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Abstract Salt diffusion studies through compacted ben-

tonites are important for designing the waste disposal

facilities and assessment of the existing facilities. As the

behavior of plastic clays is governed by the physical

chemistry of the clay surface–electrolyte interactions, the

effect of physicochemical parameters on diffusion rates of

the bentonites is required to be studied. In this paper,

transient through diffusion tests were conducted with dif-

ferent salts that contain different monovalent cations and a

divalent cation. The influence of hydrated size and valence

of the cations on the contaminant migration was studied

experimentally. A Java based inverse analysis suit, CON-

TRADIS, was utilized for estimating the mass transport

parameters from the experimental observations. The effect

of hydrated size and valence of the cations on the mass

transport parameters of the bentonite was qualitatively

analyzed using diffuse double layer theory. The diffusion

coefficient was found to vary about one order magnitude

with the hydrated size of the cation. The significance of the

variation in mass transport parameters was analyzed using

the simulated concentration profiles along the depth of the

clay liner.

Keywords Diffusion coefficient � Cation size � Bentonite �
Through-Diffusion � Contaminant Migration

Introduction

Landfills are the unparalleled engineered containment

facilities for addressing the ever-growing waste disposable

problems. The generated leachate from the disposed waste,

in these facilities, is encapsulated with bentonite liners to

reduce exposure to the surrounding environment. The qual-

ity of the bentonite is important for specific application. The

engineering parameters such as hydraulic conductivity,

retention capacity for cations, and self-sealing ability

[6, 9, 16, 19, 26, 53] vary with the quality of the bentonite.

Higher quality bentonites [32], that are highly plastic in

nature, are also used in hazardous toxic waste containment

facilities [20, 45] and high level nuclear waste repositories as

buffer and backfill materials [24, 38, 56, 57]. Diffusion is the

dominant transport mechanism for contaminant migration

through compacted bentonites due to the low hydraulic

conductivity [17, 49]. The advection transport is, therefore,

absent in these facilities as the barriers are nearly imper-

meable to the migration of salts under the hydraulic gradi-

ents. The diffusion and retardation characteristics of the

compacted bentonites for different salts and different initial

compaction densities are important for the design of these

facilities. Several laboratory diffusion studies are used to

estimate the design parameters. Laboratory techniques such

as through-diffusion [3, 4, 30, 41, 42], in-diffusion

[33, 47–49], out-diffusion [44, 54], and half-cell techniques

[28, 40] are routinely used to estimate the temporal and

spatial changes of contaminant concentration. Transient

through-diffusion (TTD) technique is more expedient due to

non-destructive nature and simplicity in the experimental

measurements, although all the methods lead to the same

design parameters [7, 8]. The measured concentration data is

analyzed using mathematical formulation based on Fick’s

diffusion equation [46]. Finite mass boundary conditions are
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employed in the mathematical model to represent the

boundary conditions in through-diffusion technique [41].

Several past studies developed numerical and semi-analyti-

cal solutions to the TTD problem by assuming the validity of

linear sorption mechanism [14, 15, 26, 29, 36, 42]. A closed-

form analytical solution was developed for TTD problem by

Bharat [9] which is computationally robust. The model

parameters are accurately estimated using optimization

techniques that minimize the error between the measured and

theoretically obtained concentration data [14]. The focus of

the existing diffusion studies using compacted clays are only

on the improvement of experimental methodology, accuracy

of the solution to the mathematical model, or accuracy of the

model parameter estimation. However, the influence of

physicochemical factors on the diffusion characteristics of

plastic clays remains to be completed.

The mineral surfaces, in expansive clays, carry net neg-

ative charge due to isomorphous substitution. A diffuse

double layer (DDL) is formed around the platelets in the

presence of electrolytes [34]. The surface properties such as

specific surface area and cation exchange capacity influence

the formation of the DDLs. The thickness of the DDL con-

trols the engineering behavior of expansive clays. Several

interrelationships between surface properties; index and

engineering properties are, therefore, available [22, 31, 37].

The DDL thickness changes with the change in electrolyte

concentration; cation properties; dielectric constant; and

cation complexion between the surface cations and the

cations in the pore-fluid [10–12, 34, 39, 51]. The cation

complexion is an important factor in diffusion studies due to

the fact that the salt diffusion is a slow process and sufficient

time is available for exchange of surface cations with the

cations present in the pore-fluid. The changes in the DDL

thickness may influence the mass transport parameters,

therefore. The effectiveness of the bentonite is found to be

deteriorating with long-term exposure to the salts in the long-

term hydraulic conductivity experiments with varying salt

concentrations and counter ions [16, 27, 32]. However, the

influence of cation characteristics on the mass transport

parameters is not available.

In this paper, laboratory through-diffusion studies were

conducted with different salts. The influence of cation valence

and hydrated cation radius was studied on the mass transport

parameters. The influence of hydrated cation radius on the

diffusion coefficient was found to be highly significant.

Materials and Methods

A high quality bentonite procured from Barmer district of

Rajasthan, India, was used for diffusion studies in this

work. This plastic clay is considered to be the most suit-

able liner material for upcoming landfills and buffer

material for future nuclear waste repositories in India. The

index and surface properties of the bentonite are studied

recently by Gapak et al. [23] that were reproduced in

Table 1. Hydraulic conductivity of the compacted ben-

tonite was conducted using falling head technique in

accordance with ASTM D5856 [2]. A higher hydraulic

gradient was, however, used for reducing the test duration

due to very low hydraulic conductivity [50]. The air-dried

soil sample was statically compacted into a perxpex cell of

2.4 cm diameter and 1 cm height to an initial bulk density

of 1.5 g/cm3. The end caps were fixed to restrict the vol-

ume change during hydration, similar to rigid wall per-

meameter. A head of 6.4 m was applied for saturation. The

permeability cell was frequently weighted to obtain an

equilibrium value. The estimated hydraulic conductivity

values from the repeated tests were also verified to ensure

full saturation of the compacted clay. The hydraulic con-

ductivity of the studied bentonite was 6.9 9 10-12 m/s.

Laboratory Diffusion Testing

Through-diffusion testing was used, in this study, as this

technique is non-destructive and the concentration profile

along the soil depth is not required. The testing is faster,

further, as the sample dimension does not influence the

accuracy of model parameter estimation [46]. One cen-

timeter thickness and 2.4 cm diameter clay plugs were,

therefore, used in this study. The diffusion cell was fabri-

cated from a solid plexiglass tubes to accommodate the

clay plug and 5 mm thick porous stones as shown in

Fig. 1a. A detailed photograph of the through-diffusion set-

up and the drawing for diffusion cell were provided in

Fig. 1a, b. The clay sample in air-dry state was statically

compacted to 1.5 g/cm3 in diffusion cells and the porous

discs were placed on either side of the clay plug. The cell

was then attached to the reservoirs on either side by cap-

ping on the outer thread of the cell. A rubber gasket was

used around the outer threading to prevent leakage. The

reservoirs were then filled with distilled water for the sat-

uration from both sides. The saturation took nearly 30 days

which was assessed by weighing the diffusion cell at reg-

ular intervals. The saturated water content under no-vol-

ume change conditions was found to be *45%. The

diffusion experiment was commenced soon after the satu-

ration of the plug by replacing the source reservoir with

known salt concentration. The water in the collector

reservoir was also replaced with distilled water to avoid the

influence of any excess salt deposition from the clay plug

on diffusion. The electrolytes in the reservoirs were regu-

larly stirred to maintain the uniform concentration through

the reservoir at any given time. A 10 ml samples were

collected from the reservoirs at frequent intervals of time

for determining the concentration. Concentration of a given
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cation was measured using flame photometer (�Systronics

India, Type-128) after required dilution. The measured

concentration with time in both source and collector

reservoirs were used for the diffusion analysis. Different

salts with varying cation valence and cationic radius were

considered for diffusion studies. The salt characteristics

were presented in Table 2. An initial salt concentration of

0.2 M was used in the source reservoir in all the diffusion

tests.

Theoretical Background

The salt diffusion through clays is studied using Fick’s

diffusion equations. One-dimensional governing diffusion

equation for saturated soils is given by

oc

ot
¼ De

Rd

o2c

ox2
ð1Þ

where c is the salt concentration in the soil pores, t is the

diffusing time, De is the effective diffusion coefficient, n is

the porosity, x is the distance from the source, and Rd is the

retardation factor which describes the sorption potential of

a soil. The retardation factor for linear sorption case is

expressed as

Rd ¼ 1 þ qKd

n
ð2Þ

where Kd is the distribution coefficient, q is the dry bulk

density and n is the porosity of the clay plug. The initial

condition of the diffusion experiment was given by

cð0\x\L; t ¼ 0Þ ¼ 0 ð3Þ

where L is the length of the clay plug. The initial condition

reflects that the clay is free of contaminant at the beginning

of the experiment, t = 0. The boundary conditions at the

source and collector reservoirs, respectively, are given by

Rowe and Booker [41], Barone et al. [4], Rowe et al. [42],

Bharat [8], Bharat et al. [15].
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Z t

0
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ox

� �
x¼L

dt ð5Þ

where c0 is the initial concentration of the contaminant

species at time t = 0; Hs and Hc are the equivalent heights

of source and collector reservoirs, respectively. The

boundary conditions in through-diffusion experiment are

analogous to the field conditions. The Eqs. (1)–(5) are

solved either using numerical or semi-analytical techniques

to obtain theoretical contaminant concentration distribution

with spatial distance and time [5, 14, 18, 35, 41, 43]. Due to

the nature of the theoretical solution, the design parameter

estimation using inverse analysis is computationally

inefficient [9]. A closed-form analytical solution for

transient through-diffusion problem was developed by

Bharat [8, 9] using the method of Laplace transformation

and integral theorem. The solution at the boundaries is

given by
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c0

¼ 1

2 þ K

þ 2K
X1
j¼1

a2
j þ K2

� �
e�a2

j T

4a2
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� �
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where K ¼ nRd

Hr
, T ¼ tDe

RdL2, Hr is the equivalent height of the

source and collect reservoirs, aj are the eigen values of the

following transcendental equation

tan aj ¼
2Kaj

a2
j � K2

ð8Þ

where aj are the roots of the aforementioned equation. The

eigen values of the Eq. (8) were obtained using a discon-

tinuous, multimodal optimization algorithm using Glow-

worm swarm optimization technique [7]. The closed form

solutions in Eqs. (6)–(7) were evaluated using first 20

number of roots using the optimization technique. The

inverse problem of determining the diffusion coefficient

and linear retardation factor was solved by minimizing the

Table 1 Index and surface properties of the studied bentonite

Property Value

Liquid limit (%) 393

Plastic limit (%) 50

Shrinkage limit (%) 18

Specific gravity 2.77

Clay size (%) 78

Specific surface area (m2/g) 495

Cation exchange capacity (meq/100 g) 71.7

Montmorillonite content (%) 55

Hydraulic conductivity (m/s) 6.89 9 10-12
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error between theoretical and measured concentration data

in the source and collector reservoirs at different time

intervals. The minimization was accomplished by particle

swarm optimization technique [9, 13, 15]. A Java-based

software package, CONTRADIS, incorporates the afore-

mentioned forward and inverse analyses, was used in this

Fig. 1 a Laboratory through-diffusion set-up used in the current study. b Dimensional details of the diffusion cell used in the through-diffusion

set-up
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work. The non-commercial software, CONTRADIS, is

developed at IIT Guwahati, recently by Partha Das et al.

[21]. The model parameters for all the experiments were

obtained by inputting the experimental measurements.

Results and Discussion

The measured data from the diffusion experiments were

presented as relative concentrations, c/c0, by normalizing

the measured concentration with initial concentration,

c0 = 0.2 M. The measured concentration data in source

and collector reservoirs with time for different salts were

presented in Fig. 2. The salt concentration in source

reservoir decreased with time and the concentration

increased with time in the collector, for all the salt solu-

tions. The diffusion rate of Li cations through clay plug

was observed to be very slow compared to others cations.

The relative concentration of LiCl in source reservoir was

*0.8 after 2 months of diffusion period whereas the rel-

ative concentration of KCl and CaCl2 reached *0.5 by this

time, indicating the completion of the test. The NaCl

concentration in the source was *0.6 at the end of 60 days

which was between the diffusion rates of LiCl and KCl.

The diffusion rate of KCl was faster than CaCl2 in the

beginning, but with time the rate was similar for both the

salts. The difference in the relative concentration and dif-

fusion rates at any given time indicate the cation com-

plexion on the mineral surface. The LiCl was absent in the

collector reservoir for initial 10 days indicating a strong

adsorption on the mineral surface due to cation exchange

and slower diffusion rates through the plug. The relative

concentration of other cations was present in the collector

nearly after 3 days.

The measured data was used to determine the diffusion

and linear sorption parameters by inverse analysis. The

model parameters obtained by minimizing the error

between measured and theoretical concentration data for

different salts were presented in Table 2. The theoretical

concentration data using the optimized design parameters

(Table 2) for different salts were given in Fig. 3a–d. The

theoretical concentration data obtained using the

optimized model parameters by CONTRADIS were in

good agreement with the measured concentration data for

all the cases presented. However, a slight deviation

between the measured and theoretical data was noticed in

the beginning of the diffusion testing (t B 10 days)

monovalent cations. The deviation was mainly due to

cation exchange process in the initial stage of the diffu-

sion as a significant percentage of calcium ions were

present, in the exchangeable state, for the studied ben-

tonite. The sorption mechanism is, therefore, expected to

be highly complex, but the deviation was not significant

and considered mechanism was appropriate for these

cases. The theoretical data was in very good agreement

with the measurements for CaCl2.

The hydrated cation size and molecular weight of the

studied salts were given in Table 2. The diffusion coeffi-

cient increased with the decrease in the hydrated cation

size. The decrease in the diffusion coefficients with

increase in the radius can be qualitatively understood from

the diffuse double layer (DDL) theory. The DDL thickness

increases with the increase in the cationic radius of the

same group (i.e., valence) in the periodic table [34, 39].

The increase in the DDL thickness in a compacted state,

where the volume change was not allowed, reduces the

mobility of the cations. The diffusion coefficient, therefore,

decreased. As the retardation considers the retention

mechanism along with the adsorption and absorption

Table 2 Data showing cation properties of the studied slats and estimated design parameters

Salts Molecular weight (g/mol)a Hydrated radius (Å)a Valence De (m2/sec) Rd

Lithium chloride 42.394 7.3–10.3 1 1.57 9 10-10 13.01

Sodium chloride 58.44 5.6–7.9 1 6.35 9 10-10 7.71

Potassium chloride 74.55 3.8–5.32 1 8.92 9 10-10 8.91

Calcium Chloride 110.98 9.6 2 1.04 9 10-9 10.87

a Sridharan and Prakash [51]
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Fig. 2 Temporal data of measured salt concentration in source and

collector reservoirs
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processes, the Rd was higher for the lithium. The diffusion

coefficients of lithium and potassium differed by nearly

one order magnitude. More number of free paths was

available in case of KCl due to the presence of smaller

DDL thickness around the clay platelets. The diffusion

coefficients of KCl and CaCl2, however, were nearly the

same, which was also evident from the concentration

profiles in Fig. 3c, d. The observed trend was in agreement

with the earlier observation made by Sridharan et al. [52]

on the compressibility behavior of homoionized bentonites,

using potassium and calcium. The retardation factor for

CaCl2 was higher compared to KCl due to preference for

higher valence cations on the mineral surface to effectively

utilize the surface density [1, 39].

The significance of the estimated mass transport

parameters on the linear design was analyzed by consid-

ering the spatial distribution of the considered inorganic

species at a given time. Theoretical data of salt concen-

tration variation with depth after 5 years was simulated

using the estimated mass transport parameters in Fig. 4

using the following expression [46].

c

c0

¼ exp
nRdx

Hf

þ n

Hf

� �2

DeRdt

" #

erfc
x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Det=Rd

p þ n

Hf

ffiffiffiffiffiffiffiffiffiffiffiffi
DeRdt

p
" # ð9Þ

where all the above terms have the same meaning as

described in Eqs. (1)–(4).

Equation (9) simulates the concentration profile for

semi-infinite boundary condition at the bottom and flux

boundary condition (Eq. 4) at the top boundary. The

simulated data showed that a significant variation in the

concentration data of different salts was found with depth.

The LiCl salt solution could not migrate 20 cm depth of

the clay liner even after 5 years, but a small concentration

of other salts was available at 50 cm depth at the same

time. The diffusion migration of Li? was significantly

slower than other cations due to the presence of thicker

DDLs.
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Fig. 3 a Comparison of the experimental concentration profile with

the theoretical data for LiCl. b Comparison of the experimental

concentration profile with the theoretical data for NaCl. c Comparison

of the experimental concentration profile with the theoretical data for

KCl. d Comparison of the experimental concentration profile with the

theoretical data for CaCl2
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Conclusions

The diffusion coefficient of a compacted bentonite was

significantly influenced by the hydrated size and valence of

the migrating counter ions. Diffuse double layer theory was

useful to qualitatively analyze the mass transport parame-

ters of compacted plastic clays due to the influence of salt

migration. The diffusion coefficient decreased with the

increasing in size of the hydrated cations due to increase in

the diffuse double layer thickness around the clay platelets.

The diffusion coefficient of the studied bentonite was about

one order smaller for LiCl compared to KCl at the same

concentration and initial compaction density. The diffusion

coefficient of bentonite with CaCl2 and KCl were nearly

the same. The effect of smallest hydrated radius and higher

valence was similar on the migration paths in the clay pore

space. The variation in the diffusion coefficient due to

cation size was significant in the design of liners. The

present study is, further, very useful in understanding the

consolidation induced diffusion studies.
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