattern of active and passive zones is similar to that of

the anisotropy ratio. Further computation for determining

the location of the failure surface for other friction angles

of soil (i.e., u = 30� and 40�) shows that the location of

failure surface is similar to what presented in Fig. 18a–c, e.

Table 5 presents the effect of the seismic acceleration

coefficient on aA, aB and h. Here, it is assumed that

u = 20�, B = 2, K = 0.8, t = 0.5, and kv = 0. From

Table 5, it is clear that the depth of the failure zone

decreases with an increase in the seismic acceleration

coefficient and increases with an increase in the slope

inclination. Moreover, the active angle increases with

increasing kh, while the passive angle decreases with

increasing kh. Another result inferred from Table 5 is that

the active angle increases with an increase in the slope

inclination while the passive angle decreases with an

increase in the slope inclination.

Figure 19 represents the location of the failure surface

for different values of b and kh. As can be seen from this

figure, when the slope inclination increases, the path of

failure in the passive zone deviates more than the vertical

surface.

Conclusions

The effect of anisotropy and nonhomogeneity on the

bearing capacity of a shallow foundation rested on an

inclined ground was evaluated using a simplified Coulomb

failure mechanism and the limit equilibrium method. The

bearing capacity equation was presented as a function of

Table 1 Anisotropy and nonhomogeneity bearing capacity factor for static conditions

d t u K = 0.8 K = 2

b

10 20 30 40 50 10 20 30 40 50

0.5u 0 10 8.874 7.89 7.041 6.281 5.616 5.526 4.798 4.233 3.812 3.534

20 14.526 12.226 10.41 8.921 7.850 8.925 7.464 6.406 5.738 5.301

30 26.457 20.578 16.439 13.694 11.903 15.572 12.298 10.281 9.173 8.448

40 57.104 39.242 29.567 24.377 20.899 31.579 22.754 18.843 16.760 15.400

0.5 10 10.792 9.423 8.291 7.336 6.653 6.141 5.246 4.579 4.150 3.870

20 18.197 14.838 12.334 10.678 9.596 10.189 8.257 7.035 6.359 5.916

30 33.866 24.847 19.697 16.921 15.105 18.170 13.604 11.506 10.358 9.651

40 72.726 46.529 36.681 31.422 27.978 36.763 25.574 21.629 19.523 18.146

2 10 15.496 13.064 11.083 10.014 9.314 7.843 6.374 5.556 5.188 4.832

20 27.509 20.225 17.032 15.323 14.203 13.624 10.181 8.823 8.130 7.675

30 49.124 33.683 28.496 25.617 23.726 23.253 17.126 14.973 13.819 13.062

40 95.240 66.334 56.153 50.687 47.094 45.053 33.514 29.464 27.295 25.873

0.75u 0 10 9.205 8.12 7.197 6.381 5.685 5.685 4.88 4.283 3.847 3.561

20 16.018 13.174 11.006 9.313 8.184 9.557 7.841 6.645 5.924 5.452

30 32.591 23.983 18.458 15.213 13.099 18.247 13.756 11.314 10.011 9.159

40 89.150 54.814 39.913 32.395 27.488 45.687 30.336 25.55 22.54 20.54

0.5 10 11.136 9.645 8.428 7.422 6.713 6.640 5.578 4.826 4.383 3.896

20 19.820 15.758 12.861 11.069 9.898 11.612 9.016 7.646 6.914 6.072

30 40.584 27.952 21.827 18.562 16.427 22.505 15.813 13.338 12.016 10.418

40 103.998 64.544 48.438 42.526 37.419 50.070 35.710 29.998 28.148 23.030

2 10 15.892 13.262 11.195 10.098 9.3750 7.998 6.442 5.602 5.153 4.859

20 29.479 21.025 17.585 15.746 14.542 14.401 10.472 9.080 8.336 7.847

30 55.191 37.296 31.019 27.656 25.450 25.915 18.739 16.233 14.876 13.994

40 137.74 91.540 75.672 64.183 61.771 64.220 45.764 37.549 34.444 33.926
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Table 2 Ratio of the anisotropy and nonhomogeneity bearing capacity factor to isotropic and homogeneity bearing capacity factor for static

conditions

d t u K = 0.8 K = 2

b b

10 20 30 40 50 10 20 30 40 50

0.5u 0 10 1.128 1.135 1.138 1.140 1.130 0.703 0.690 0.684 0.692 0.711

20 1.137 1.139 1.139 1.131 1.116 0.699 0.696 0.701 0.727 0.754

30 1.152 1.149 1.141 1.122 1.105 0.678 0.687 0.714 0.752 0.784

40 1.171 1.162 1.137 1.116 1.092 0.648 0.674 0.725 0.767 0.805

0.5 10 1.372 1.355 1.341 1.331 1.339 0.781 0.754 0.740 0.753 0.779

20 1.425 1.383 1.349 1.353 1.364 0.798 0.770 0.769 0.806 0.841

30 1.475 1.387 1.367 1.386 1.402 0.791 0.760 0.799 0.849 0.896

40 1.492 1.378 1.411 1.438 1.462 0.754 0.757 0.832 0.894 0.948

2 10 1.970 1.879 1.792 1.817 1.875 0.997 0.917 0.898 0.941 0.973

20 2.154 1.885 1.863 1.942 2.019 1.067 0.949 0.965 1.030 1.091

30 2.140 1.881 1.978 2.099 2.203 1.013 0.956 1.039 1.132 1.213

40 1.953 1.964 2.160 2.320 2.461 0.924 0.992 1.133 1.249 1.352

0.75u 0 10 1.133 1.139 1.142 1.143 1.132 0.699 0.684 0.680 0.689 0.709

20 1.146 1.147 1.145 1.134 1.124 0.684 0.683 0.691 0.721 0.749

30 1.167 1.161 1.148 1.127 1.110 0.653 0.666 0.704 0.742 0.776

40 1.190 1.169 1.112 1.084 1.104 0.610 0.647 0.712 0.754 0.825

0.5 10 1.370 1.352 1.337 1.329 1.337 0.817 0.782 0.766 0.785 0.776

20 1.418 1.372 1.338 1.348 1.359 0.831 0.785 0.796 0.842 0.834

30 1.453 1.353 1.357 1.375 1.392 0.806 0.766 0.829 0.890 0.883

40 1.388 1.376 1.349 1.423 1.503 0.668 0.761 0.836 0.942 0.925

2 10 1.955 1.860 1.776 1.808 1.867 0.984 0.903 0.889 0.923 0.968

20 2.109 1.831 1.830 1.917 1.997 1.030 0.912 0.945 1.015 1.078

30 1.976 1.806 1.929 2.049 2.156 0.928 0.907 1.009 1.102 1.186

40 1.838 1.952 2.108 2.147 2.480 0.857 0.976 1.046 1.152 1.362

(a) (b) (c)

Fig. 9 Variation of Nc with kh and b for u = 10�, d = 0.5u and a t = 0; b t = 0.5; c t = 2
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slope inclination (b), friction angle (u), anisotropy ratio

(K), nonhomogeneous coefficient (t), slip surface angle in

the passive and active zone (aA and aB) and seismic

acceleration coefficients (kh and kv). According to the

equation provided to determine the bearing capacity of the

shallow foundation, the anisotropy and nonhomogeneity

only affect Nc. The main results of this study can be out-

lined as follows:

• A new approach for calculating the bearing capacity of

nonhomogeneous and anisotropic soils on slopes can be

provided using the limit equilibrium method combined

with the pseudo-static seismic loading approach, and

applying the simplified Coulomb failure mechanism.

• Delta (d) is a very effective parameter in the present

analysis. Given that previous researchers have pre-

sented a wide range of values for the bearing capacity

factors, the present solution for d = 0.5u and d = 0.75u
suggests an acceptable range for calculating bearing

capacity factors.

(a) (b) (c)

Fig. 10 Variation of Nc with kh and b for u = 20�, d = 0.5u and a t = 0; b t = 0.5; c t = 2

(a) (b) (c)

Fig. 11 Variation of Nc with kh and b for u = 30�, d = 0.5u and a t = 0; b t = 0.5; c t = 2

(a) (b) (c)

Fig. 12 Variation of Nc with kh and b for u = 40�, d = 0.5u and a t = 0; b t = 0.5; c t = 2
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• The bearing capacity factors Nc and Nc decrease with

increasing seismic acceleration coefficient (kh) and

slope inclination (b).
• Nc increases with decreasing anisotropy ratio (K) and

increasing the nonhomogeneous coefficient (t).

• The positive effect of the nonhomogeneous coefficient

and anisotropy ratio on the Nc decreases with an

increase in the values of kh and kv.

• The depth of the failure zone decreases with increasing

the nonhomogeneous coefficient, the anisotropy ratio,

and the seismic acceleration coefficient, while the depth

(a) (b) (c)

Fig. 13 Variation of Nc with kh and b for u = 10�, d = 0.75u and a t = 0; b t = 0.5; c t = 2

(a) (b) (c)

Fig. 14 Variation of Nc with kh and b for u = 20�, d = 0.75u and a t = 0; b t = 0.5; c t = 2

(a) (b) (c)

Fig. 15 Variation of Nc with kh and b for u = 30�, d = 0.75u and a t = 0; b t = 0.5; c t = 2
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(a) (b) (c)

Fig. 16 Variation of Nc with kh and b for u = 40�, d = 0.75u and a t = 0; b t = 0.5; c t = 2

(a) (b) (c)

Fig. 17 Variation of Nc with kh, kv and b for u = 20�, d = 0.5u and a t = 0; b t = 0.5; c t = 2

Table 3 Variation of the active and passive angles and the depth of the failure zone with a constant t for various values of K

u b t = 0.5

K = 0.8 K = 1 K = 2

aA (�) aB (�) h (m) aA (�) aB (�) h (m) aA (�) aB (�) h (m)

10 10 38.82 24.41 1.61 38.08 22.22 1.57 35.19 15.41 1.40

30 40.06 6.80 1.68 39.06 4.62 1.62 35.20 - 1.09 1.42

20 10 45.93 18.07 2.07 45.66 16.61 2.05 44.47 11.77 1.96

30 47.20 - 0.77 2.16 46.68 - 2.10 2.12 44.51 - 5.48 1.97

Table 4 Variation of the active and passive angles and the depth of the failure zone with a constant K for various values of t

u b K = 0.8

t = 0 t = 0.5 t = 2

aA (�) aB (�) h (m) aA (�) aB (�) h (m) aA (�) aB (�) h (m)

10 10 44.52 26.05 1.97 38.82 24.41 1.61 32.76 21.75 1.29

30 44.72 11.67 1.97 40.06 6.80 1.68 35.53 0.01 1.43

20 10 50.23 19.96 2.44 45.93 18.07 2.07 41.31 14.58 1.76

30 50.70 5.86 2.43 47.20 - 0.77 2.16 42.82 - 7.09 1.85
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Fig. 18 Schematic demonstration of the location of failure surface for

different values of anisotropy ratio for a u = 10� and 20� and b = 10�
and b u = 10� and 20� and b = 30�; and for different values of the

nonhomogeneous coefficient for c u = 10� and 20� and b = 10�;
d u = 10� and b = 30�; e u = 20� and b = 30�

Table 5 Variation of the active and passive angles and the depth of the failure zone for various values of kh

u b kh = 0.1 kh = 0.2 kh = 0.3

aA (�) aB (�) h (m) aA (�) aB (�) h (m) aA (�) aB (�) h (m)

20 10 40.63 18.36 1.72 34.80 18.64 1.39 28.51 18.91 1.09

20 41.52 9.93 1.77 36.04 10.53 1.46 30.25 11.07 1.17

30 42.33 0.51 1.82 37.17 1.54 1.52 31.83 2.40 1.24

40 43.04 - 10.09 1.87 38.16 - 8.48 1.57 33.26 - 7.26 1.31
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of the failure zone increases with an increase in the

slope inclination.
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Appendix: Analytical Functions of Eqs. (18 and 19)

a ¼ 1� kvð Þ sin aA � uð Þ þ kh cos aA � uð Þ
cos aA � u� dð Þ

� �
ð23Þ

b ¼ tan aA
tan aA

tan aB þ tan b

� �
1� kvð Þ sin aB þ uð Þ � kh cos aB þ uð Þ

cos aB þ uþ dð Þ

� ��

� 1� kvð Þ sin aA � uð Þ þ kh cos aA � uð Þ
cos aA � u� dð Þ

� �	

ð24Þ

e ¼ 1

K
1þ K � 1ð Þ sin2 aB
� � tan aA tan aB

tan aB þ tan b

� �
sin aB þ uð Þ þ cot aB cos aB þ uð Þ

cos aB þ uþ dð Þ

� �

þ tan aAð Þ sin aB þ uð Þ
cos aB þ uþ dð Þ þ tan aAð Þ sin aA � uð Þ

cos aA � u� dð Þ

þ 1

K
1þ K � 1ð Þ sin2 aA
� �

tan aAð Þ sin aA � uð Þ þ cot aA cos aA � uð Þ
cos aA � u� dð Þ

� �

ð25Þ

f ¼ 1

K

� �
tan aAð Þ2 sin aA � uð Þ þ 0:5 cot aA cos aA � uð Þ

cos aA � u� dð Þ

� ��

þ tan aA tan aB
tan aB þ tan b

� �2
0:5 sin aB þ uð Þ þ 0:5 cot aB cos aB þ uð Þ

cos aB þ uþ dð Þ

� �

þ tan aAð Þ2 0:5 sin aB þ uð Þ
cos aB þ uþ dð Þ

� �	
ð26Þ
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