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Abstract This paper deals with the control of ground

surface settlement due to excavation of shallow tunnels. In

order to control the settlement, one should be able to pre-

dict it, based on the prediction one may consider required

preventions and protections. Prediction of surface settle-

ment depends on several parameters and each parameter

has an effect on the other. Application of the traditional

methods could become impractical as the proposed equa-

tions might have low accuracy. To overcome these limi-

tations, intelligent methods could be implemented. The

present study aims to develop an intelligent model for

prediction of the surface settlement in Shanghai subway

line 2 project using adaptive neuro-fuzzy inference system

(ANFIS). The results indicated that the proposed model

had an appropriate performance. In order to perform sen-

sitivity analysis of the ANFIS model, cosine amplitude

method (CAM) was used and according to the results it was

found that the operational, geometric and strength param-

eters had the highest impacts, respectively. Furthermore,

amongst the input parameters, the two parameters of grout

filling percentage (n) and grouting pressure (P) were

identified as the most effective ones. The values of critical

settlement were determined based on Rankin’s criteria of

damage risk assessment to control the ground settlement.

Then, the corresponding surface settlement was minimized

by changing values of the input parameters. According to

the results, control of machine operational factors partic-

ularly the n and P parameters had a crucial role in reducing

surface settlement and preventing pertinent damages.
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Introduction

Most of subway tunnels are constructed in shallow depths

and soft grounds found within urban areas. So, it is nec-

essary to protect underground structures and facilities

against possible damages resulted from tunnelling opera-

tion. Therefore, tunnels should be constructed in such a

way to induce minimum deformation in the ground surface,

and reduce damages experienced by the surface and sub-

surface structures [1]. Nowadays, earth pressure balance

shield (EPBS) tunneling method is the most common

method for tunneling in the soft ground. High flexibility of

this method clearly contributes to the stability of the

environment around the digging space and largely reduces

the settlement. However, application of this method would

not guarantee the elimination of ground settlement and

requires substantial considerations.

Estimation of the precise amount of settlement plays an

important role in safety, design and implementation of

tunneling operations. Estimating this parameter helps pre-

vention or control of the probable damages. There are

many methods for predicting settlement such as the ana-

lytical, empirical, numerical, etc. Ones each of these

& Kaveh Ahangari

kaveh.ahangari@gmail.com

1 Department of Mining Engineering, Science and Research

Branch, Islamic Azad University, End of North Sattari

Highway, University Square, Tehran,

P.O. Box 14515/775, 14155/4933, 1477893855, Iran

2 Department of Mining and Metallurgical Engineering,

Amirkabir University of Technology, Tehran, Iran

123

Indian Geotech J (September 2018) 48(3):420–429

https://doi.org/10.1007/s40098-017-0253-7

http://orcid.org/0000-0001-9462-7303
http://crossmark.crossref.org/dialog/?doi=10.1007/s40098-017-0253-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40098-017-0253-7&amp;domain=pdf


methods may have some strength and could help in solving

the problem but on the other hand, it may have some

weaknesses. The most important weakness of the proposed

methods is that they fail to consider all the parameters

involve in the settlement [2]. In EBP tunneling technique,

there are many factors such as the tunnel geometry, ground

conditions, and machine operational parameters, which

affect the surface settlement. Therefore, it is difficult to

predict the settlement only using the traditional method.

Chakeri et al. [3] modelled accuracy of the surface settle-

ment of Tehran subway line 7 using the numerical method,

whereas, this section of tunnel didn’t have acceptable ac-

curacy when implementing by four traditional (empirical

and analytical) methods. Numerical methods exhibit good

performance concerning the tunneling problems. These

methods, contrary to the empirical and analytical ones,

consider the effects of a greater number of parameters on

the settlement. Nevertheless, these methods also have some

limitations. Determination of some of these essential

parameters for modelling is difficult and utilizing inaccu-

rate values could result in unreal designs and predictions

[4]. In addition, they are highly sensitive to the model’s

geometric components like model dimensions and config-

uration, mesh shape etc.

To overcome the above mentioned limitations, intelli-

gent methods have been utilized as they are not limited by

the number of input parameters, and are not time and cost

consuming, also they have high estimation capability.

Many studies have been performed in this respect, too

[5–14] and the results have indicated proper performance

of these methods. In this study, adaptive neuro-fuzzy

inference system (ANFIS) was adopted to predict the

maximum surface settlement. ANFIS enjoys the advan-

tages of both neural and fuzzy systems [13]. It is particu-

larly the alternative in cases where the number of available

data sets to be used for modeling is low. Most geoscience-

related problems do not come with a great deal of available

data; and the present research, as well, suffers from such

issue, ANFIS is selected to predict the surface settlement in

this research.

In spite of numerous advantages provided by the intel-

ligent methods, numerous researches performed on such

methods have referred to their pitfalls. The main disad-

vantage associated with these methods is that they model

the settlement without considering the main effective fac-

tors. As an example, many researches have ignored the

tunnel support parameter. It is clear that a tunnel with no

support will induce large deformations in the tunnel mak-

ing it unstable. Therefore, such main factors, as operational

factors should be incorporated in modeling and predicting

the surface settlement.

Conducted studies utilizing the intelligent methods have

largely focused on the issue of predicting surface settle-

ment so their major output has been a model or an equation

for the settlement estimation. In this study, in addition to

building a settlement predictive model, attempt is made to

consider procedures for settlement control. For this pur-

pose, the most important input parameters were identified

utilizing cosine amplitude method (CAM) then attempt is

made to minimize the corresponding surface settlement by

changing the values of the effective parameters. Various

research works done by such persons as Jong and Lee [15]

have confirmed the good performance of CAM.

The Criteria of Damage Risk Assessment Due
to Ground Surface Settlement

Different researchers have proposed various settlement

criteria for damage risk assessment [16–20]. Amongst

which Rankin’s theory (1998) is the most common crite-

rion. The present study implemented Rankin’s criterion. He

presented Table 1 for damage risk assessment considering

maximum settlement of a structure with single foundation.

If the physical damage is less severe to be considered as a

criterion, the maximum surface settlement (Smax) should be

limited to 10–50 mm. Nevertheless, other controlling

parameters could be implemented for structures with

respect to the application and significance of the buildings.

Rankin classifies the causes of damages into two distinct

Table 1 Typical values of maximum surface settlement for damage risk assessment [20]

Risk

category

Maximum settlement

(mm)

Degree of

damage

Description of risk

1 \10 Negligible Superficial damage unlikely

2 10–50 Slight Possible superficial damage which is unlikely to have structural significance

3 50–75 Moderate Expected superficial damage and possible structural damage to buildings, possible damage to

relatively rigid pipelines

4 [75 High Expected structural damage to buildings. Expected damage to rigid pipelines, possible

damage to other pipelines
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groups. First, are the damages of categories 1 and 2 that can

occur due to some inherent and natural characteristics of

structures, including the shrinkage of concrete or plaster,

temperature variations, elastic deformations etc. as well as

symmetrical settlements caused by external factors. The

second group, include the damages of categories 3 and 4

caused by external factors.

Case Study and Data Bank

The case study of this research is Shanghai subway line 2

project. All required information is gathered from a specific

research [21]. The Tunneling Project between Pudong

South Road Station and Nanpu Bridge Station was an

important component of this project as well as a major

project in Shanghai. The tunnel started from the end well

west of Pudong South Road Station to the end well east of

Nanpu Bridge Station, with a full- up line length of

1997.148 m and a down line length of 1981.960 m. In

addition, the soil type in the area was mainly silty clay and

the tunnel was constructed using EPBS. The other prop-

erties of this project are summarized in Table 2.

EPBS tunneling method, which was initially developed

in Japan, has gained popularity for soft ground tunneling

[7]. With this technique, the ground movement could the-

oretically be controlled through balancing the pressure

inside the earth pressure chamber relative to the outside

ground pressure during excavation. Based on the case

history reviews [7, 12], the factors causing settlement can

be grouped into three major categories, such as the geo-

metric, strength and operational factors. In this research for

each factor some variables are assigned as input parame-

ters, which are given as follows:

1. Geometric factors: Diameter (D) and depth (Z) of

tunnel.

2. Strength factors: Cohesion (C), internal friction angle

(u), and modulus of elasticity (E).

3. Operational factors: Penetration rate (V), thrust force

(F), grout filling percent (n) and grouting pressure (P).

The amounts of these parameters are shown in Table 3.

In general, it can be concluded that all of these nine input

parameters play a key role in the development of the

ground surface settlement which their significance is

briefly expressed as follows:

• By increasing the tunnel diameter (D), the affected area

around the face extends making it more difficult to

control the convergence. Obviously, if the tunnel depth

(Z) is deep enough, the roof falls so that the effects

would petered out before reaching the surface. Never-

theless, the effect of tunnel depth on the settlement

should always be considered together with that of

tunnel diameter [22]. Accordingly, one may use depth

to diameter ratio (Z/D) to investigate simultaneously

their effects.

• Tunneling in the soft ground requires a higher safety

provisions compared to those provided under hard rock

conditions. Therefore, it will be very useful to incor-

porate EPBS approach under such conditions. Accord-

ing to the mentioned issues, the higher the strength of

the tunnel encompassing mass, the easier will be the

tunneling process leading to lower settlement. There-

fore, it is expected that with increase in the cohesion

(C), internal friction angle (u), and modulus of

elasticity (E) values, the surface settlement would

decrease.

• The EBPS operational factors are the most effective

parameters on the surface settlement. The penetration

rate (V) reduces the surface settlement to an optimum

amount. Excessive amounts cause face support pressure

while its reduction causes ground loss. The thrust force

(F) is largely associated with penetration rate. Increas-

ing the thrust force to an optimum amount, while jacks

are opening, supplies an optimal penetration rate and

subsequently decreases surface settlement. Increase of

F, while jacks are closing, accelerates the operations

and reduces delays in the process of segments instal-

lation and, thus, decreases surface settlement.

• Tail void grouting is necessary to prevent ground

moving towards the void. Tunneling operations with

high grout filling percentage (n) and grouting pressure

(P) can considerably reduce settlements developed after

the shield passing [7]. The ground volume loss (VL) is

associated with a set of different components which are

combined during tunnel excavation. According to

Fig. 1, in EPBS excavation, the volume loss occurs at

three diverse modes; Volume loss at the tunnel face

(Vf), volume loss around shield (Vs) and volume loss in

tail void (Vt) [23]. The amount of Vf can be minimized

to a large extent by controlling the operational

Table 2 Some of technical characteristics of EPBS in project of

Shanghai subway line 2

Parameters Amount

External diameter 6.2 m

Internal diameter 5.5 m

Shield external diameter 6.34 m

Width of lining ring 1.0 m

Shield advancing speed 2.0 m/h

Total thrust of jack 14 m

Shield tail’s grouting pressure 0.3 MPa

Shield tail’s grouting volume 2.0 m3/m
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parameters such as face support pressure, penetration

rate and thrust force simultaneously. In this case,

however, Vs is also partially controlled. The quality of

tail voids grouting has a considerable effect on the

amount of Vt and surface settlement.

Certainly, there are more parameters contributing to the

tunnel settlement; however, they are ignored, as many of

them (such as segment thickness and length, shield length,

etc.) were constant during the tunneling project.

Table 3 Datasets used for creating intelligent model [21]

No. D Z Z/D C u E F V P n Smax Data set

m m – kPa o MPa MN mm/min MPa % mm division

1 6.40 15.50 2.42 12.9 11.8 7.2 13.0 40 0.25 150 52.4 Train

2 6.40 8.40 1.31 11.7 16.4 6.5 14.0 30 0.30 170 53.3 Test

3 6.34 12.00 1.89 12.1 13.7 5.2 14.0 30 0.35 170 55.3 Train

4 6.34 12.00 1.89 12.0 13.7 5.2 14.0 30 0.35 150 57.0 Train

5 6.34 10.50 1.66 11.9 13.8 5.2 14.0 40 0.25 140 62.5 Train

6 6.40 12.00 1.88 34.0 16.6 7.3 16.0 20 0.30 160 70.2 Train

7 6.25 11.80 1.89 12.0 16.6 4.2 16.0 30 0.25 160 79.6 Test

8 6.34 11.80 1.86 12.0 13.6 5.2 14.0 40 0.35 140 79.6 Test

9 6.34 6.10 0.96 11.2 19.5 8.3 14.0 40 0.30 140 84.5 Train

10 6.34 11.20 1.77 11.9 13.8 5.2 14.0 30 0.30 170 89.9 Train

11 6.40 13.80 2.16 36.7 20.7 7.3 31.7 60 0.25 170 7.5 Train

12 6.40 12.00 1.88 15.3 23.9 3.9 31.7 40 0.30 150 7.6 Test

13 6.40 14.50 2.27 43.6 30.0 9.1 31.7 60 0.25 150 8.9 Train

14 6.40 13.30 2.08 28.1 32.8 5.4 31.7 40 0.25 150 9.6 Train

15 6.34 18.20 2.87 214.9 23.8 34.2 20.0 30 0.40 170 10.5 Train

16 6.40 20.60 3.22 201.7 23.5 35.2 30.0 20 0.30 120 11.2 Test

17 6.40 15.00 2.34 312.0 42.1 35.7 30.0 30 0.30 150 14.1 Test

18 6.40 14.20 2.22 32.4 12.4 11.2 31.7 60 0.25 170 14.8 Test

19 6.40 14.50 2.27 34.2 14.5 7.3 31.7 50 0.25 170 16.4 Train

20 6.25 12.00 1.92 340.0 44.9 35.0 33.0 30 0.20 90 16.8 Train

21 6.34 9.87 1.56 112.0 35.2 25.9 31.0 20 0.35 170 17.3 Train

22 6.25 24.00 3.84 240.0 30.1 23.1 33.0 30 0.30 120 19.2 Train

23 6.40 12.00 1.88 12.2 13.1 5.2 14.0 20 0.35 200 20.3 Train

24 6.34 11.90 1.88 11.9 13.8 5.2 14.0 20 0.40 200 21.2 Test

25 6.40 14.50 2.27 32.4 10.7 11.2 31.7 60 0.25 170 22.0 Train

26 6.40 14.50 2.27 34.2 9.2 7.3 31.7 60 0.25 170 22.8 Train

27 6.34 10.60 1.67 18.7 13.5 6.2 14.0 30 0.30 160 26.4 Train

28 6.34 10.90 1.72 11.8 14.4 5.5 14.0 20 0.40 200 27.1 Train

29 6.34 12.70 2.00 12.0 13.4 5.0 14.0 20 0.40 200 32.8 Train

30 6.25 20.00 3.20 30.2 22.8 11.8 23.0 40 0.25 120 34.0 Test

31 6.34 20.00 3.15 10.0 25.0 9.1 10.0 20 0.34 140 35.1 Train

32 6.25 10.40 1.66 30.0 16.5 7.6 16.0 40 0.30 160 35.4 Train

33 6.34 11.40 1.80 11.9 14.1 5.4 14.0 20 0.40 180 38.1 Train

34 6.34 11.90 1.88 11.9 13.8 5.2 14.0 20 0.40 180 38.6 Train

35 6.34 12.00 1.89 15.0 13.7 8.2 14.0 20 0.45 150 40.5 Train

36 6.34 9.40 1.48 32.5 15.5 7.7 15.0 20 0.30 150 40.6 Train

37 6.34 10.40 1.64 11.8 14.7 5.7 14.0 20 0.40 180 40.6 Test

38 6.40 12.00 1.88 11.4 19.2 8.4 12.0 30 0.40 140 42.4 Test

39 6.34 11.80 1.86 12.0 13.8 5.2 31.7 30 0.40 170 45.1 Train

40 6.34 9.78 1.54 11.8 15.2 5.9 14.0 20 0.55 170 47.3 Train

41 6.34 9.78 1.54 11.8 15.2 5.9 14.0 20 0.35 170 47.3 Test
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Maximum Surface Settlement Modelling

Adaptive Neuro-Fuzzy Inference System (ANFIS)

Jang [24] introduced ANFIS, which is a combination of

fuzzy logic (FL) and artificial neural network (ANN). All

fuzzy systems (FSs) and ANNs have some advantages and

disadvantages. FSs can use human language and can use

human experiences and expertise of informed individuals.

However, they cannot learn. Nevertheless, ANNs can do

self-training using data sets. Meanwhile, ANNs are implicit

and they are unable to use human language [25]. Therefore,

ANFIS takes advantage of both neural and fuzzy systems

[26]. According to Fig. 2, ANFIS process is performed

through five steps [27]. In fact, training in this system

means that nonlinear parameters related to fuzzy mem-

bership function of layer one and linear parameters of layer

four are determined in a way to obtain a favourable output

for an optional input. During the fuzzy-neural process,

parameters of membership functions are regulated through

a back propagation (BP) algorithm or its combination with

the least squares (LS) method, which called hybrid algo-

rithm [27]. The advantage of hybrid method is that it uses

BP for parameter associated with input membership func-

tion and LS estimation for parameters associated with

output membership.

Estimation of Maximum Surface Settlement

by ANFIS

In this research, MATLAB software (Ver.: R2015a

(8.5.0.197613)) has been used forANFISmodelling. In order

to build the model, it began by normalizing all data into [-1

1] interval, to get the variation ranges of the parameters

closer to each other thus improving the model ability to

generalize and learn the existing relations between the

Fig. 1 Schematic diagram of a typical longitudinal section of EPBS with volumes less, tail void, grouting pressure and grout filling [7, 23]

Fig. 2 ANFIS structure [28]
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parameters. Next, 41 available data sets were randomly

divided into two categories of training and testing phases; 29

data sets (about 70%)were considered to build themodel and

the rest 12 data sets (about 30%) were considered for their

evaluation (see data set division in Table 3). The best ANFIS

structure was selected by applying the trial-and-error

method. The type and number of membership functions

(MF), optimization algorithm, epochs, etc. were all opti-

mized via the trial-and-error approach [28]. The built models

were evaluated based on the root mean square error (RMSE)

values obtained for training and testing phases. The MF and

optimization method for all models were Gaussian and

hybrid methods, respectively. Other characteristics of the

built models are demonstrated in Table 4. Figure 3 depicts

the structure of the built ANFIS model.

The RMSE of the model in training and testing phases

were equal to 0.064 and 5.046, respectively. Figure 4

shows the coefficient of determination (R2) of the model

and the actual surface settlements versus ANFIS predic-

tions in testing phase. According to the result, it can be

inferred that the model developed had a suitable perfor-

mance and high intelligence.

Table 4 Properties of the built ANFIS model for the prediction of maximum surface settlement

Identification method No. of MF No. of nude No. of linear parameters No. of nonlinear parameters No. of parameters No. of fuzzy role

FCMa 9 173 81 144 225 9

a Fuzzy c-means clustering

Fig. 3 Built ANFIS model

structure to predict maximum

surface settlement

Fig. 4 Coefficient of determination (R2) of the model and comparison of between actual maximum surface settlements versus model predictions

in testing phase
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Sensitivity Analysis by Cosine Amplitude Method

(CAM)

In this paper, the cosine amplitude method (CAM) is used

to perform the sensitivity analysis of the ANFIS model. As

with all the following methods, this similarity metric

makes use of a collection of data samples, n data samples

in particular. If these data samples are collected, they form

a data array, X [29],

X ¼ x1; x2; . . .; xnf g ð1Þ

Each of the elements, xi, in the data array X is itself a

vector of length m, that is,

xi ¼ xi1; xi2; . . .; ximf g ð2Þ

Hence, each of the data samples can be thought of as a

point in m-dimensional space, where each point needs m

coordinates for a complete description. Each element of a

relation, rij, results from a pairwise comparison of two data

samples, say xi and xj, where the strength of the

relationship between data sample xi and data sample xj is

given by the following membership strength:

rij ¼
Pm

k¼1 xikxjk
�
�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x

2
ik

� �q Pm
k¼1 x

2
jk

� � ; where ) i; j ¼ 1; 2; . . .; n:

ð3Þ

Close inspection of Eq. (3) reveals that this method is

related to the dot product for the cosine function. When

two vectors are collinear, their dot product is unity; when

the two vectors are at right angles to one another, their dot

product is zero [29].

In order to express the relation between the maximum

surface settlement and the input parameters (in testing

phase), [1*12] sized matrices were obtained. The matrices

so obtained were correlated by means of the Eqs. (1)–(3),

and the relation strengths (rij values) are shown in Fig. 5.

According to this figure, the operational parameters of

grout filling percentage (n) and grouting pressure (P) were

associated with the highest effective value, while the

strength parameters of cohesion (C) and modulus of elas-

ticity (E) provided the smallest effective value in the

maximum surface settlement (Smax). The figure shows the

effect of other parameters as well; note the higher effective

value of geometric factor (Z/D), rather than that of the

strength parameters.

Control of Ground Surface Settlements

As noted earlier, once the ground surface settlement is

estimated, the related probable damages could be pre-

vented or controlled, if possible. To this end, it is greatly

important to compare the maximum surface settlement

with its allowable amount. According to Rankin’s criterion

(Table 1), the maximum surface settlement values greater

than 50.0 mm cause damage risk with a moderate degree.

Therefore, this section was an attempt to prevent occur-

rence of the unallowable settlements ([50.0 mm). 10 data

sets in which the surface settlements are greater than

50.0 mm (number 1 to 10) are observed in Table 3.

According to the sensitivity analysis results in the pre-

vious section, it was found that the two parameters of n and

P had a significant effect on the surface settlement. Thus,

implementing appropriate grouting operations can mini-

mize the volume of settlement and volume loss in tail voids

(Vt) and reduce the surface settlement. In order to reduce

the volume of settlement to an allowable value, the main

effective parameters of grout filling percentage (n) and

grouting pressure (P) were modified and the corresponding

surface settlement was predicted using the proposed

ANFIS model.

Fig. 5 Strength of relation (rij)

between the maximum surface

settlement and input parameters
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As shown in Fig. 6, there is an entirely direct relation-

ship between the parameters n and P. As a result, these

parameters should be modified simultaneously in the cor-

responding sensitivity analysis. Hence, the values of P and

n of these 10 categories of data, according to their rela-

tionship (Fig. 6) and their maximum values in the present

project (Table 3), were increased to an extent that the

corresponding surface settlement (predicted by the built

ANFIS model) is less than the allowable value. Figure 7

presents the results. For example, the surface settlement of

the data category 7, which was measured as 79.6 mm in

reality, can eliminate surface settlement by increasing the

grouting pressure and changing the n value from 140 to

170%.

The interpretation of the results of data category 8 is a

bit more complicated. According to the related figure, the

surface settlement of this category reached 59.7 mm,

which is greater than the allowable settlement, by

increasing the n value to 200%. Therefore, in order to

obtain a surface settlement less than 50.0 mm, the n and

P values should be increased further so that for an n value

of 220%, the surface settlement reaches its allowable value.

The reason why the surface settlement of this data category

is more stable than the other categories is related to the

insignificant Modulus of Elasticity (E) value. To prove this,

the value of this parameter was changed in another anal-

ysis, though such a change is not possible in practice. By

changing the modulus of elasticity (E) from its actual value

of (4.24 MPa) to a hypothetical value of (5.50 MPa), the

predicted settlement reached the allowable value

(\50.0 mm) once the (n) value increased to 190%.

Therefore, the main cause of the continuous settlement at

this stage is the excessive deformation of the mass

encompassing the tunnel. Since it is not possible to change

the geological characteristics, tunneling in such an envi-

ronment requires in-depth structural design (if possible);

otherwise, the only solution is to control the operational

parameters (n, P, etc.).

It is worth noting that the surface settlement of several

data categories for a range of n values between 170 and 190

percent had an ascending trend, which indicates the

excessive complexity and prediction error in this regard.

Conclusions

According to the obtained results it was found that the

overall behaviour evaluated by ANFIS method is consistent

with that of the actual maximum surface settlement; The R2

value of the built model was equal to 0.957 in testing

phase. This method exhibits the relation between the input

parameters and their effects on the output, and has the

ability to generalize intelligently the new data.

Fig. 6 Relation between grouting pressure (P) and grout filling

percentage (n) parameters

Fig. 7 Sensitivity analysis of

maximum surface settlement

(Smax) relative to the major

effective parameters: grouting

pressure (P) and grout filling

percentage (n)
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In order to introduce the most effective parameter, sen-

sitivity analysis of the ANFIS model was performed by

CAM. The results showed that the operational, geometric

and strength factors were more important, respectively.

Amongst the available variables, grout filling percentage

(n) and grouting pressure (P) were the most effective.

Therefore, the settlement could greatly be controlled via a

proper high quality grouting operation. CAM approach

recognized the strength parameters of cohesion (C) and

modulus of elasticity (E) as the least effective parameters;

this exhibits the advantage of EPBS tunnelingmethod in soft

grounds. High flexibility of thismethodwithin loose grounds

clearly contributes to stability of the environment around the

digging space, which greatly reduces the settlement.

To prevent occurrence of the probable damages, the

values of unallowable surface settlement ([50.0 mm) were

identified based on Rankin’s criterion and then the corre-

sponding surface settlement was reduced by increasing the

n and P parameters values. The present study exhibited

favourable results and showed its effectiveness for most

data categories particularly those with favourable geo-

metric and strength parameters. Therefore, it was proved

that control of the operational factors had a crucial role in

controlling the settlement rate.

Finally, it can be implied that designing deeper tunnels

may significantly reduce the effects of roof falls before

they reach ground surface. If it is not possible to change the

path of tunnel excavation, the surface settlement can be

minimized to some extent by controlling the operational

parameters especially by implementing appropriate grout-

ing operation.

Face support pressure plays an important role in main-

taining the stability of tunnel face and reducing volume

loss at the tunnel face (Vf). In the present study, it was not

possible to investigate the effect of this parameter due to its

absence. Finally, it is recommended to consider the effect

of this parameter in prospective research in order to pre-

dict, prevent and control surface settlement.
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