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Abstract This paper presents the results of numerical and

probabilistic modeling of a deep excavation in Mexico City

soft soils, concerning the estimation of potential damages

in neighboring buildings. Constitutive model hardening

soil small strain was used to model soft soil behavior, and

selected parameters E0
ref and E50

ref were represented as ran-

dom variables and random fields. A combination of

response surface method and random variable and random

field-based tridimensional finite element modeling was

employed to assess the excavation performance in terms of

damage potential indexes. Results for the two representa-

tions of parameter spatial variability were obtained and

compared for the different stages in the construction

sequence. In the considered case, when uncertain parame-

ters are modeled using highly anisotropic random fields,

the assessed damage probability values differ considerably

to the ones of random variable-based modeling. The dis-

tributions of calculated damage probabilities are also dif-

ferent for the buildings located around the excavation when

changing the soil variability representation. On the other

hand, calculated ground movements from semiempirical

methods and actual measurements were integrated to

obtain damage potential indexes for the excavation stages.

The prior building damage probabilities and additional

estimations are combined in a Bayesian framework to

update the initial estimations. This approach allows also

updating soil constitutive parameter values, resulting in

equal prior and posterior mean values of parameters E0
ref

and E50
ref, but reducing its uncertainty.
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Introduction

The design and construction of deep excavations in soft

soils in urban areas are subjected to considerable difficul-

ties, given its unfavorable mechanical behavior, which may

generate structural damages during its execution [1].

Mexico City (CDMX) lacustrine zone imposes problematic

conditions to geotechnical projects due to the presence of

soft soils, materials of high compressibility and low shear

strength, subjected to high-level water tables and regional

subsidence related to water pumping in deep aquifers. The

properties of these materials have been studied intensively

since the second half of the twentieth century [2–4].

The lacustrine sediments in CDMX are complex mix-

tures of crystalline minerals and amorphous materials with

microfossils content, which have unique properties [5].

These particular properties include a quite large natural

water content, high plasticity, low undrained shear strength

and very high compressibility; besides, there are dissolved

minerals present in the pore water, and the regional con-

solidation process changes the soil compressibility with

time [6]. As CDMX soils are naturally variable, recent

efforts have been made to evaluate its spatial variability

using geostatistical methods [3, 7, 8]. Excavation tech-

niques in CDMX have evolved in the last decades [9], in

parallel with the construction of important projects as the
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Latino Americana Tower which required one of 12 m

depth [10] or the Mexico City Subway stations reaching

16 m in the downtown area [4, 11, 12]. Recently, top-down

excavation process has become more common, and the

excavation depths in CDMX have been increasing to

depths beyond 30 m and more than 10 basement levels

[13]. There are also recent regulations in which the design

of the excavations must fulfill, including the ultimate and

serviceability limit states requirements [14].

During the construction of deep urban excavations,

damage assessment on neighboring buildings is needed

[15, 16]. To appraise possible harms, the estimation of

ground movements around deep excavations can be done

through the use of numerical techniques as the finite ele-

ment method. Constitutive model hardening soil small

strain (HS-Small), an extension of hardening soil (HS)

[17, 18] can be suitable for representing soft soil behavior

for serviceability limit states analysis of deep excavations

[19, 20]. As there are uncertainties involved in the damage

assessment process, a combination of numerical and

probabilistic techniques is convenient. In the numerical

analyses, the constitutive soil parameters can be treated as

random variables or as random fields, and the system

response as a random variable to assess safety conditions in

terms of probabilities of failure (Pfi), damage or undesired

performance probabilities (Pdi) or reliability indexes (b)
[21–25].

This paper presents an application of numerical and

probabilistic analysis to an excavation project in CDMX,

which involves 3D random variable and random field-

based finite element analysis of a deep urban excavation in

soft soils. The response of the modeled excavation is

obtained in terms of building damage probabilities Pdij for

building i and construction stage j, based on the damage

potential index (DPI) [26, 27]. Available field and labora-

tory information from an actual project of deep excavation

in CDMX soft soils were used, as well as vertical dis-

placement measurements during construction [28]. Ground

movements were also determined using semiempirical

models KSJH [27] and KJHH [29], to calculate DPI values

during excavation stages. The combination of prior P’dij,

DPI values from KJHH and KSJH and actual measure-

ments in a Bayesian framework permit updating the initial

estimates.

Project Description

The excavation project is located in Paseo de la Reforma

thoroughfare, next to the Angel of Independence monu-

ment roundabout, an iconic place in Mexico City. Major

construction projects have been built recently in the same

zone [13]. According to base information [28], the piece of

land has an irregular shape and an area of 623.7 m2. It was

destined to the construction of a tower of 42 m height, 5

basement levels, ground floor and 12 levels.

The structure consists of steel and concrete columns,

steel beams, concrete walls and reticular concrete slabs on

the basement levels. Most of the project area was sur-

rounded by an existing 0.6-m-thick diaphragm wall, which

reaches 16.5 m depth, crowned by a concrete squared

header beam with 1.0-m base. On the surface, there was a

concrete slab with two holes for extracting excavated

material, supported by the header beam, steel beams and

steel columns supported by oblong concrete piles. Existing

0.6 9 2.7 m piles reaching 24 m below the street level

were complemented using additional concrete piles with

circular cross sections and varying lengths.

There was also an existing excavation until 2.5 m below

the concrete slab level. The excavation for the parking

basement reached a depth of 13.8 m including 0.8-m-thick

bottom slab, and the excavation in the trapezium destined

to the storm tank and cisterns attained 10.6 m depth. The

project is adjacent to Paseo de la Reforma thoroughfare and

Berna Street, and there were several buildings of different

heights around the project, like a ground floor and 13-story

building at the northwest side, 2- and 3-level houses at the

south, a 5- and 7-story buildings at the west.

Geotechnical Conditions

The ground surface at the study site is nearly horizontal,

and it is located on soft lacustrine soils belonging to

geotechnical Zone III [3, 14]. Soils of Zone III are

described as thick clay deposits, highly compressible,

separated by sandy layers of medium to high relative

density and variable thickness, with the presence of silts or

clays [14].

Base information was taken from the geotechnical

exploration carried out on soft lacustrine soils at the study

site, which includes field and laboratory tests [28]. At the

site one electric cone penetration test was performed to

31.7 m depth, standard penetration tests reached up 37.2 m

depth, one observation tube was installed at 7.0 m, and four

open piezometers at 11.5, 18.3, 22.4, and 27.5 m. A boring

with sampling was also performed, obtaining 6 samples in

soft soil strata using thin wall samplers. Laboratory con-

solidation and unconsolidated undrained triaxial test results

were also performed.

Geotechnical Profile Description

The soils of interest in this research to be modeled as

random variables and random fields are those of the upper

clayey series locally named Formación Arcillosa Superior
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(FAS) found between 5 and 22.2 m, and those of lower

clayey series locally named Formación Arcillosa Inferior

(FAI) found from 24.1 to 34.2 m depth.

• From 0.0 to 1.0 m, fill material composed by sandy silts

with masonry and concrete debris.

• From 1.0 to 5.0 m, a superficial crust made up by

natural materials including brown and gray silts and

sandy silts, with an average cone tip resistance of

1180 kPa. On a sample obtained at 5.3 m from surface,

classified as MH, it was found wn = 110%,

c = 13.5 kN/m3, c = 25 kPa, / = 24�,
E50 = 7200 kPa, e0 = 2.7 and rp = 230 kPa.

• From 5.0 to 22.2 m, the upper clayey series (FAS)

composed by clay layers separated by hard lenses

composed by black basaltic sand, solar drying made up

by dense sandy silts and silty sands and volcanic ashes.

The average cone tip resistance in the clays is 620 kPa

and in the hard lenses is between 2900 and 7800 kPa.

On samples obtained at 8.4, 14.7 and 20.8 m from

surface, classified as CH, it was found 284\wn-

\ 391%, 11.3\ c\ 11.8 kN/m3, 44\ c\82 kPa,

0\/\5�, 3300\E50\ 10,000 kPa, 6.7\ e0\ 7.8

and 90\ rp\ 300 kPa.

• From 22.2 to 24.1 m, a hard layer composed by sandy

silt with clays and occasionally gravels, with varying

cementation. Cone tip resistance for these materials is

between 2900 and 9800 kPa.

• From 24.1 to 34.2 m, the lower clayey series (FAI) with

the presence of hard lenses. Cone tip resistance in clays

is between 980 and 2200 kPa and between 2900 and

5200 kPa in the hard lenses. On a sample obtained at

26.0 m from surface, classified as CH, it was found

wn = 185%, c = 12.4 kN/m3, c = 55 kPa, / = 11�,
E50 = 9600 kPa, e0 = 6.4 and rp = 380 kPa.

• From 34.2 m, the deep deposits composed by sands and

alluvial silty gravels cemented with hard clays and

calcium carbonates. For these materials, the number of

blows in SPT tests is beyond 50.

Piezometric Conditions

The observation tube and four open piezometers mentioned

earlier allowed the determination of pore water pressures in

the permeable lenses and obtaining effective stresses across

all the geotechnical profile. The phreatic level is at 2.5 m

depth, while at 11.5 m the pore pressure is 65 kPa, at

18.3 m is 82 kPa, at 22.4 m is 80 kPa and at 27.5 m is

88 kPa. These pressures were introduced as boundary

conditions in the finite element models.

Soil Constitutive Model and Parameters

Constitutive model HS-Small [18], an extension of HS [17]

to model soil behavior at small strains, is assumed as

suitable to simulate soft soil behavior for the analysis of

deep excavations [19, 20]. These are two constitutive

models of isotropic hardening and two flow surfaces: one

deviatoric surface with a nonassociated flow and one vol-

umetric surface with an associated flow, where the Mohr–

Coulomb failure criterion defines the ultimate limit state.

These models allow the representation of aspects of the

nonlinear behavior of the soil, including stiffness depend-

ing on the stress state, the effects of the history of stresses

with the evolution of the preconsolidation pressure and

different stiffness in loading and unloading [20].

In this research, the initial tangent modulus (E0
ref) and

the secant stiffness at 50% of the ultimate deviator stress at

the reference minor principal stress (E50
ref) were selected to

be represented as random variables and random fields. The

parameters in common for HS and HS-Small constitutive

models are the elastic constants E50
ref, Eur

ref, tur, reference
stress rref, stiffness exponent m, parameters for the shear

mechanism c0, /0, w, Rf, emax, ft, D, for the volumetric cap

mechanism Eoed
ref , roed

ref , for stress history OCR, K0
SR and

parameters M, H for defining the shape of the yield surface

and the rate of the plastic volumetric strain and the pre-

consolidation pressure. HS-Small model has two additional

parameters: E0
ref and c0.7.

Statistical Analyses

Parameter Decomposition

The spatial variability analysis supporting random field

simulation relies on the stationarity assumption, at least of

second order [30]. Aiming to fulfill the stationarity

assumption, a usual procedure is to transform the data

using techniques such as classical decomposition [31]. In

classical decomposition, the spatial variability of any soil

property n(z) is divided into two parts: a known deter-

ministic trend t(z) and a zero mean, nonzero variance set of

residuals expressing the soil parameter variation with

respect to this trend, w(z).

Descriptive and Inferential Analyses

Descriptive and inferential statistical analyses were per-

formed on the residuals wE50
ref and wE0

ref, whose results are

summarized in Table 1. In this table, n is the number of

data points considered, x̄ the mean value, s the standard

deviation, Cs the skewness, Ck the kurtosis, pdf the fitted
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probability density functions and Par1, Par2, Location,

Scale their parameters. Pearson’s type I-Beta pdfs were

fitted using the first four sample statistical moments �x, s2,
Cs, Ck [22, 30]. Kolmogorov–Smirnov goodness of fit tests

were used to check results, using a level of significance

a = 0.05. The selection of probability distributions and

their parameters were made through the method of

moments estimators and maximum likelihood estimation.

Spatial Statistical Analysis

Besides descriptive and inferential analyses on residuals of

selected parameters, it is important to characterize their

correlation structure for subsequent random field modeling.

The scale of fluctuation (h) is a measure of the variability

in a random field, defined as the distance within which soil

properties are significantly correlated, and it is an indicator

of the spatial extension of the correlation structure [32]. In

sedimentary soils, different scales of fluctuation are

expected in vertical (hv) and horizontal (hh) directions

caused by the deposition process. Some authors present h
values for geotechnical parameters [33, 34] and hh esti-

mation using CPT data [35].

Fitting theoretical autocorrelation (Rz(d)) or variogram
(2c(d)) models to their particular sampling functions allow

estimating h [30, 32]. When fitting theoretical Rz(d) or

2c(d) models, h is expressed as a function of the autocor-

relation length of the former or the range of the latter

[33, 36, 37]. Theoretical variogram models were fitted to

empirically calculated sampling variograms for wE0
ref,

wE50
ref and wE0

ref�wE50
ref to find hv values, using SGeMS v2.5b

software [41]. There are several variogram theoretical

models available as spherical (SPH), exponential (EXP) or

Gaussian (GAU) [22, 30, 31, 38–40]. EXP variogram was

fitted to sampling variogram and cross-variogram func-

tions, as shown in Fig. 1. As wE0
ref and wE50

ref datasets were

not univariate normal, they had to be transformed to nor-

mal scores [39, 40]. Table 2 summarizes the results of

statistical spatial analyses for standardized residuals, where

C0 is the variogram nugget representing small-scale vari-

ability, C0 ? C is the maximum value of variogram

function known as the sill, and hv is the scale of fluctuation
of the considered parameter in the vertical direction.

Random Field Simulation

A random function or random field (Z) is obtained by

assigning a random variable to each space point. A

regionalized variable (z) is a variable distributed in space

that has a correlation structure which can not be known

exhaustively, but only through a limited set of data as in

this case wE0
ref and wE50

ref. Thus, Z would be a realization of

z, although there could be many others with similar spatial

distribution. Through geostatistical simulations, multiple

artificial realizations Zs can be obtained, reflecting the

statistical properties of Z. Among all the possible simula-

tions or artificial realizations, they are preferable all those

in which the simulated values coincide with the experi-

mental ones, called conditional simulations [21, 41].

Geostatistical methods for random field simulation

include the sequential Gaussian simulation (SGSIM), the

sequential Gaussian co-simulation (COSGSIM) and the

direct sequential simulation (DSSIM) [39–41]. In this

research, COSGSIM was chosen, previously converting

data into Gaussian standard. Software SGeMS v2.5b [39]

was used to generate random fields. In this case, given the

geology of the study site and previous studies results [7, 8],

it was assumed ar = 1000. Figure 2 presents examples of

simulated random fields for wE0
ref and wE50

ref.

Numerical Modeling

This section presents the general features of random field

(RNDF) and random variable (RV)-based numerical

models considered for assessing ground movements and

potential damages in adjacent buildings to the considered

deep excavation in CDMX soft soils.

Main Features of the Numerical Models

3D finite element models, as the ones presented in Figs. 3

and 4, were elaborated using ZSoil� v2016 software. The

excavation is surrounded by buildings of different heights

and shapes as listed in Table 3, and they were modeled as

plates with distributed loads of 10 kPa per level. The

project includes a building of 42 m height, 5 basement

levels, ground floor and 12 levels. The excavation has an

Table 1 Descriptive and inferential analyses results for wE50
ref and

wE0
ref

wE50
ref (kPa) wE0

ref (kPa)

n 286 286

�x 3.797E-8 - 2.022E-7

s 1031.151 6068.847

Cs 0.6788 0.5436

Ck 3.2985 2.7102

p value 0.259 0.066

pdf I-Beta I-Beta

Par1 3.0412 1.8231

Par2 11.2974 4.0162

Location - 2091.6278 - 10,674.453

Scale 9861.654 34,189.963
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irregular shape, whose dimensions are around 22.5 9 35 m

and an area of 623.7 m2.

Most of the excavation is destined to parking, but the

zone adjacent to Paseo de la Reforma is for the boiler

room, storm tanks and cisterns. The maximum excavation

depth is 13.8 m in the parking basement zone and 10.6 m

in the tank zone. Steel beams support the excavation in the

parking basement, as well as 0.8-m-thick concrete bottom

slab, existing concrete 0.30-m-thick existing slab and

concrete beams on surface, concrete 0.15-m mezzanine

slabs and the existing 0.6-m-thick and 16.5-m perimeter

concrete diaphragm wall, crowned by a concrete squared

header beam with 1.0-m base. In the boiler room, storm

tank and cisterns, a soldier pile wall supported by steel

beams and braces was used. Existing 0.6 9 2.7 m piles of

24 m depth were complemented using additional concrete

piles with diameters between 0.6 and 1.20 m and different

lengths: 17.5 m, 19.5 m, 21.0 and 22.0 m. Piles were

modeled as beam elements embedded in the continuum. As

they are embedded in the soil, soil pile interfaces were also

created and a tip interface was included. Besides, pile head

links were established in the contacts with the bottom plate.

The model extends to a 107.5 m 9 122.5 m 9 40 m

block defined following recommendations found in the

literature [42, 43]. Standard solid boundary conditions were

defined on soil boundary box. Seepage elements were

created in the contour faces of the model and on the faces

representing the bottom of the excavation at each stage.

These last ones were activated and deactivated depending

on the construction sequence defined through existence

functions in the modeling software. Fluid heads were cre-

ated to represent phreatic level and pore water pressures in

the permeable lenses. The initial stresses on bounding box

were also defined. The faces of the excavation were defined

as LE, LW, BN, BS, and a series of sections were estab-

lished to extract the nodal displacements. Twenty pieces of

land were defined to assess potential damages in buildings

located around the excavation. Figure 3 and Table 3 pre-

sent the nomenclature for the excavation faces and sections

for analysis, as well as neighboring building numbering.

Models elaborated have a total of 79,872 hexahedral B8

elements and 88,414 nodes, with 63,210 finite elements in

the soft soil layers whose selected parameter values were

simulated as random.

The numerical simulations focus on the construction

phase of the project and do not consider long-term effects.

As the construction is thought as occurring in a relatively

short time, and the soils have low permeability, and

undrained conditions were assumed with analysis in terms

of effective stresses rather than performing coupled

deformation analyses that would suppose a much higher

computational cost. The modeling of changes in the

groundwater level is done considering the changes in the

drainage boundaries in each stage of construction as wall

installation, excavation of a given soil volume or bottom

plate installation and solving a permanent flow problem. In

the next step, the pressure fields found for each stage are

assigned as inputs to the mechanical problem using the

effective stress principle. The stages in considered con-

struction sequence are listed in Table 4.

Table 5 summarizes constitutive parameter values used

in numerical modeling. A geotechnical model composed of

thirty-six layers was defined in which layer L1 corresponds

to a fill layer, CS the superficial crust and CD the deep

deposits whose properties were considered as determinis-

tic. Layers L4 to L23 and L26 to L35 are the soft soil layers

modeled from random fields for the selected parameters.

Other assumed soil parameter values are ft = 0 kPa,

Fig. 1 Sampling and fitted

theoretical variogram functions

for standardized wE0
ref, wE50

ref

Table 2 Summary of hv obtained values from variogram functions

for wE0
ref and wE50

ref transformed as Gaussian standard variables

Variable C0 C0 ? C hv (m)

wE0
ref 0 1 1.05

wE50
ref 0 1 1.16

wE0
ref�wE50

ref 0 0.93 1.07
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Fig. 2 Simulated random fields for wE0
ref and wE50

ref

Fig. 3 Sections for DPI determination and building areas for Pdij assessment

676 Indian Geotech J (October 2020) 50(5):671–688

123



w = 12�, c0.7 = 0.00025 for the fill layer, ft = 0 kPa,

w = 13.85�, c0.7 = 0.0001 for CS, ft = 0 kPa, w = 10�,
c0.7 = 0.0001 for CD, ft = 0 kPa, w = 0�, c0.7 = 0.0055 for

the remaining ones. Besides, tur = 0.20, m = 0.8, rref-
= 100 kPa, Rf = 0.9, D = 0.25.

DPI

As the response variable, the damage potential index (DPI)

was chosen [26, 27]. DPI is based on the maximum prin-

cipal tensile strain (eP) originated by excavation in adjacent

buildings which combines angular distortion (b), lateral
deformation (eL) and the direction of crack formation

measured from vertical plane amax [44].

Main Features of the Random Field-Based

Numerical Models

The simulated random fields were discretized, added to

initially removed trend values and mapped to the finite

element mesh. A total of 13,746 materials were created to

include soil properties for the numerical models, including

the combinations of parameters from random fields. The

aspect of a random field-based finite element model is

presented in Fig. 4. The dimensions for each finite con-

tinuum element are 1 9 2.5 9 2.5 m.

Semiempirical Models KJHH and KSJH

KHJJ is a semiempirical model useful to predict the max-

imum wall deflection, maximum surface settlement and

surface settlement profile related to braced excavations in

clay [29]. It was developed based on FEM analysis results,

considering nonlinear stress–strain behavior of clays at

small strain levels. The model consists of three submodels:

Model A given for predicting maximum wall deflection

(dhm), Model B for predicting the deformation ratio (R) and

maximum vertical surface settlement (dvm), respectively,

Fig. 4 Random field-based deep excavation in soft soils 3D FEM model

Table 3 Number of levels in buildings and sections for DPI

calculation

Building Number of

levels

Excavation

face

Sections for DPI

calculation

1 14 LE, BN 2, A, B, C, D, 3, E, F, 4, 5,

6

2 4 BS 4, 5, 6

3 2 BS 2, 3, 4

4 3 BS e, 1

5 5 LW 3, E, F, G, H, I, J, 4, 5

6 3 LW J, 4, 5

7 7 LW C, D, 3, E, F, G

8 9 LE 0, 1, 2, A, B, C, D, 3, E, F

9 4 LE 0, 1, 2, A

10 14 LE 0, 1, 2, A

11 2 LE A, B, C, D, 3

12 2 LE G, H, I

13 5 LE I, J, 4

14 7 LE 4, 5

15 3 LE G, H, I, J, 4, 5, 6

16 4 BS g, h, i, j, k, l, m

17 4 BS 5, 6, f

18 1 BS 2, 3, 4

19 2 BS d, e, 1, 2, 3, 4

20 3 BS a, b, c, d
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Table 4 Construction sequence considered in numerical analyses

Stage Construction activities Stage Construction activities

1 New piles, columns, soldier wall 8 Fourth-level beams and slab (- 8.0 m)

2 Remaining first-level beams (0.0 m) 9 Excavation 4 (- 8.0 m to - 10.6 m)

3 Excavation 1 (- 2.5 to - 2.8 m) 10 Fifth-level beams and slab (- 10.6 m)

4 Second-level beams and slab (- 2.8 m) 11 Excavation 5 (- 10.6 to - 13.8 m)

5 Excavation 2 (- 2.8 to - 5.4 m) 12 Bottom slab

6 Third-level beams and slab (- 5.4 m) 13 Head beam demolition

7 Excavation 3 (- 5.4 to - 8.0 m) 14 Building construction

Table 5 Soil constitutive parameters employed in numerical analyses

Layer roed
ref (kPa) k0 emax M H c (kN/m3) c0 (kPa) /0 (�) E50

ref (kPa) Eur
ref (kPa) Eoed

ref (kPa) E0
ref (kPa) OCR

Fill 242.59 0.412 2.06 1.29 8610.49 14.00 10.00 36.00 20,000 80,000 14,000 97,637 4.00

CS 296.98 0.337 1.97 1.43 14,016.69 14.10 1.65 41.55 22,841 68,522 22841 93,129 2.58

CS 296.98 0.337 1.95 1.43 14,016.69 14.10 1.65 41.55 22,841 68,522 22,841 93,129 2.58

L4 288.25 0.347 6.49 1.36 950.39 11.04 1.97 40.77 2453 7360 1717 21,018 2.40

L5 285.31 0.350 6.43 1.35 949.93 11.09 2.11 40.50 2426 7279 1698 21,233 2.34

L6 281.23 0.356 7.39 1.34 949.58 11.16 2.31 40.12 2388 7166 1672 21,546 2.26

L7 276.92 0.361 5.73 1.33 949.08 11.24 2.55 39.71 2348 7044 1644 21,892 2.17

L8 273.29 0.366 4.28 1.32 947.73 11.30 2.78 39.35 2313 6939 1619 22,199 2.10

L9 270.14 0.370 4.52 1.31 947.32 11.36 3.01 39.04 2282 6847 1598 22,475 2.04

L10 267.91 0.373 5.95 1.31 946.15 11.41 3.18 38.81 2260 6781 1582 22,678 1.99

L11 266.62 0.375 5.15 1.30 945.74 11.43 3.29 38.68 2247 6743 1573 22,798 1.97

L12 264.93 0.377 4.35 1.30 945.04 11.46 3.44 38.50 2231 6692 1561 22,958 1.93

L13 262.73 0.381 4.74 1.29 944.77 11.51 3.65 38.27 2208 6626 1546 23172 1.89

L14 260.92 0.383 6.36 1.29 944.06 11.55 3.83 38.08 2190 6571 1533 23,352 1.85

L15 259.99 0.385 4.85 1.29 943.48 11.57 3.93 37.98 2181 6542 1526 23,447 1.84

L16 258.92 0.386 5.06 1.28 943.54 11.59 4.04 37.86 2170 6509 1519 23,558 1.81

L17 257.24 0.389 4.76 1.28 943.22 11.63 4.24 37.68 2152 6457 1507 23,733 1.78

L18 255.70 0.391 4.40 1.27 941.99 11.66 4.43 37.51 2136 6409 1495 23,899 1.75

L19 254.27 0.393 5.64 1.27 941.86 11.70 4.61 37.35 2121 6364 1485 24,056 1.72

L20 252.93 0.395 6.88 1.27 941.33 11.73 4.80 37.20 2107 6321 1475 24,205 1.70

L21 251.68 0.397 5.08 1.26 941.01 11.76 4.97 37.06 2094 6282 1466 24,347 1.67

L22 250.50 0.399 3.28 1.26 940.43 11.78 5.15 36.93 2081 6244 1457 24,483 1.65

L23 249.40 0.401 5.36 1.26 940.30 11.81 5.33 36.80 2069 6209 1449 24,613 1.63

CD 272.67 0.367 1.65 1.42 9222.76 16.00 8.90 39.29 12,899 38,698 12,899 97,637 2.41

CD 272.67 0.367 1.65 1.42 9222.76 16.00 8.90 39.29 12,899 38,698 12,899 97,637 2.41

L26 246.52 0.406 5.36 1.25 938.99 11.88 5.82 36.47 2038 6115 1427 24,962 1.57

L27 245.53 0.407 5.34 1.24 938.15 11.91 6.00 36.35 2028 6083 1419 25,084 1.55

L28 244.68 0.409 5.32 1.24 938.30 11.93 6.16 36.25 2018 6055 1413 25,192 1.54

L29 243.86 0.410 5.29 1.24 938.26 11.95 6.33 36.15 2009 6028 1407 25,296 1.52

L30 243.08 0.411 5.20 1.24 937.99 11.97 6.49 36.06 2001 6002 1401 25,397 1.51

L31 242.33 0.413 5.19 1.23 937.46 11.99 6.64 35.97 1993 5978 1395 25,494 1.49

L32 241.62 0.414 5.18 1.23 936.85 12.01 6.80 35.88 1985 5954 1389 25,589 1.48

L33 240.93 0.415 5.17 1.23 936.95 12.03 6.96 35.80 1977 5931 1384 25,681 1.47

L34 240.93 0.415 5.17 1.23 936.95 12.03 6.96 35.80 1977 5931 1384 25,681 1.47

L35 240.93 0.415 5.17 1.23 936.95 12.03 6.96 35.80 1977 5931 1384 25,681 1.47

CD 272.66 0.367 1.65 1.42 9212.19 16.00 8.90 39.29 12,889 38,698 12,889 97,637 2.41
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and Model C for predicting the surface settlement profile.

On the other hand, KSJH is another semiempirical model,

similar and complementary to KJHH model, useful to

estimate lateral ground movement [27].

Methods for Probabilistic Analyses

Prior Probabilistic Analysis

Regarding prior probabilistic analyses, some authors

explain different methodologies for carrying out reliability

analysis in geotechnical applications [22–25, 45, 46]. RSM

[47, 48] and PEM [21, 22, 24, 32, 49] were selected for

prior probabilistic analyses.

Response Surface Method (RSM)

Assuming the response of a variable of interest Y as

dependent on a set of variables X1, …, Xk, a functional

relationship Y = f(X1, …, Xk) ? e may be unknown. She
form of function f is unknown, and the term e represents

other sources of variability not contemplated and is treated

as a statistical error [48]. If le = 0, the expected response is

E(Y) = f(X1,…, Xk) : g, the response surface. The func-

tion can be approximated by a polynomial of first or second

order without cross-terms as in Eq. 1, as commonly used in

RSM applications [47]. Least squares method, equating

values of performance function and values of the polyno-

mial equation evaluated at selected points, allows finding

the coefficients bi of polynomial equations. Once calcu-

lated bi values, the subsequent analysis uses the fitted

response surface.

y ¼ f x1; x2; . . .; xkð Þ ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i ð1Þ

Y is evaluated around a center point defined by input

variables mean values {xc1, xc2, …, xck}, and other

2 k points around it: {xc1 ± mprx1, xc2 …, xck}, {xc1, xc2-
± mprx2, …, xck},…,{xc1, xc2, …, xck ± mprxk}, where
mp is a parameter determining the relative distance of

points for sampling. In this research, mp = 1 was assumed

to make results comparable with those of PEM and to avoid

finding negative values for the constitutive parameters.

Fitted response surface can be used to estimate statistical

moments of distribution using MCS [50] or finding b using

FORM [51, 52].

Point Estimation Method (PEM)

This method serves to estimate the moments of the per-

formance function by evaluating it in a series of discrete

selected points [21, 49]. PEM seeks to replace a continuum

pdf with a discrete function having the same first three

central moments. It does not require knowing the distri-

bution function of the individual variables or the joint pdf.

PEM application starts from a function of random variables

Y = f(X1, X2, …, Xn) and known values of their means lxi
and standard deviations rxi at 2n points of interest. An

initial point is located at mean values of all variables y0-
= f(lx1, lx2,…, lxn), and the others are defined such that

the value of each variable is a standard deviation above or

under its mean as yi
?=f(lx1, lx2,…, lxi ? rxi,…, lxn) and

yi
-=f(lx1, lx2,…, lxi-rxi,…, lxn). A variant of this method

considers 2n ? 1 points and obtaining Y mean and vari-

ance as expressed in Eqs. 2 and 3 [24, 53].

�Y ¼ y0
Yn

i¼1

1=2ðyþi þ y�i Þ=y0Þ
� �

ð2Þ

VY ¼
Yn

i¼1

1þ yþi � y�i =y
þ
i þ y�i

� �2� �" #
� 1

( )1=2

ð3Þ

Damage Probability Assessment

A limit state function must be defined to assess the prob-

ability of undesired performance. For serviceability limit

states related to possible cracking in adjacent buildings to

the excavation, the limit state function is expressed as a

margin of safety in Eq. 4, where R, DPIR represent the

capacity or resistance of the system and Q, DPIL the loads

or solicitations imposed. For reliability analysis, DPIR-
= 23.8c1 based on a tensile limit strain ep = 1.19 9 10-3

is assumed, where c1 is a bias factor [54]. DPIL values were

found from nodal displacements in numerical analyses for

each section shown in Fig. 3.

M ¼ R� Q ¼ DPIR � DPIL ð4Þ

If M[ 0 the excavation performance is satisfactory for the

serviceability limit state defined, and if M B 0 there is a

condition of undesired behavior, in this case implying

cracking in adjacent buildings. Damage probability in each

building and construction stage Pdij is obtained integrating

the joint probability density function f ðxÞ over the

misperformance region. When applying RSM, 105 Monte

Carlo simulations were carried out using polynomial

equations to find the first two statistical moments of M

and Eqs. 2 and 3 when using PEM. The first two statistical

moments of the limit state functions were used to solve

Eq. 5 for appraising damage probabilities in each building

and construction stage considered, for models based on

random variables and random fields.
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Pdi ¼ P M Xð Þ� 0½ � ¼
Z

M Xð Þ� 0

f xð Þdx1; dx2; . . .; dxn ð5Þ

Bayesian Updating

Analytical and numerical initial predictions achieved are

not perfect, given limitations in knowledge in each step of

the prediction process. Some errors occur when trans-

forming field and laboratory data into soil parameters, and

others appear because of simplifications made when mod-

eling real problems, for example, in boundary conditions

and constitutive laws for materials behavior. In geotech-

nical engineering, in the framework of the observational

method, Bayesian updating is a helpful tool to enhance

predictions combining information from different sources

[55–59]. Bayes’ rule in Eq. 6 defines the updating of a

prior probability P0(xj) to a posterior probability P00(xj|zi)
when new data zi from another source are available.

P00 xjjzi
� �

¼ P zijxj
� �

P0 xj
� �� �

=½
X

zijxj
� �

P0 xj
� �

� ð6Þ

The numerator in Eq. 6 contains the likelihood P(zi|xj) and

prior probability P0(xj), both related to a specific value of xj.
The denominator refers to the evidence related to all xj
possible values, and in the case of continuous variables, the

sum becomes an integral. Often posterior probability is

expressed for random variables as in Eq. 7, where k is a

normalizing constant to ensure posterior probability

integrating to 1. In this research, numerically assessed

DPILij(x) pdf updating for building i and excavation stage j

is performed using DPILij(KJHH, KSJH) values obtained from

ground movements assessed using semiempirical models

KSJH [27] and KJHH [29]. Equation 8 expresses the

likelihood function assuming a multiplicative error eij with
a Gaussian distribution.

f
00

X xð Þ ¼ kL xð Þf 0X xð Þ ð7Þ

Lij xð Þ ¼ f eij DPILij KJHH;KSJHð Þ=DPILij xð Þ
� �

¼ N DPILij KJHH;KSJHð Þ=DPILij xð Þ
� �

ð8Þ

The difficulties in Bayesian updating arise when trying to

solve the integral to find k, as analytical solutions are

available only for the so-called conjugate priors [57]. The

use of Markov chain Monte Carlo (MCMC) methods is

common because they allow direct sampling from the

posterior distribution without the need for solving integrals

and computing k. As the application of such methods is

computationally demanding, in this research, OpenBUGS

v3.2.3 was the tool selected to perform Bayesian updating

analyses.

Prior Probabilistic Analyses Results

This section presents the assessed damage probabilities Pdij
for each building i and construction stage j. Different

aspects are considered for results comparison: a validation

of results taking into account the probability distribution of

random parameters X1,…, Xk in RSM, Gaussian or Pear-

son’s type I-Beta, the method employed for Pdij assess-

ment, RSM or PEM, and soil parameter representation,

random fields (RNDF) or random variables (RV).

Fig. 5 Qualitative distribution of assessed Pdij values in RNDF-

based models when using RSM and Gaussian random variables

Fig. 6 Qualitative distribution of assessed Pdij values in RV-based

models when using RSM and Gaussian random variables
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Qualitative Damage Distribution

Figures 5 and 6 portray a qualitative distribution of

assessed Pdij values when using RNDF and RV-based

models and RSM with Gaussian random variables,

respectively. The distribution in both cases is similar, but

higher Pdij values were found for RNDF-based models.

Soil Parameter Representation, RNDF or RV

Figure 7 summarizes the assessed Pdij values obtained for

RNDF and RV-based models using RSM and Gaussian

random variables. The graphs have similar trends in both

cases, but assessed damage probabilities are much higher

for RNDF-based models. Pdij values can be compared with

target values from the literature to appraise the excavation

performance [60]. Considering all buildings and construc-

tions stages simulated, a total of 280 cases were analyzed;

83.9% are above average (0.001\Pdij\ 0.006) or better,

16.1% are below average (0.006\Pdij\ 0.023) or worse

when using RNDF, and 95.4% are above average or better,

4.6% are below average or worse when using RV.

When considering each building separately for RNDF-

based models, B6, B8, B11, B12, B15, B16, B17, B18,

Fig. 7 Assessed Pdij values

using RSM and Gaussian

random variables
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B19, B20 have a good performance (0.001\Pdij-
\ 0.00003) in at least 92.9% of the cases, and B5, B7, at

least in 50%. In B9, 100% and in B10, B13 at least 78.6%

of the cases are above average (0.001\Pdij\ 0.006). In

B14, 85.7% of the cases are below average (0.006\Pdij-
\ 0.023), and in B3, 50% are below average, 7.1% have

poor performance (0.023\Pdi\ 0.07), and 7.1% pre-

sented a hazardous performance (Pdij[ 0.16). In B4,

28.6% are below average, and 7.1% have a hazardous

performance. In B2, 7.1% of the cases are below average,

7.1% have a poor performance, 21.4% are unsatisfactory,

and 7.1% are hazardous. Finally, the most unfavorable

condition occurs in B1, where 14.3% are below average,

and 35.7% have a hazardous performance.

Figure 8 presents a comparison of assessed Pdij values

using RSM, comparing results for RNDF and RV-based

models. In general, data points separate from the 1:1 line,

and when considering results for all buildings, the differ-

ences in assessed Pdij values are around 60%. When con-

sidering separately the results for each building, the

differences in assessed Pdij are under 10% for B7, B8, B11,

B15, B16, B17, B19, B20. The differences are between 10

and 50% for B2, B3, B4, B13, B18, and over 50% for B1,

B5, B6, B9, B10, B11, B12, B14, B18. Given the results

presented in this section, it is clear that in the case of the

random field with assumed anisotropy ratio, the obtained

results are not equivalent to those from random variable-

based models. The performed predictions for RV-based

models are in most of the cases under the ones obtained

using RNDF-based models.

Random Variable Distribution in RSM, Gaussian or Beta

Figure 9 presents a comparison of assessed Pdij values for

the random field and random variable-based models using

RSM when considering Gaussian and Pearson’s type I-Beta

probability distributions for random parameters X1, …, Xk.

The Pdij results obtained in both cases are similar; when

considering results for all buildings, the differences in Pdij
are on average around 25% for RNDF and 6% for RV-

based models. When considering separately the results for

each building, the differences in assessed Pdij are under

10% for all RV models and B8, B11, B15, B16, B17 in

RNDF models. They are between 10 and 20% for B7, B12,

B18, B19, B20, between 20 and 50% for B1, B2, B3, B4,

B5, B6 and between 50 and 70% for B9, B10, B13, B14 in

RNDF models. Results for RNDF models indicate slightly

higher Pdij values when using Beta distributions and

equivalent results for RV models.

Probabilistic Method, RSM or PEM

Figure 10 presents a comparison of assessed Pdij for the

random field and random variable-based models using

Gaussian distribution for random parameters when con-

sidering RSM and PEM methods. The Pdij values found by

these two methods are also similar, as in the previous case;

when considering results for all buildings, the differences

in Pdij are on average around 14% for RNDF and 2% for

RV-based models. When considering separately the results

for each building, the differences in assessed Pdij are under

10% for most of the RV models and B8, B11, B15, B16,

B17, B18, B19 in RNDF models. They are between 10 and

20% for B2, B3 in RV models and for B1, B6, B12 in

RNDF models. They are between 20 and 50% for B2, B3,

B5, B7, B9, B10, B13, B14, B20 and over 50% for B4 in

RNDF models. Results for RNDF models deliver slightly

higher Pdij values when using RSM and equivalent results

for RV models.

Bayesian Updating of Initial Performance
Predictions

For damage probability assessment, the limit state function

is expressed as a margin of safety in Eq. 4. The Bayesian

updating is given in terms of DPIL, using calculated values

for RNDF-based models and the RSM method. The

numerically assessed mean values of DPILij(x) were

updated for each building i and excavation stage j using

values from measured vertical displacements and

semiempirical models KSJH and KJHH,

DPILij(Meas, KJHH, KSJH). Measured vertical displacements in

monitoring points P1 to P4 of Fig. 3, presented in Fig. 11,

Fig. 8 Comparison of assessed Pdij values using RSM in RNDF and

RV-based models
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were employed to correct the ones obtained through KJHH.

The distributions of both lateral and vertical ground dis-

placements as a function of maximum values were assessed

through an existing approach [43]. The estimated and

corrected ground movements were used to compute the

DPILij(Meas, KJHH, KSJH) values presented in Fig. 11.

Bayesian updating was performed through MCMC

employing OpenBUGS v3.2.3 software, which uses the

Metropolis–Hastings algorithm and its special case Gibbs

sampling [61, 62]. In the sample from the posterior dis-

tribution in MCMC, the values in the chain must be rep-

resentative of the posterior distribution, and the chain

should have the sufficient size to allow obtaining accurate

and stable estimates [62]. Three chains were generated by

starting a Metropolis–Hastings algorithm at different initial

values, and a total of 20,000 simulations were generated for

each chain, discarding the initial 2000 as burn-in samples

to obtain the convergence of the chains and

stable estimates.

The prior model is based on the polynomial equations

from RSM for each building and construction stage. The

polynomial equation is a function of E0
ref and E50

ref, assumed

as Gaussian with standard deviations given in Table 1 and

mean value for each layer given in Table 5. The coeffi-

cients bi of the polynomial equations are the same used in

the previous sections for the selected model series. Fig-

ure 12 presents a comparison of DPILij(KJHH-KSJH) and

mean values of DPILij(x) assessed from nodal displace-

ments obtained in numerical and probabilistic analyses.

The first method, which includes actual measurements of

vertical displacements to correct the ones assessed using

KJHH, tends to give higher DPILij values. Before updating,

Fig. 9 Comparison of assessed

Pdij values for RNDF and RV-

based models, using RSM and

considering Gaussian and Beta

probability distributions

Fig. 10 Comparison of

assessed Pdij values for RNDF

and RV-based models, using

RSM and PEM
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58% of DPI predicted values from semiempirical models

KJHH-KSJH including actual measurements were higher

than those from nodal values in numerical analysis, 11% in

construction stage 3, 4% in CS5, 12% in CS7, 14% in CS9

and 17% in CS11. As seen in Fig. 12, after updating, there

is a good match among the estimated DPILij values by the

two approaches. These updated DPILij mean values and

obtained standard deviations were used to calculate pos-

terior damage probabilities.

Figure 13 displays the estimated prior and posterior

damage probabilities in neighboring buildings, in the sec-

ond case only for the excavation stages in the constructive

process. As most of DPILij(KJHH-KSJH) values were higher

than DPILij(x) ones, when updating damage probability

estimates, the posterior P
00
dij will tend to increase compared

to prior P
0

dij. Considering only the excavation stages, the

expected levels of performance are above average or better

in 76% of analyzed cases after updating, while before

updating they were 86%.

When considering updated damage probabilities for

each building separately, B5, B9, B10, B11, B13, B14,

B15, B16, B17, B19, B20, have a good performance

(0.001\Pdij\ 0.00003) in at least 80% of the cases; for

B6, 60% of the analyzed cases are above average

(0.001\Pdij\ 0.006). In B12, 40% of analyzed cases are

above average or better, but 60% are below average

(0.006\Pdij\ 0.023). In B8, 60% of analyzed cases are

above average or better, but 40% have poor performance

(0.023\Pdi\ 0.07). In B18, 60% of analyzed cases have

a good performance, but 20% are below average, and 20%

are unsatisfactory. B4 and B7 behave above average or

better in 60% of analyzed cases, but 40% have poor per-

formance or worse. The buildings with most unfavorable

performances are B1, B2, B3, where at least 60% of the

Fig. 11 Vertical displacement measurements and assessed DPI values

Fig. 12 DPILij values based on

field measurements and KJHH-
KSJH models versus mean

DPILij values based on RSM
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cases evidence a poor performance or worse, and 40% are

hazardous (Pdij[ 0.16).

As mentioned previously, estimated damage probabili-

ties after Bayesian updating are higher than the assessed

initially, because of the underestimation of ground move-

ments in numerical and probabilistic analyses, giving rise

to lower DPIL values. However, the obtained P
00
dij values

were in some cases lower than assessed P
0

dij values, par-

ticularly at construction stage 7. lP
00
dij were 2.94 times lP

0
dij

for construction stage 3 and 0.77 times lP
0
dij for con-

struction stage 5, but reach much higher values as 39.1

times for construction stage 7, 138 times for construction

stage 9 and 85 times for construction stage 11. As a result,

the qualitative distribution of assessed damage probability

values also changes after updating as shown in Fig. 14.

Bayesian updating also causes a reduction in the

uncertainty of random parameters E0
ref and E50

ref, as shown in

Fig. 15. While the mean values of E0
ref and E50

ref remained

unchanged after updating, posterior standard deviation

values were around 16% and 12% of prior values,

respectively. In this case, lDPIL values tend to reduce

around a 25%, and the narrowing of E0
ref and E50

ref

Fig. 13 Estimated prior P
0

dij

and posterior P
00
dij damage

probabilities in adjoining

buildings to the considered

synthetic excavation in CDMX

soft soils
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distributions also caused a reduction in rDPIL because after
updating, rDPIL was 0.21 times its initial value. When

recalculating prior damage probabilities using the new

lDPIL and rDPIL values, they were 0.51 to 0.59 times the

ones presented and discussed in the previous section.

Conclusions

In this case, when comparing random field and random

variable-based model results, despite having similar trends

across the construction process, the assessed Pdij values are

different for the two representations of soil parameter

variability. The assessed damage probabilities are higher

for random field-based models, and when considering

results for all buildings, the average differences in Pdij
values are around 60%. The qualitative distributions of

assessed damage probabilities, established to visualize

potential damages, also show different potential damage

distributions in the buildings located around the excavation

when changing the soil variability representation.

The Pdij obtained results are similar when using Gaus-

sian and Pearson’s type I-Beta distributions for random

parameters E0
ref and E50

ref in RSM polynomial equations. In

results for all buildings, the differences in Pdij are on

average around 25% for random field-based models and

6% for random variable-based models. On the other hand,

when comparing RSM and PEM results using Gaussian

distribution of random parameters, the Pdij values are also

similar. Regarding results for all buildings, the differences

in Pdij are on average around 14% for random field-based

models and around 2% for random variable-based models.

Bayesian updating was used in this paper to combine

information from semiempirical methods and actual mea-

surements with numerical and probabilistic analyses in

order to enhance initially obtained performance predic-

tions. The updating was performed on DPIL values calcu-

lated from polynomial equations obtained through RSM.

Once analyzed the numerical models, the application of

RSM is more laborious compared to PEM because it

implies finding the coefficients bi of polynomial equations.

However, using RSM is more advantageous because the

polynomial equations defined for each building and con-

struction stage can be used for the prediction performance

updating.

In this case, numerical and probabilistic analyses

underestimate the modeled system performance, delivering

lower DPIL values than the ones obtained when combining

semiempirical methods and actual measurements. As a

result when updating damage probability estimates, the

posterior P
00
dij tends to increase considerably compared to

prior P
0

dij, and the qualitative distribution of assessed

damage probability values changes. Besides, the Bayesian

updating also causes a reduction in the uncertainty of

random parameters E0
ref and E50

ref, causing a reduction in

calculated lDPIL and rDPIL when using the polynomial

equations from RSM.
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