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Abstract The liquefaction susceptibility of sandy soil is

generally characterised by some parameters in the static

liquefaction potential evaluation. These parameters are

usually measured by static laboratory tests on distributed

and undistributed samples under different test conditions.

This study performs the ANN and genetic programming to

estimate the static liquefaction susceptibility of clean sand

soils based on experimental results to predict and develop

an equation for the ratio of qmin/qpeak which is considered

as the static liquefaction criterion. The qmin/qpeak model is a

function of the minimum and maximum void ratios, rela-

tive density, initial effective confining pressure, and some

other parameters. The findings of this study demonstrated

that a good agreement between ANN and symbolic

regression in predicting the ratio of qmin/qpeak based on

laboratory tests. The possible application of the proposed

qmin/qpeak equation is restricted by some limitations. The

outcomes of the present work can be used in the prelimi-

nary liquefaction assessment of clean sandy soils prior to

the complementary experimental studies.

Keywords Static liquefaction � ANN �
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Abbreviations

AI Artificial intelligent

ANN Artificial neural network

B Skempton’s coefficient

Cu Uniformity coefficient

CPT Cone Penetration Test

Dr Relative density

D50 Mean grains size

emax Maximum void ratio

emin Minimum void ratio

e Void ratio

GP Genetic programming

MGGP Multi-Gene Genetic Programming

I Number of input variables

qmin Minimum deviatoric stress

qpeak Initial peak deviatoric stress

RMSE Root mean square error

R2 Coefficient of determination

SPT Standard Penetration Test

a The ratio of initial shear stresses to the initial

effective confining pressure

r03c Initial effective confining pressure

r1 Axial stress

r3c Confining pressure

Introduction

When saturated cohesionless soils were subjected to the

undrained static or cyclic loading, the pore water pressure

developed abruptly, and the effective stress reduced dra-

matically leading to a loss in shear strength or liquefaction

[1–5]. The static liquefaction has been considered one of

the biggest disastrous failure mechanisms in saturated

sandy soils because when it occurs, the resistance of the

soil reduces, and the ability of a soil layer to sustain many

of geotechnical applications such as foundations of build-

ings and bridges, earth dams, slopes, and embankments is
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reduced [3, 6]. The phenomenon of complete static lique-

faction can be described by

r03c ¼ 0 and r1� r3c ¼ 0 ð1Þ

In which r03c is the initial effective confining pressure, and

(r1 - r3c) is the principle stress difference. The static

liquefaction has been examined in many of previous

experimental studies and most of these work reported that

the static liquefaction is profoundly dependent on numer-

ous factors such as void ratio (e), effective confining

pressure (r03c), relative density (Dr), consolidation type

which defined by ratio of initial shear stress to the initial

effective confining pressure (a), the degree of saturation

(Skempton’s coefficient B), fine content and the sample

preparation methods [4, 7–9]. For practical purposes, the

liquefaction susceptibility of sandy soils is generally

evaluated in two ways: (1) utilizing monotonic undrained

tests on undisturbed and remoulded specimens and adapt-

ing the collected results to equivalent parameters such as

state parameter, undrained brittleness index, liquefaction

potential, pore pressure ratio, and the ratio of minimum of

deviatoric stress to the initial peak deviatoric stress

[3, 4, 6, 10, 11], and (2) using the empirical relations based

on the correlation between the field tests and laboratory

tests [12]. The liquefaction susceptibility has been inves-

tigated in many studies based on different parameters

[3, 13, 14]. The liquefaction susceptibility of soils may also

be evaluated by assessing the ratio of minimum deviatoric

stress to the peak deviatoric stress (qmin/qpeak) [4]. The

complete static liquefaction is associated with an qmin/qpeak
ratio of zero and the stable behaviour with complete dila-

tion is associated with an qmin/qpeak ratio of 1 [4]. The qmin/

qpeak ratio can be used to compute the liquefaction potential

which is defined by (qpeak - qmin)/qpeak = 1 - qmin/qpeak
[15, 16]. Rahman and Lo [17] pointed out the ratio of qmin/

qpeak can be correlated to the state parameter to normalize

the amount of strain softening in samples.

There are many limitations for using the results of

experimental tests on disturbed specimens directly in the

field situations. One of these constraints is these tests do

not take into account the all actual properties of natural

soils; for example fabric, cementation, strain history, and

overconsolidation [18]. Next, the experimental tests are

often costly and time-consuming. In the same way, ana-

lytical methods such as finite element method which is

used to analyse many geotechnical engineering problems

are hindered because these techniques require a large

number of parameters in order to obtain an accurate con-

stitutive model for complex problems such as liquefaction

[19]. Therefore, artificial intelligence (AI) approaches have

been used to reduce these difficulties and to provide an

easy technique for evaluating the complex issues in

geotechnical engineering [20, 21]. Artificial neural network

(ANN) is one of artificial intelligence approaches which

has been used widely to solve varieties of complicated

issues in civil engineering. ANNs are becoming more

dependable than analytical techniques such as traditional

empirical and statistical methods due to two reasons. The

first one is ANNs can learn from input data given to it. The

second reason is the ability of ANNs to recognise the

precise practical relationships between input data even

though the fundamental relationships are unrecognised.

Research on the development of ANN models based on

laboratory elements tests is still very limited. Young-Su

and Byung-Tak [22] used data that have been collected

from different published works including simple cyclic

shear and undrained cyclic triaxial tests in estimating the

liquefaction resistance ratio of sand by using the ANN

model. Banimahd et al. [23] developed ANN models to

predict the undrained stress–strain behaviour and excess

pore water pressure of sandy soils containing nonplastic

fines. Their results showed that the undrained behaviour of

sandy soil was dominated by four major input variables,

including fine content, fine shape, relative density, and

effective confining pressure. However, many ANN models

have been used in various research to estimate the seismic

liquefaction susceptibility of soils based on standard pen-

etration test (SPT), cone penetration test (CPT), and seis-

mic records after some main earthquakes took place in

different countries Goh [24, 25], Ural and Saka [26], Hanna

et al. [21], Tung et al. [27], Baziar and Nilipour [28]. For

example, Goh [24] stated that Neural Networks could be

considered as feasible tools for soil liquefaction evaluation

and it is simpler to apply when compared with other

methods. Mughieda et al. [29] adopted the ANN to esti-

mate the liquefaction susceptibility of soils by relying on a

database of CPT. Contradictory to previous studies,

Mughieda et al. [29] argued that the preprocessing, nor-

malising or calibrating the data before evaluating the liq-

uefaction potential is not necessary. Farrokhzad et al. [30]

developed ANN models to predict seismic liquefaction

potential of soils based on a dataset from field tests of 30

boreholes. Additionally, ANN has been adopted to assess

many problems in the area of geotechnical engineering

such as prediction of scours at bridge piers, unsaturated

shear strength of soil, safety of a typical artificial slope

subjected to earthquake forces, horizontal ground dis-

placement generated by earthquakes, the maximum dry

density and permeability of various types of soils, and

residual friction angle of clay soils [31–36].

Symbolic regression via genetic programming (GP) is

another artificial intelligence approach that has been

employed in many previous studies to develop new pre-

dictive relationships for numerous geotechnical engineer-

ing issues. GP is a process of developing computer

programs to solve a problem. It depends on the
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evolutionary algorithms to provide a good approximate

solution to problems by unexpectedly creating populations

of computer applications presented by a tree structure. GP

technique is distinguished from other AI techniques and

statistical method by the possibility of predicting compact

and explicit prediction model equations in terms of various

model parameters [37]. Although the GP technique has

been successfully used to predict some of the complex soil

mechanics parameters, application of this technique in the

evaluation of liquefaction potential is very limited [37–40].

Muduli and Das [37] used the multi-gene genetic pro-

gramming (MGGP) to calculate the liquefaction potential

of soil by relying on datasets from standard penetration

tests (SPT). The results showed that the liquefaction

potential model which was developed by MGGP was more

accurate than models developed by using the support

vector machine (SVM) and ANN when the same database

was used. Muduli & Das [38] developed two different

multi-gene genetic programming MGGP models to predict

the liquefaction potential of soils regarding liquefaction

index based on CPT database. Das and Muduli [40]

investigated the liquefaction susceptibility of soil by using

genetic programming based on CPT data collected after the

1999 Chi–Chi earthquake which took place in Taiwan.

Javadi et al. [41] developed a new approach to evaluate

liquefaction-induced lateral displacement of soil by using

GP and based on SPT data. Jafarian et al. [42] have

implemented GP to develop a predictive equation for

strong ground motions induced by the earthquake. Jafarian

et al. [18] used data of cyclic triaxial tests to develop the

predicted equation of cyclic resistance ratio using GP.

Gandomi and Alavi [39] have employed GP to analyse

different geotechnical problems including soil liquefaction

under earthquakes. Johari et al. [43] developed a predictive

equation for soil–water characteristics curve using GP.

Rezania and Javadi [44] used the GP to predict the settle-

ment of shallow foundations.

As shown above, most studies in ANN and GP focused

on developing models for prediction of seismic liquefac-

tion potential based on in situ tests and seismic records.

However, the studies on the prediction of static liquefaction

susceptibility of clean sandy soil are rare. Moreover, using

data-sets that include experimental parameters may provide

another way to understand the static loading response of

soils in an essential manner. Therefore, in present work,

two types of artificial intelligence (AI) approaches are used

to evaluate the static liquefaction susceptibility of sandy

soils based on results of various undrained monotonic tri-

axial tests on the clean sand that were collected carefully

from the previously published work with different initial

characteristics. The first approach is ANN, which is used to

predict the ratio of (qmin/qpeak) based on various combi-

nations of input data. The second method is symbolic

regression via genetic programming using the HeuristicLab

software to correlate the ratio of (qmin/qpeak) to the initial

soil parameters based on one of ANN models that led to the

best estimation. For geotechnical engineering application,

the outcomes of the present study can be used in initial

investigations of the ratio of (qmin/qpeak) for clean sandy

soils before final liquefaction evaluation.

Database of Undrained Monotonic Triaxial Tests

An input data involving the findings of both anisotropically

and isotropically consolidated static triaxial tests on clean

sand soils were collected by investigating previously pre-

sented research. Results of experimental studies conducted

by Murthy et al. [45], Yamamuro and Lade [4], Jafarian

et al. [3], Della et al. [46], Della et al. [47], Rahman [17],

Verdugo & Ishihara [48], Belhouari et al. [49], and Yang

and Wei [50] have been used in the database. Table 1

summarises the key characteristics of these laboratory tests.

According to Table 1, most samples were prepared by

using moist tamping method while few samples were

prepared by using other sample preparation methods. The

moist tamping method is widely employed in previous

studies because various relative densities can be obtained

using this method. Although the above tests were per-

formed under different parameters, two significant param-

eters such as relative density and initial effective confining

pressure were extensively varied in these tests. The static

liquefaction database involves the results of 135 undrained

static triaxial tests and correlating ratio of (qmin/qpeak) with

different initial characteristics of clean sandy soils. The

coefficient of uniformity (Cu), mean diameter (D50), max-

imum void ratio (emax), minimum void ratio (emin), void

ratio (e), relative density (Dr), initial confining pressure

(r03c), ratio of initial shear stress to the initial effective

confining pressure (a), and the Skempton’s coefficient B

were selected in this study because they have been con-

sidered as the primary factors which might affect the static

behaviour of sandy soil in previous research. The criterion

for complete static liquefaction in this database, and

accordingly in this study, is the ratio of (qmin/qpeak) of zero.

However, the unity, and range between 0 and 1 of the ratio

of (qmin/qpeak) associated with dilative behaviour and lim-

ited liquefaction respectively. Table 2 presents the statis-

tical distribution of input parameters.

Artificial Neural Network (ANN) Models

Artificial neural network (ANN) is one of machine learning

approaches constructed to imitate the human central ner-

vous system especially the brain to model many complex
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engineering issues. Further, ANNs have the ability to learn

from data given to them, generalising the predicted inter-

relationships for a future solution, and self-updating

[51, 52]. Detailed information on ANN is reported in

[53, 54]. In present work, nine parameters were utilised as

input data of ANN models. Only one variable was used as

output data. The process of training in a neural network

includes adjusting the weights of parameters inside hidden

layers until reaching the lowest difference between pre-

dicted output and actual output. In this study, the ANN

models were generated using MATLAB’s Neural Network

Toolbox. The ANN model was based on Levenberg–Mar-

quardt back-propagation algorithm, two layers feed-for-

ward backprop, and seven hidden neurones. The number of

hidden neurones has been chosen after many trails until

reaching the minimum Root Mean Square Error (RMSE).

All datasets were normalised using MATLAB’s normali-

sation function which is a requirement of ANN modelling.

The dataset in this study was split into three groups namely

training, testing, and validation. The percentage of each

group was 70, 15, and 15% for training, testing, and vali-

dation respectively. The training data is implemented to

modify the connection weights. The testing dataset is

adopted to avoid the overfitting, and the validation set is

used to investigate the estimation ability of the model. The

model can be considered an optimal model if it combines

three conditions: (1) perfect performance in testing set, (2)

a minimum number of hidden neurones, and (3) good

performance in the training, testing, and validation sets.

The performance of the ANN model was investigated by

Root Mean Square Error (RMSE), and coefficient of

determination (R2) as shown below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

yi � xið Þ2
s

ð2Þ

R2 ¼
Pn

i¼1 xi � �xð Þ yi � �yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 xi � �xð Þ2

Pn
i¼1 yi � �yð Þ2

q

2

6

4

3

7

5

2

ð3Þ

Table 1 Properties of sands that are used in the database

Sand type Sample preparation method Cu D50 Dr % r3c (Mpa) References

Ottawa and Slurry deposition, moist tamping, and water pluviation 1.43 0.39 18–65 0.148–0.653 Murthy et al. [1]

Nevada and Ottawa Funnel deposition and moist tamping 1.83 0.18 0–20 0.025–0.5 Yamamuro and Lade [4]

2.317 0.205

Babolsar Moist tamping 1.8 0.24 8.5–68 0.04–0.41 Jafarian et al. [3]

Chlef Wet deposition and funnel deposition 3.2 0.45 50 0.05–0.2 Della et al. [35]

Chlef Wet deposition and funnel deposition 3.2 0.45 29, 80 0.05–0.2 Della et al. [2]

Sydney Modified moist tamping 1.2 0.3 0–41 0.1–0.85 Rahman [3]

Toyoura Wet tamping 1.7 0.17 18.5, 37 0.1–3 Verdugo and Ishihara [4]

Mostaganem Dry funnel 1.704 0.32 15, 45 0.1–0.3 Belhouari et al. [5]

Toyoura Moist tamping 1.392 0.216 0–34 0.1–0.5 Yang and Wei [39]

Fujian 1.532 0.397

Table 2 The statistical distribution of each parameter in the database

Parameters Cu D50 emax emin e Dr % r3c (Mpa) B a

Mean 1.85 0.31 0.88 0.55 0.78 30.72 0.34 0.94 0.03

Standard Error 0.05 0.01 0.01 0.00 0.01 1.75 0.03 0.01 0.01

Median 1.70 0.30 0.86 0.55 0.78 29.00 0.21 0.95 0.00

Mode 1.80 0.24 0.81 0.56 0.77 50.00 0.10 0.95 0.00

Standard deviation 0.63 0.10 0.09 0.05 0.10 20.32 0.38 0.07 0.09

Sample variance 0.40 0.01 0.01 0.00 0.01 412.91 0.15 0.00 0.01

Kurtosis 0.53 - 1.53 - 1.61 0.14 - 0.97 - 0.24 21.06 50.11 10.96

Skewness 1.37 0.14 0.30 0.60 - 0.02 0.56 3.83 - 6.34 3.46

Range 2.00 0.28 0.24 0.21 0.39 80.00 2.98 0.68 0.40

Minimum 1.20 0.17 0.78 0.48 0.58 0.00 0.03 0.32 0.00

Maximum 3.20 0.45 1.02 0.69 0.97 80.00 3.00 1.00 0.40
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where xi are the input data, yi is model estimation, n is

number of data points, �x and �y is the mean value of

observed data model estimation respectively. The best

performance of ANN models is reached through some steps

of trial and error until the coefficient of determination R2

around 90% is achieved. After completing the training and

testing of the model, a sample data-set is used to test the

accuracy of the model. Nine parameters are used to the

ANN models as inputs. These include Cu, D50, emax, emin, e,

Dr, r03c, a, and B. These input variables are chosen

according to the previous experimental studies that pointed

out the static behaviour of sandy soil is profoundly

dependent on many factors such as physical properties,

relative density, initial effective confining pressure, degree

(a)

(b)

(c)  

0

0.3

0.6

0.9

1.2

0 0.3 0.6 0.9 1.2

Pr
ed

ic
at

ed
 q

m
in

/ q
pe

ak
Measured qmin / qpeak

ANN

R2 = 0.865

0

0.3

0.6

0.9

1.2

0 0.3 0.6 0.9 1.2

Pr
ed

ic
at

ed
 q

m
in

/ q
pe

ak

Measured qmin / qpeak

ANN

R2 = 0.791

0

0.3

0.6

0.9

1.2

0 0.3 0.6 0.9 1.2

Pr
ed

ic
at

ed
 q

m
in

/ q
pe

ak

Measured qmin / qpeak

ANN

R2 = 0.83

Line of equality

Line of equality

Line of equality

Fig. 1 Measured versus

predicted qmin/qpeak for the

ANN models: a model 1;

b model 2 and c model 3

123

Indian Geotech J (February 2019) 49(1):58–69 62



of saturation, and consolidation type. It is pertinent to

mention here that the effect of sample preparation method

was not considered in input data-set because the majority

of samples used in the present work were deposited by the

moist tamping technique as listed in Table 1. The ratio of

qmin/qpeak serves to identify which of the input data is more

superior in estimating the liquefaction susceptibility of

sandy soil. The number of input variables is varied, and the

five ANN models are investigated. Figures 1 and 2 com-

pare the measured ratio of qmin/qpeak and ANN predicts the

overall data-sets, whereas Table 3 presents the coefficient

of determination (R2) and Root Mean Square Error

(RMSE) for overall data, training, testing, and validation of

each model. Furthermore, it shows identity in statistical

significance values for testing and validation in all models.

It can be seen from Figs. 1, 2 and Table 3 that for model 1,

when all inputs variables were used, it showed a good

prediction with highest R2 values 0.865, 0.846, and 0.864

for overall data, testing and training respectively. Lowest

R2 for overall data (0.733) and training set (0.722) were
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obtained in model 4 when the variables a and B are

eliminated while the lowest R2 for testing set was obtained

in model 5. In present study the efficiency of five models

was evaluated in terms of testing data-sets as reported in

Muduli and Das [38] and Das and Basudhar [36]. They

stated that the performance of testing data-set should be

used in evaluating the efficiency of different developed

ANN models. Thus, it is found that the performance of

model 1 with R2 for testing set 0.864 was highest when

compared to other models which indicates that good

agreement between the measured and predicted the ratio of

qmin/qpeak. However, model 5 showed the lowest R2 for

testing set 0.707 but with some difficulty in predicting the

ratio of qmin/qpeak. The results in Fig. 1c and Table 3 also

show a slight reduction in R2 of testing and overall data-

sets for model 3 when the Skempton’s coefficient B

eliminated comparing with model 1. This behaviour could

be related to the almost tests were completely saturated,

and the B values were more than 0.95. The significant

reduction in R2 (0.707) of testing data-set for model 5

indicates the high effect of emax, emin, and a on liquefaction

susceptibility of sandy soils. The results of models 1–4

indicate the significant effect of Cu, D50, emax, emin, Dr, r03c
on undrained static behaviour of sandy soils. A similar

conclusion has been observed and reported by Young-Su

and Byung-Tak [22] when they reported that using data

that include Cu, D50, emax, emin, Dr, and r03c increased the

ability of ANN model to capture the liquefaction resistance

ratio of sandy soils. Banimahd et al. [23] also reported that

the relative density, effective confining pressure, fines

content, and fines shape has a profound effect on the ability

of ANN models to predict the undrained static stress–strain

behaviour and excess pore water pressure of sandy soils.

Figure 2c compares the five ANN models implemented in

present work, and as can be seen the results of five models

are quiet close which exhibited a higher prediction per-

formance for ANN models.

Genetic Programming Method

In present work, the HeuristicLab software was used to

develop a functional relationship for the ratio of qmin/qpeak
of clean sandy soils based on symbolic regression via

genetic programming (GP). Symbolic regression can be

defined as one of data mining approaches which is used to

extract hidden, meaningful relationships using input data

and weights. Symbolic regression depends on a tree-based

genetic programming (GP) system to develop mathemati-

cal equations. The structure and operation of genetic pro-

gramming (GP) have been described by numerous authors

Koza [55], Johari et al. [43], [37, 38], and Rezania and

Javadi [44]. HeuristicLab has been employed in some

engineering problems. However, the utilisation of this

Table 3 The performance and details of the ANN models

Model no. Input parameters No. hidden layer Datasets Performance

R2 RMSE

1 (Cu), (D50), (emax), (emin), (e), (Dr), (r03c), (a),B 2 Overall data 0.865 0.0993

Training 0.846 0.1000

Testing 0.864 0.0905

Validation 0.883 0.0993

2 (Cu), (D50), (emax), (emin), (e), (Dr), (r03c), B 2 Overall data 0.791 0.1247

Training 0.789 0.1539

Testing 0.828 0.1000

Validation 0.828 0.1225

3 (Cu), (D50), (emax), (emin), (e), (Dr), (r03c), (a) 2 Overall data 0.830 0.1062

Training 0.809 0.1283

Testing 0.860 0.1534

Validation 0.931 0.1062

4 (Cu), (D50), (emax), (emin), (e), (Dr), (r03c) 2 Overall data 0.733 0.1430

Training 0.722 0.1524

Testing 0.748 0.2097

Validation 0.783 0.1414

5 (Cu), (D50), (e), (Dr), (r03c) 2 Overall data 0.762 0.1612

Training 0.779 0.1414

Testing 0.707 0.2302

Validation 0.756 0.1612
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software in soil mechanics and foundation engineering is

still quite rare. HeuristicLab is an open source software

based on heuristic and evolutionary algorithms and is

generated by the Heuristic and Evolutionary Algorithms

Laboratory (HEAL) since 2002 at the University of

Applied Sciences Upper Austria. It works in C? and is

based on the Microsoft.Net framework [56]. Also, it has a

high ability to provide a graphical user interface. Heuris-

ticLab is supporting a broad range of algorithms such as

genetic algorithm, Gaussian process regression and classi-

fication, neural network regression and classification…etc.

Also, it supports many types of problems such as artificial

art, classification, clusterin, symbolic regression, symbolic

classification, etc. One of the features of HeuristicLab is

the ability of software to simplify the complex model by

trimming it to find a good agreement between the com-

plexity and accuracy [56]. For more details about Heuris-

ticLab, please see [56]. The input data were chosen based

on the best results in ANN’s modelling as described in part

3 which showed that model 1 with nine input variables

exhibits the best prediction with the highest value of R2.

Nine parameters were used to the GP model as inputs.

These include Cu, D50, emax, emin, e, Dr, r03c, a, and the B,

while one parameter the ratio of qmin/qpeak is used as out-

put. The input data were loaded into the software, there-

after a symbolic regression by GP was performed with

variables set listed in Table 4.

The input data were divided into 67% for training and

33% for testing. The software approached the better model

of the ratio of qmin/qpeak with the highest values of R2 for

training and testing, after a cycle of 75 generations.

Therefore, the following equation was evolved to connect

the ratio of qmin/qpeak of clean sandy soils to nine input

parameters:

qmin=qpeak ¼ ð7:314 � EXPð19:980=ðð0:027 � �13:896

� ðc1 � emin þ c2 � D50ÞÞ=ðð6:146 � �0:83=ð1:100Þ
� c3 � Cu=ð1:670ÞÞÞÞ=ðð6:146 � ð13:875 � �13:283=ðc4 � eÞ
þ ðEXPðððc5 � Dr þ C6 � emaxÞ þ 5:780ÞÞ
� ðc5 � Dr þ c6 � emaxÞÞÞ � LN(LN(EXPððc5 � Dr þ c6 � emaxÞÞÞ
� ðc7 � Dr þ c8 � r03cÞ=ððc9 � D50 � 6:544ÞÞ � 18:994
� ðc10 � Dr þ�0:187ÞÞÞÞÞ � �1:864þ 14:832Þ

ð4Þ

The values of coefficients c1–c10 are listed in Table 5.

The developed model (Eq. 4) was more sensitive to

change in physical properties and initial state than other

parameters. The same results were reported in ANN

modelling where the performance of ANN model is

affected by the change in Cu, D50, emax, emin, Dr, and r03c.
This finding is consistent with findings of past studies by

Young-Su and Byung-Tak [22] and Banimahd et al. [23]. It

is also worth noting that the impact of Cu, D50, emax, emin,

Dr, and r03c on the liquefaction susceptibility of sandy soil

has been reported in many previous experimental studies

[3, 4, 6]. The developed qmin/qpeak equation ignores some

parameters such as ratio of initial shear stress to the initial

effective confining pressure (a), and the Skempton’s

coefficient B. This can be related to these values are con-

sidered barely useful because experimental tests were

almost fully saturated and isotropically consolidated with

values around 1 and 0 for (B) and (a) respectively. More-

over, Eq. 4 does not take into account the effect of some

field factors such as ageing, strain history, cementation, and

stratification due to the difficulties in mimicking these

conditions in experimental work. Figure 3 shows the

measured values of the ratio of qmin/qpeak versus the

equivalent values as predicted by Eq. (4). This Fig-

ure shows the data of training and testing sets are closely

distributed around bisector line which indicates a good

prediction ability for the developed model. The perfor-

mance of the HeuristicLab model was examined using

statistical precision parameters such as Root Mean Square

Error (RMSE) and coefficient of determination (R2).

Table 6 presents R2 and RMSE of the proposed model for

the training and testing set. Figure 4 illustrates the plot of

the normalized qmin/qpeak (i.e. the ratio of measured to the

estimated qmin/qpeak values) versus the estimated qmin/qpeak
values for all data-sets. The Figure shows that the almost

Table 4 Symbolic regression parameters

Parameters Value

Population size 1000

Maximum of generation 75

Parent selection Tournament (group size 7)

Replacement 1-Elitism

Crossover Sub-tree-swapping

Mutation rate 15%

Fitness function R2 and RMSE

Function set ?, -, *,/, exp, ln

Terminal set Constant, variable

Table 5 The coefficients of Eq. (4)

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1.9215 0.7856 2.4800 1.0416 1.5366 0.2935 3.0886 1.7902 1.1763 0.2620
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normalized qmin/qpeak values are distributed around one

which indicates a good agreement between measured and

predicted values. Figure 5 demonstrates the tree of the

developed model. In comparison, the classification accu-

racy of the ANN model1 was 0.846 and 0.864 for training

and testing respectively. Similarly, the clasification accu-

racy for GP model was 0.868 and 0.842 for training and

testing respectively. Thus, it is found that a good agreement

exits between the two models in predicting the ratio of

qmin/qpeak.

Parametric Study

The efficiency of newly proposed models in the prediction

of static liquefaction susceptibility of sandy soils requires

one to compare it with that of other modelling methods or

experimental results. Thus, in present work, the methodical

parametric study was implemented for the verification of

the rate of success for Eq. 4 in the estimation of the ratio of

qmin/qpeak, taking into consideration its physical meaning.

In this parametric study, the findings of three undrained

static triaxial tests were compared with the results of Eq. 4.

These tests are part of authors published work which has

been executed on very loose clean Perth sand samples [57].

Static undrained compression triaxial tests were performed

on soil samples deposited by the moist tamping technique

and isotropically consolidated under three different

confining pressures; namely 100, 150, and 200 kPa. The

sands used for the experiments was clean sand, and Cu,

D50, emax, emin, e, Dr, B, a were equal at 2.235, 0.35, 0.675,

0.544, 0.6615, 10%, 0.95 and zero respectively. The ratio

of qmin/qpeak is calculated using GP model following Eq. 4

and experimental tests. As per the comparison presented in

Fig. 6, a good agreement between experimental results and

modelling results at confining pressure of 100 and 150 kPa.

However, there was a slight difference at a confining

pressure 200 kPa. This can be related to the developed

equation which is more suitable in low confining pressure

than higher confining pressures. Also, the applicability and

validity of the developed equation are dependent upon the

range of variables in input data which were collected from

previous studies. Furthermore, the parametric study

demonstrated that the ratio of qmin/qpeak increased with

increasing confining pressure. This is reported in many

experimental studies which showed that the liquefaction

susceptibility of very loose samples decreased with

increasing the relative density and confining pressure.

Thus, it can be observed that the current GP model is

equally efficient in predicting the ratio of qmin/qpeak when

compared to experimental methods.

Summary and Conclusion

An artificial neural network and genetic programming

models were developed for the prediction of static lique-

faction susceptibility of sandy soils in terms of the ratio

qmin/qpeak using data obtained from previously published

work. The dataset included nine input parameters namely

Cu, D50, emax, emin, e, Dr, r03c, a, and B and one target

parameter called the ratio of qmin/qpeak. The ANN results

demonstrate that the developed model using all nine

parameters is able to efficiently capture the liquefaction

sucepbtibility of soils with a coefficent of determination
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Table 6 Performance of the qmin/qpeak model for the training and

testing data sets

Dataset Performance

R2 RMSE

Training 0.868 0.12

Testing 0.842 0.17
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(R2) of 0.864 for testing set. However, the accuracy of

ANN model is reduced to 0.707 for testing set when four

parameters were eliminated (i.e., emax, emin, a, and B). A

new equation for the prediction of liquefaction suscepti-

bility of clean sandy soil in terms of the ratio of qmin/qpeak
is proposed by using the symbolic regression via genetic

programming.The results indicate a good agreement

between ANN and GP approches in predicting the ratio of

qmin/qpeak. Although the the ANN models and GP model

showed a successful rate of predictiing the ratio of qmin/

qpeak, the proposed models still contain some limitations.

The limitations in present work might be related to some

sources such as properties of database, the number of data,

method of sample deposition, type of software, and type of

regression analysis. Therefore, the findings of this work

should be used carefully to account for the limitations

presented above.
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Rendus Mécanique 337(5):282–290

48. Verdugo R, Ishihara K (1996) The steady state of sandy soils.

Soils Found 36(2):81–91

49. Belhouari F, Bendani K, Missoum H, Derkaoui M (2015)

Undrained static response of loose and medium dense silty sand

of Mostaganem (Northern Algeria). Arab J Sci Eng

40(5):1327–1342

50. Yang J, Wei L (2012) Collapse of loose sand with the addition of

fines: the role of particle shape. Geotechnique 62(12):1111–1125

51. Farrokhzad F, JanAliZadeh A, Barari A (2008) A prediction of

slope stability using artificial neural network (Case study: Noa-

bad, Mazandaran, Iran). In: Sixth international conference on

case histories in geotechnical engineering, Arlington, Verginia,

11–16 August 2008

52. Elhag TM, Wang Y-M (2007) Risk assessment for bridge

maintenance projects: neural networks versus regression tech-

niques. J Comput Civ Eng 21(6):402–409

53. Flood I, Kartam N (1994) Neural networks in civil engineering. I:

principles and understanding. J Comput Civ Eng 8(2):131–148

54. Hammerstrom D (1993) Working with neural networks. IEEE

spectrum 30(7):46–53

55. Koza JR (1990) Genetic programming: a paradigm for genetically

breeding populations of computer programs to solve problems.

Department of Computer Science, Stanford University, Stanford

56. Wagner S, Kronberger G, Beham A, Kommenda M, Scheibenp-

flug A, Pitzer E, Vonolfen S, Kofler M, Winkler S, Dorfer V

(2014) Architecture and design of the heuristiclab optimization

environment. In: Advanced methods and applications in compu-

tational intelligence. Springer, pp 197–261

57. Sabbar AS, Chegenizadeh A, Nikraz H (2017) Static liquefaction

of very loose sand–slag–bentonite mixtures. Soils Found

57(3):341–356. https://doi.org/10.1016/j.sandf.2017.05.003

123

Indian Geotech J (February 2019) 49(1):58–6969

https://doi.org/10.1016/j.sandf.2017.05.003

	Prediction of Liquefaction Susceptibility of Clean Sandy Soils Using Artificial Intelligence Techniques
	Abstract
	Introduction
	Database of Undrained Monotonic Triaxial Tests
	Artificial Neural Network (ANN) Models
	Genetic Programming Method
	Parametric Study
	Summary and Conclusion
	Acknowledgements
	References




