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Abstract The paper presents a computational procedure

for reliability analysis of earth slopes for which the prob-

abilistic critical slip surfaces have been determined con-

sidering spatial variability of soils. The effect of spatial

variability has been taken into account based on a newly

developed discretization model which is free from the

shortcomings of the discretization models available in the

literature and all these shortcomings are demonstrated

numerically in this paper. The developed algorithm is

based on the First Order Reliability Method coupled with

the Spencer Method of Slices valid for limit equilibrium

analysis of general slip surfaces. A case study of the Bois

Brule Levee has been reanalyzed using the developed

technique and several observations have been discussed.

The result obtained in this study clearly shows that the

proposed model is considerably more conservative than

other available models.

Keywords Slope stability � Slip surface �
Random variable � Spatial variability � Reliability analysis

Introduction

In recent times a number of studies on reliability evaluation

of earth slopes have been reported in the literature that are

aimed at emphasizing the importance of adopting a prob-

abilistic approach of analysis of slopes. However, the vast

majority of these studies have considered only one type of

uncertainty, namely, the epistemic uncertainty (statistical

uncertainty and measurement errors); in other words, the

aleatory uncertainty due to spatial variability has received

much less attention.

Studies reported on reliability analysis of earth slopes

considering spatial variability were conducted under the

framework of Limit Equilibrium Method (LEM) as well as

the Finite Element Method (FEM). Those based on the

Random Finite Element Method (RFEM) include Griffiths

and Fenton [1], Schweiger and Peschl [2], Griffiths et al.

[3], Hicks and Spencer [4], Le [5] and others. More

recently, Jha [6] has studied the influence of spatial vari-

ation on slope reliability using the RFEM and the First

Order Second Moment method combined with variance

reduction theory. Based on this study, the author has rec-

ommended the use of RFEM and determination of realistic

scales of fluctuation, coefficient of variation of soil prop-

erties for slope reliability analysis. In spite of its key

advantage that no failure mechanism needs to be assumed,

the RFEM suffers from excessive computational efforts

since the strength reduction method calculates the factor of

safety by progressively reducing or increasing the shear

strength of the material in order to bring the slope to a state

of limiting equilibrium [7]. Moreover, as pointed out by Ji

et al. [8], the number of spatially correlated random vari-

ables assigned to elements is commonly very large in the

advanced RFEM so that only Monte Carlo simulation can

be employed.

On the other hand, a lot of researchers studied the

influence of spatial variation on the slope reliability based

on the LEM [8–17]. El-Ramly et al. [10] modeled the

spatial variability of each input variable along the slip

surface by a 1D stationary random field describing an

elaborate spatial variability discretization model. A few

others (e.g., Hong and Roh [15]; Wang et al. [16]; Li et al.
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[17]) also modeled the spatial variability of soil properties

by a 1D random field; but they considered spatial variation

along the vertical direction. It was, however, argued that if

only the vertical autocorrelation distance is considered, it

might result in some of the variables having no effect on

the critical slip surface [17]. Low [11]; Cho [13]; Low et al.

[14], and Ji et al. [8] adopted the slicewise discretization of

the 2D random field. Cho [13], however, proposed a local

averaging method combined with numerical integration to

discretize random fields of soil properties in two-dimen-

sional space; while Low [11]; Low et al. [14]; Ji et al. [8]

used the midpoint discretization of random field known as

the method of autocorrelated slices. Ji et al. [8], however,

proposed another method known as the method of inter-

polated autocorrelations. The authors, however, have con-

cluded that the method of autocorrelated slices is more

accurate and it should be used as the benchmark for the

development of the method of interpolated autocorrela-

tions. However most of these models entail significant

errors due to the unrealistic introduction of inter-layer

correlation of soil properties. These models are also unable

to handle different values of the scale of fluctuation from

layer to layer. Moreover, with the exception of Ji et al. [8],

most of these studies were made to determine the proba-

bility of failure (or reliability index) of a predetermined

slip surface.

As stated before, all the above mentioned LEM based

studies considered spatial variability but the reliability

analyses were conducted on predetermined slip surfaces,

specifically, the probabilistic critical slip surfaces deter-

mined without considering spatial variability. It may be

stated that these studies are based on an indirect approach

for taking the effect of spatial variability into account. Only

one or two researchers (e.g., Ji et al. [8]) have addressed the

problem of direct determination of the probabilistic critical

slip surface considering spatial variability during the pro-

cess of determination itself. It may be stated, therefore, that

such a study is based on a direct approach for taking the

effect of spatial variability into account. While the direct

approach is a more logical of the two approaches, the

indirect approach is computationally simpler. It is therefore

necessary to investigate to what extent the results obtained

based on the two approaches differ, as well as which

approach leads to a more conservative estimate of the

safety of a slope.

To this end, the purpose of the paper is to develop a

computational procedure for reliability analysis of earth

slopes under the framework of limit equilibrium principles,

in which the spatial variability of soils has been taken into

account based on a new discretization model which is free

from the shortcomings associated with the available dis-

cretization models and using this model to draw a com-

parison between the results of reliability analysis of earth

slope obtained from both the indirect and the direct

approaches for considering spatial variability of soil

properties. To elucidate the present analysis as well as to

bring out the difference clearly, the case study of a com-

plex slope in multi-layered soil has been reanalysed. A

comparison of all the above studies are also been made

using the discretization model proposed by Cho [13].

Adopted Methodologies

Evaluation of Factor of Safety

Out of the numerous limit equilibrium methods of slices

currently available for slope stability analysis, the Spencer

method valid for general slip surfaces [18] is regarded as

one of the rigorous methods as it does not make any a priori

assumption regarding the shape of the slip surface and

satisfies both the force and the moment equilibrium con-

ditions [19]. In this study, therefore, this method is chosen

for calculation of the factor of safety (FS) and hence for

evaluation of the performance function for the reliability

analysis. The method of solution for FS of a given slip

surface is cast as a mathematical programming problem

and solved using the well-known Sequential Quadratic

Programming (SQP) [20] technique in the MATLAB

environment. The adoption of the SQP technique is based

on Hong and Roh [15] who reported that ‘an extensive

comparative study of nonlinear programming codes pre-

sented by Schittkowski [21] ranked the performance of the

SQP method to be the highest’.

Deterministic Critical Slip Surface

The problem of determination of the critical slip surface

and the associated minimum factor of safety (FSmin) is, as

usual, cast as a mathematical programming problem, and,

once again, the SQP technique in the MATLAB environ-

ment is employed to solve this problem.

Probabilistic Analysis

The First Order Reliability Method (FORM), being the

most versatile among the FOSM methods of reliability

analyses [22], has been adopted in this study. In this

method, the reliability index b is defined as the minimum

distance from the origin to the failure surface in the stan-

dard normal space, using a linearization of the performance

function around the design point as originally proposed by

Hasofer and Lind [23]. The limit state function for the

slope stability is usually defined as g(X) = FS -1.0, X

being a vector of basic state (or design) variables of the

system consisting of the uncertain geotechnical parameters
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(i.e. geometry and soil properties). The most commonly

used [24, 25] formulations of b is as follows.

b ¼ min
gðXÞ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi � lNi
rNi

� �T

R½ ��1 Xi � lNi
rNi

� �

s

ð1Þ

where, li
N and ri

N are the equivalent normal mean and

standard deviation of the ith random variable Xi and [R] is

the matrix of correlations coefficients between the standard

normal variables. The determination of the reliability index

b is, thus, a problem of optimization, and as indicated by

Wang et al. [16], the successful application of FORM relies

on the selection of a robust optimization algorithm for

multi-dimensional minimization, the SQP technique in the

MATLAB environment is employed again to solve this

problem. The solution yields the design point on the failure

surface and the corresponding reliability index b. Then the

failure probability can be expressed as pF = U(-b), where
U (�) denotes the standard normal cumulative distribution

function.

Search Algorithm for the Probabilistic Critical Slip

Surface

In deterministic slope stability analysis, it is conventional

to use an optimization based algorithm to search for the

deterministic critical slip surface (surface with the mini-

mum factor of safety) based on some suitable slope sta-

bility model. In most algorithms, the problem of locating

the deterministic critical slip surface associated with the

minimum factor of safety, FSmin, is formulated as an

optimization problem as follows [Eq. (2)]:

FSmin ¼ minXFS P;Xð Þ ð2Þ

where, P = set of input geotechnical parameters: c1, /1, c2,

/2, etc., X = set of co-ordinates defining the shape and

location of the slip surface: x1, y1, x2, y2, etc., FS = factor

of safety for a given set of geotechnical parameters P and a

given geometry of the slip surface defined by the location

parameters X.

Bhattacharya et al. [26] proposed a computational pro-

cedure for locating the probabilistic critical slip surface

(surface of the minimum reliability index, bmin) for earth

slopes, which is conceptually no different from that of the

deterministic critical slip surface. The problem of locating

the probabilistic critical slip surface associated with the

minimum reliability index, bmin, had been formulated in

exactly the same way as for the deterministic critical slip

surface, viz.,

bmin ¼ minXb P;Xð Þ ð3Þ

where, b = reliability index for a given set of geotechnical

parameters (including the statistical properties) and a given

geometry of the slip surface defined by its location

parameters.

It is, thus, evident that the proposed computational

procedure for the determination of the probabilistic critical

slip surface involves a 3-tier analysis: (1) Evaluation of

performance function requires the evaluation of Spencer’s

factor of safety involves the first tier of analysis; (2)

Evaluation of the reliability index, b based on FORM

involves the second tier of analysis, and (3) Search for the

probabilistic critical slip surface and the associated mini-

mum reliability index bmin involves the third tier of anal-

ysis. As mentioned before, for the first two tiers, the

optimization problem has been solved using the SQP

technique in the MATLAB environment. The third tier of

analysis has also been solved using the SQP technique

when the slip surfaces are assumed to be of circular shape.

However, for the slip surface of general shape, an efficient

random search technique [27] has been employed. The

reason for such choice is based on experience. For slip

surfaces of general shape, the random search technique of

Greco [27] has been found to yield a lower minimum

compared to the SQP technique. More detailed description

of the above procedure can found elsewhere [28].

The Proposed Discretization Model for Modeling
of Spatial Variability

In order to include the effect of spatial variability into the

reliability analysis of earth slopes, it is required to dis-

cretize the random fields into finite number of random

variables. Such a few models of discretization are available

in the literature for two-dimensional (2D) spatial variability

analysis (e.g., Cho [13]; Ji et al. [8]). However these

models entail significant errors due to the unrealistic

introduction of inter-layer correlation of soil properties.

These models are also unable to handle different values of

the scale of fluctuation from layer to layer. The above

observations have provided the motivation for the proposed

work to develop a new discretization model which is free

from the above mentioned shortcomings.

In the proposed model, for the arbitrary positions of trial

slip surfaces within the search domain, the entire length of

the slip surface is at first divided into segments lying

entirely within each individual layer present in the soil

profile. Then the total numbers of slices (as done in the

method of slices) and strips (part of a slice) contained in

each segment are then identified (Fig. 1). The field within

each small element (either an entire slice or a strip) is

described in terms of the spatial average of the field over

the element length. As the lengths of these elements are

different, the local averaging method combined with

numerical integration as proposed by Cho [13] has been
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preferred over the midpoint discretization of random field

[8, 11, 14] in order to discretize random fields of soil

properties in two-dimensional space. In the proposed

model, the discretization of random fields is made for each

segment within a particular layer and, therefore, the ran-

dom variables representing the concerned layers only are

considered for the analysis.

In order to describe the 2D anisotropic random field, the

widely used exponential auto-correlation function of the

following form [13, 29] [Eq. (4)] is considered.

qðx; yÞ ¼ exp � 2

dx
xj j þ 2

dy
yj j

� �� �

ð4Þ

where, dx is the horizontal scale of fluctuation, and dy is the
vertical scale of fluctuation.

The variances of the average strength parameters are

reduced by multiplying the variance function for each

element by the point variance of the random field. The

variance function for the anisotropic random field is as

follows [13] [Eq. (5)]:

cðLÞ ¼
2L cos a

dx
þ sin a

dy

� �

� 1þ exp �2L cos a
dx

þ sin a
dy

� �n oh i

2L2 cos a
dx

þ sin a
dy

� �2

ð5Þ

The correlation coefficients between these elements

within a particular segment are estimated using Eq. (6)

[13].

qðLi; LjÞ ¼
1

Li; Lj

Z Li

0

Z Lj

0

qðzÞdjdi ð6Þ

where z is the distance between the two arbitrarily situated

points, one on element i and another on element j (Fig. 1).

To elucidate the proposed discretization model, a

numerical example (Fig. 1) is taken from the ACADS

study [30] in which the cohesions in each of the three soil

layers are treated as random variables. For an arbitrary

position of the trial or intermediate slip surface, there are

three segments namely, segment A, segment B and seg-

ment C corresponding to the two intersections between

layer boundaries and slice bases in slice 10 and 12. So the

numbers of random variables for segments A, B and C

become 10, 3 and 1 respectively. All these random vari-

ables and the correlation coefficients among them in each

segment are generated. Random variables in each segment

are uncorrelated with those in other segments. So, most of

the correlation coefficient in the overall correlation matrix

of the size (14 9 14) becomes zero. It may be mentioned

here that El-Ramly et al. [10] also used similar framework

of discretization; however his model considers only one-

dimensional random field (along the slip surface).

Computational Advantages of the Proposed

Discretization Model

The proposed model has the following advantages over the

other discretization models available in the literature for

2D spatial variability analysis:

1. In the model proposed by Cho [13] or by Ji et al. [8], in

cases of layered slopes, by assuming slice to slice

correlation, inter-layer correlation of soil properties are

Fig. 1 Proposed discretization of the random fields over the slip surface
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implicitly considered which may not really exist. This

does not arise in the proposed model.

2. In a layered slope, if the values of the scale of the

fluctuation are different from layer to layer, Cho’s

model and Ji et al.’s model cannot be used. However,

the proposed model can automatically handle this

situation.

3. The number of discretized random variables in Cho’s

model or Ji et al.’s model equals the number of slices

multiplied by the total number of random soil param-

eters in all the soil layers. In the proposed model,

however, the discretization of random fields is made for

each segment lying within a particular layer and hence

the random variables within the concerned layers only

are considered for analysis. It is seen that by doing so in

the proposed model, not only the total numbers of

discretized random variables are much smaller than that

in Cho’s model or Ji et al.’s model but also most of the

correlation coefficients in the overall correlation matrix

becomes zero; which ultimately leads to substantial

reduction of computational effort and time. For exam-

ple, for the slope example considered, the total number

of discretized random variables as per Cho’s model or Ji

et al.’s model equals to 36 (=12 9 3) in place of 14 in

the proposed model and the size of the overall corre-

lation matrix becomes 36 9 36, whereas in proposed

model it is only 14 9 14.

Developed Computer Programs

In order to carry out the computations involved in solving

the numerical examples included in the paper, the follow-

ing computer programs have been developed in the

MATLAB environment:

1. Computer Program I: Computer Program to search for

the deterministic critical slip surface.

2. Computer Program II: Computer Program based on

FORM to search for the probabilistic critical slip

surface without considering spatial variability.

3. Computer Program III: Computer Program to search

for the probabilistic critical slip surface incorporating

spatial variability based on the developed discretiza-

tion model.

Illustrative Example

For the purpose of numerical demonstration of the results

of the investigations proposed in this paper, a case study of

the Bois Brule Levee has been selected from the literature

[31] and is described in the following subsections.

Description

In this example, the probabilistic stability for the Bois

Brule Levee, located along the west bank of the middle

Mississipi River in Perry Country, Missouri, USA [32],

has been studied. Figure 2 depicts a typical slope section

showing the soil profile consisting of four zones, namely,

Embankment Clay, Foundation Clay, Foundation Sand

and Clay Blanket. This example was previously analysed

by Hassan and Wolff [31] and Bhattacharya et al. [26].

In this respect it can be regarded as a benchmark

problem.

Following Hassan and Wolff [31], the reanalysis in this

study has been carried out for steady seepage conditions

under a flood on the levee to elevation 116.59 m (382.50

ft). Uncertainty in pore pressure is not considered in the

analysis; in other words, the locations of the piezometric

line are treated as deterministic. Consolidated-undrained

(CU) strength parameters are used for the clay materials.

Strength parameters of all the layers are considered as

random variables and all these variables are assumed to be

lognormally distributed in order to avoid negative values.

Fig. 2 Cross section of the Bois Brule Levee (after Hassan and Wolff [31])
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The mean value, standard deviation, coefficient of variation

(COV) and correlation coefficient for these parameters are

given in Table 1 [32].

In their analysis, Hassan and Wolff [31] considered both

circular and non-circular slip surfaces. It was reported that

bmin for the circular surface was less than that for the non-

circular surface. Bhattacharya et al. [26], however, con-

sidered only the noncircular surfaces. The present analysis

has also been carried out for noncircular slip surfaces with

a total of 12 slices.

Results of Deterministic Analysis

Using the computer program I and assuming the soil

properties to be deterministic with values equal to their

mean values in Table 1, the deterministic critical slip sur-

face has been found out using Spencer method [18]

coupled with the SQP technique available in the MATLAB

environment and is as shown in Fig. 3. The associated

minimum factor of safety is obtained as FSmin = 2.289,

which is much lower than those reported by earlier inves-

tigators (Table 3).

Results of Probabilistic Analysis

The results of probabilistic analysis are presented under the

following sub-headings:

1. Determination of the probabilistic critical slip surface

without considering spatial variability

2. Re-analysis of the above surface considering spatial

variability

3. Determination of the probabilistic critical slip surface

considering spatial variability

Table 1 Statistical properties of soil parameters

Material Parameter Mean Standard deviation Coefficient of variation (COV) Correlation coefficient

Embankment clay c1 (kN/m
2) 41.18 28.73 69.8 % ?0.50

/1 (�) 18.0 4.5 25 %

c1 (kN/m
3) 19.636 – –

Foundation clay c2 (kN/m
2) 47.88 – –

/2 (�) 18.0 – –

c2 (kN/m
3) 19.636 – –

Foundation sand /3 (�) 32.0 2.0 6.25 %

c3 (kN/m
3) 19.636 – –

Clay blanket c4 (kN/m
2) 47.88 38.31 80 % ?0.70

/4 (�) 18.0 6.0 33.3 %

c4 (kN/m
3) 19.636 – –

Fig. 3 Slope section and critical slip surfaces
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Determination of the Probabilistic Critical Slip Surface

without Considering Spatial Variability

Using the probabilistic version of the developed computer

program (computer program II) the probabilistic critical

slip surface has been determined when all random variables

are assumed to be lognormally distributed. Figure 3 shows

the probabilistic critical slip surface alongside the deter-

ministic critical slip surface. Here the two critical slip

surfaces are markedly different in shape and location.

While the deterministic critical slip surface extends well

into the foundation sand layer, the probabilistic critical slip

surface passes tangential to the thin clay blanket. The

associated minimum reliability index (bmin) is obtained as

2.657 and the associated probability of failure (pF) being

3.9 9 10-3 (Table 2). Table 2 also presents the details of

sensitivity analysis based on the FORM method. The

cohesion and friction angle of the thin clay blanket appear

to have substantial effect on the slope stability, as these

properties have the greater direction cosines. The reason-

ableness of the location of the probabilistic critical slip

surface in Fig. 3, can be explained from the fact that the

variation of shear strength parameters for the clay blanket

layer is much higher than that for the foundation sand layer

(as indicated by their COV values in Table 1 and also from

the results of the sensitivity analysis in Table 2).

Keeping in view that reliability analysis is sometimes

performed on the deterministic critical slip surface, in the

present analysis the reliability index for the deterministic

critical slip surface, denoted as bFS, is also evaluated as

6.078 which, as expected, is greater than bmin. Table 3

presents a comparison of the values of FSmin and bmin

obtained in the present analysis and those reported by the

previous investigators using different methods of analyses.

It is observed that the obtained value of bmin using FORM

is slightly lower than that reported by Bhattacharya et al.

[26] using MVFOSM method and higher than that reported

by Hassan and Wolff [31] using MVFOSM method.

However, the obtained value of bmin using MVFOSM in

the present analysis is much lower than these results.

Moreover, the probabilistic critical slip surface has been

determined based on FORM assuming all random variables

are truncated-normally distributed with left truncation

point at 0.0 (in order to avoid negative values) and the

associated minimum reliability index (bmin) is obtained as

2.047 which is also much lower than those reported by

previous investigators.

Effect of Cross-Correlation Among the Basic Random

Variables Though in the present example problem, the

cross-correlation between the cohesion and the friction

angle for layers are given [32], it would be interesting to

see how the results of the reliability analysis varies when

these cross-correlations among the basic random variables

are neglected. For the purpose of the above mentioned

investigation, all the previous reliability analyses are

repeated neglecting the cross-correlations and all the ran-

dom variables are again assumed to be lognormally dis-

tributed. Table 4 presents a comparison of the results

obtained with and without considering cross-correlation.

It is seen from Table 4 that using both the methods (the

FORM and the MVFOSM) the values of reliability index

neglecting cross-correlation are higher than those consid-

ering cross-correlation. It is also observed that the trend of

results between the FORM and the MVFOSM method

remain same as before considering cross-correlation

(Table 3).

Figure 4 shows the probabilistic critical slip surface

neglecting those cross-correlations among the basic ran-

dom variables based on the FORM method. For the sake of

comparison, the probabilistic critical slip surface obtained

previously considering cross-correlation is also included in

the Figure. From Fig. 4, it is observed that the probabilistic

Table 3 Summary of reliability analysis without considering spatial variability

Studies Methods used Deterministic critical slip

surface

Probabilistic critical slip surface

Limit equilibrium analysis Reliability analysis FSmin bFS bmin

Hassan and Wolff [31] Spencer method [18]—circular MVFOSM 2.552 3.779 2.32

Spencer method [18]—noncircular MVFOSM 2.718 3.813 2.527

Bhattacharya et al. [26] Spencer method [18] MVFOSM 2.663 3.596 2.666

Present study Spencer method [18] MVFOSM 2.289 3.119 2.053

FORM 2.289 6.078 2.657

Table 2 Results of sensitivity analysis based on FORM

Material Sensitivities bmin pF

ac a/

Embankment clay -0.3264 -0.0900 2.657 3.9 9 10-3

Clay blanket -0.5623 -0.4389

Foundation sand – -0.0394
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critical slip surface neglecting those cross-correlations is

shifted towards toe.

Re-analysis of the Above Probabilistic Critical Slip Surface

Considering Spatial Variability

Determination of the probabilistic critical slip sur-

face(s) together with the associated minimum reliability

index, as presented in the preceding section, was done

without considering spatial variability of the soil proper-

ties. In this sub-section, the probabilistic critical slip sur-

face obtained above has been re-analysed to consider the

effect of spatial variability. As stated already, such an

analysis may be referred to as the indirect procedure for

considering spatial variability. Initially, an attempt has

been made to incorporate the cross-correlation in the

analysis together with the spatial correlation. However,

such an attempt failed as convergence could not be

achieved. Thus, the subsequent analyses were conducted

considering spatial correlation only, neglecting cross-cor-

relation. This is expected to result in ‘‘conservative’’ esti-

mate of b. As before, the random variables were assumed

to be lognormally distributed. But before doing this, it is

desirable to validate the computer program developed for

the proposed model.

Validation of the Proposed Model For the purpose of

validation, a few layered slope examples from Cho [13] and

Ji et al. [8] (more specifically the example 1 of both Cho [13]

and Ji et al. [8]) have been re-analysed using the proposed

model. The results obtained from the re-analysis have been

found to be comparable (Table 5) with those reported by the

authors. It can be noted further that in case of layered slopes

in which the entire slip surface lies within a single layer, the

proposed model becomes the same as the Cho’s model.

Therefore, in such a situation results obtained by using these

twomodels should also be the same. Indeed, in the example 1

of Cho’s paper in which the entire slip surface lies within a

single layer (upper layer), the two sets of results given in

Table 5 are found to be rather close. The observations from

Table 5 thus serve to validate the proposed model.

Re-analysis of the Probabilistic Critical Slip Surface The

proposed spatial variability discretization model is used in

this re-analysis which is split up into (1) Study 1 and (2)

Study 2. Study 1 considers equal set of values of scale of

Fig. 4 Slope section with probabilistic critical slip surfaces based on the FORM method

Table 4 Comparison between values of reliability index with and without consideration of cross-correlation

Method of reliability

analysis

Reliability index (b) of the deterministic critical slip surface Minimum reliability index (bmin)

Considering cross-

correlation

Neglecting cross-

correlation

Considering cross-

correlation

Neglecting cross-

correlation

MVFOSM 3.119 3.509 2.053 2.355

FORM 6.078 6.995 2.657 3.224
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fluctuation for all the layers while study 2 considers dif-

ferent set of values of scale of fluctuations for the layers.

Study 1: Comparison of Reliability Index With and Without

Consideration of Spatial Variability with Equal Set of

Values of Scale of Fluctuations in all Soil Layers For this

study, the values of scale of fluctuation in the horizontal

and the vertical direction (dx and dy) are taken as 20 m

(assumed range: 10–50 m) and 2 m (assumed range:

1–5 m) respectively. Comparison of results are made based

on the proposed discretization model and the model pro-

posed by Cho [13]. The Results are presented in Table 6.

From Table 6 it is observed that for a given slip surface

consideration of spatial variability increases the reliability

index significantly. Further, for the particular combination

of scale of fluctuations selected for this study, b value

obtained from the proposed model is more conservative

than the Cho’s model.

Study 2: Comparison of Reliability Index With and Without

Consideration of Spatial Variability with Different Set of

Values of Scale of Fluctuations for Different Soil Layers An

assumption needs to be made regarding different set of

values of the scale of fluctuations for different soil layers.

Such an assumption can be made from the results of the

sensitivity analysis based on the FORMmethod (Table 2). It

would be logical to assume higher values of scale of fluc-

tuations for those soil layers whose strength parameters have

greater sensitivity or higher level of uncertainty. The fol-

lowing set of values of scale of fluctuations are assumed

merely for demonstration purpose as well as to show the

applicability of the proposed discretizationmodel (Table 7):

The results of the analysis are presented in Table 8.

From the comparison of results presented in Table 6 and

Table 8, it is observed that for a given slip surface, for the

assumed different set of values of scale of fluctuations the

reliability index decreases significantly from that corre-

sponding to the equal set of values of scale of fluctuations

in all the layers (given in parenthesis).

Determination of the Probabilistic Critical Slip Surface

Considering Spatial Variability

In contrast to the ‘indirect procedure’ of reliability analysis

considering spatial variability, as presented in the

preceding sub-section, the ‘direct procedure’ for reliability

analysis considering spatial variability is presented in this

sub-section. Once again, for the sake of convenience, such

an analysis is sub-divided into two parts: (1) Study 1 which

corresponds to equal set of values of scale of fluctuations in

all the layers and (2) study 2 which corresponds to unequal

set of values of scale of fluctuations for the layers.

Study 1: Minimum Reliability Index with Equal Set of

Values of Scale of Fluctuations in all Soil Layers Using

the developed computer program III, the probabilistic

critical slip surfaces have been determined by using the

proposed discretization model. For the sake of comparison,

analysis has also been done by using the discretization

model proposed by Cho [13]. For the particular case of

dx = 20 m and dy = 2 m, the two critical slip surfaces are

plotted in Fig. 5 which shows that these surfaces are not

only quite different from each other but also substantially

Table 7 Assumed set of values of scale of fluctuations (Study 2)

Material Values of scale of fluctuation

dx dy

Clay blanket 50 5

Embankment clay 30 3

Foundation sand 10 1

Table 6 Comparison between values of reliability index with and

without consideration of spatial variability (Study 1)

Reliability index Difference (%)

Without considering spatial variability 3.224 0.0

Considering spatial variability

Using Cho’s model (dx = 20 m; dy = 2 m) 8.121 151.89

Proposed model (dx = 20 m; dy = 2 m) 6.230 93.24

Table 5 Validation of the proposed model

Example 1 from Cho [13]a (results for dX = 10 and dx/dy = 1.0) Example 1 from Ji et al. [8] (results for dX = 20 and dy = 2)

Using Cho’s model Using proposed model Using Ji et al.’s model Using proposed model

pF = 3.2 9 10-3 pF = 3.13 9 10-3 b = 2.256 b = 2.462

a In this case the entire slip surface lies within a single layer (upper layer)

Table 8 Comparison between values of reliability index with and

without consideration of spatial variability (Study 2)

Reliability index Difference (%)

Without considering spatial variability 3.224 0.0

Considering spatial variability 5.608 73.94

(6.230) (93.24)
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different from the probabilistic critical slip surface deter-

mined without considering spatial variability. Table 9

presents the values of bmin associated with these surfaces. It

is interesting to note that these values are markedly dif-

ferent from one another.

A comparison between Table 6 and Table 9 indicates

that the observations made from Table 6 for b values are

also valid for bmin values in Table 9. Further, values of

bmin in Table 9 are lower than the corresponding values of

b in Table 6. The largest difference is nearly 26 % corre-

sponding to the proposed discretization model.

Study 2: Minimum Reliability Index with Different Set of

Values of Scale of Fluctuations for Different Soil Lay-

ers Similar to studies made for given slip surface, using

the developed computer programs III, the probabilistic

critical slip surfaces based on the proposed discretization

model has been determined for the selected set of values of

scale of fluctuations for different soil layers (Table 7). The

results are presented in Table 10.

From Table 10 it is observed that for the assumed dif-

ferent set of values of scale of fluctuations the minimum

reliability index also decreases significantly, which is as

per expectation.

The two probabilistic critical slip surfaces respectively

for the equal set of values of scale of fluctuations in all soil

layers (study 1) and for the different set of values of scale

of fluctuations in different soil layers (study 2) are plotted

in Fig. 6, which shows that two surfaces are located quite

differently from one another.

Conclusions

Based on the studies undertaken in this paper, the following

concluding remarks can be made:

1. The studies undertaken in this paper have revealed that

the probabilistic critical slip surfaces obtained from the

direct approach (considering the effect of spatial

variability during the search for critical slip surface)

are found to be substantially different from those from

indirect approach (considering the effect of spatial

variability on the critical slip surface already deter-

mined without considering spatial variability). Further,

values of the minimum reliability indices (bmin)

associated with the probabilistic critical slip surfaces

obtained from the direct approach are found to be

considerably lower than those from the indirect

approach. In other words, adoption of indirect

approach might lead to an overestimation in the bmin

Fig. 5 Slope section with probabilistic critical slip surfaces

Table 9 Comparison between values of minimum reliability index

with and without consideration of spatial variability (Study 1)

Minimum Reliability Index Difference (%)

Without considering spatial variability 3.224 0.0

Considering spatial variability

Using Cho’s model (dx = 20 m; dy = 2 m) 7.791 141.67

Proposed model (dx = 20 m; dy = 2 m) 4.609 42.94

Table 10 Comparison between values of minimum reliability index

with and without consideration of spatial variability (Study 2)

Reliability index Difference (%)

Without considering spatial variability 3.224 0.0

Considering spatial variability 4.174 29.45
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value (underestimation in the probability of failure, pF
of a slope).

2. Based on the studies conducted in this paper, it is seen

that the reliability results based on the proposed model

is considerably more conservative than those based on

the Cho’s model. Further, the analysis based on the

proposed model drastically reduces the amount of

computational effort and time. Reduction in computa-

tional time has been observed to be nearly 50 %.

3. The study has brought out certain computational

advantages of the proposed model over the other

discretization models available in the literature for 2D

spatial variability analysis, and the results presented

have demonstrated these advantages. These advantages

would make the proposed model capable of handling

those cases of layered slopes in which soils in different

layers have different values of scale of fluctuation.
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