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Abstract Gravity retaining walls, especially with

improvement of RCC structures though have become more

or less obsolete in terms of construction (replaced by RCC

cantilever and counter fort type retaining walls), yet in

India, there exists a number of them that has been built in

the past in many strategically important places (both post

and pre independence). Evaluating their health in terms of

a future strong motion earthquake remains an important

exercise—now that our understanding of this fury of

mother nature is far more profound. Unfortunately tools

available to assess its behavior as realistically as possible

under seismic force even today is quite limited, marred by

idealization, that are unrealistic and may not reflect cor-

rectly the actual behavior in reality, and this needs a serious

evaluation. In Indian context, the only tool available to

assess a gravity type retaining wall’s performance is by

Mononobe and Okabe Method (M–O method), that con-

tinue to dominate IS code, notwithstanding the fact that

many countries including US has now abandoned the

method, as it has now been proved beyond any dispute that

M–O method gives a lower bound solution than reality.

Present paper tries to address some of these shortcomings

as proposed above and come up with a mathematical model

that is more realistic, and which may be used for perfor-

mance evaluation of such gravity retaining walls under

future earthquakes. Finally, the paper suggests some

practical strengthening measure that may be undertaken to

enhance these walls performance—where to the author’s

perception if re-evaluated, many of them would be found

unsafe in context to present earthquake code.
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List of Symbols

A Corss-sectional area of beam with uniform

cross section

Ab Corss-sectional area of retaining wall at base

Az Corss-sectional area of retaining wall at any

height z

Bb Width of retaining wall at base

C1 to C4 Intergration constant

CTFi Time period factor in bending mode of

retaining wall in ith mode

CTSi Time period factor in shear mode of retaining

wall in ith mode

E Youngs modulus of retaining wall material

f b
i Shape function of beam, bending mode in mode i

f s
i Shape function of beam, shear mode in mode i

G Dynamic Shear Modulus of retaining wall

material

g Acceleration due to gravity

H Height of retaining wall

I Importance factor

Ib Moment of inertia of retaining wall at base

Iz Moment of inertia of retaining wall at any

height z

K Stiffness of a system

[K]ij Stiffness matrix of retaining wall

Ke Equivalent stiffness
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Kb Stiffness in bending mode

Ks Stiffness in shear mode

[M]ij Mass matrix of retaining wall in bending or

shear mode

Mzi Bending moment along retaining wall height at

point z for any mode i

MSRSS SRSS value of seismic Moment

P Load vector

q Any arbitrary load on a beam

rs Slenderness ratio @ H/Bb

R Response reduction/Ductility factor

Sai Spectral acceleration of retaining wall in ith mode

t Any time instant

T Natural modal period of a body

Tb Natural modal period of retaining wall in

bending mode

Ts Natural modal period of retaining wall in shear

mode

Te Effective natural modal period under combined

shear and bending mode

u Lateral deflection of the retaining wall

Vs Shear wave velocity

VSRSS SRSS value of base shear under earthquake force

Vz Base shear at retaining wall–soil interface

x Co-ordinate in horizontal direction

z Co-ordinate in vertical direction

Z Zone factor

n Dimensionless term z/H

b Code factor (=ZI/2R)

db Deflection due to bending

ds Deflection due to shear

dt Total deflection

/ Scaling factor for the eigen vectors

cc Weight density of concrete

g Shear correction factor

ji Modal mass participation in ith mode

k Eigenvalues

m Poisson’s ratio of retaining wall material

q Mass density of concrete

x Natural modal frequency

xe Effective natural frequency

xb Natural frequency in bending mode

xs Natural frequency in shear mode

wb Dimensionless term

X Dimensionless term

Introduction

Gravity retaining walls, especially with improvement of

RCC structures though have become more or less obsolete

in terms of construction (replaced by RCC cantilever or

counter fort type retaining walls), yet in India, there exists a

number of them that has been built in the past in many

strategically important places (both post and pre indepen-

dence era). This possibly started after 1857, when British

East India Company took a major lesson learnt out of

Sepoy Mutiny, especially with the massacre at Meerut and

Lucknow [1]. Lord Canning, then Viceroy of India, real-

ized that they needed to develop railways as means of rapid

mass transport for quick deployment of military force to

areas of unrest.

This resulted in construction of a number bridges and

laying of tracks in many hilly and remote areas that

required gravity type retaining walls for smooth operation

of the rail movement. Many of these walls built about

150 years ago made out of stone masonry, bricks and plain

concrete (reinforced concrete structure was yet to see its

light of birth then) are still operational till date and has

stood the test of time—though a number of them had yet

been tested to a strong motion earthquake and examined as

to how well these walls performed under it.

Evaluating their health in terms of a future strong

motion earthquake remains an important exercise, now that

our understanding of this fury of Mother Nature is far more

profound. Damage to any of these walls due to earthquake

(especially those built at strategic locations), can have

serious problems in terms of logistics as well as trade,

commodity movement and post-earthquake relief supply.

Unfortunately tools available to asses its behavior as real-

istically as possible under seismic force even today is quite

limited. Available tools are invariably marred by ideali-

zation, and simplified boundary conditions that may not

reflect correctly the actual behavior in reality, and this

needs a serious evaluation.

In Indian context, only tool available to assess a gravity

type retaining wall’s performance under earthquake is by

Mononobe and Mastsuo [2] and Okabe’s Method [3] (M–O

method). This continues to dominate IS-1893 (2002) [4]

and many other international codes for more than 90 years,

irrespective of the fact that, many countries including US

has now abandoned the method, as it has now been proved

beyond any dispute that M–O based method gives a lower

bound solution than reality [5–8].

Armed with M–O method only, it would become quite

difficult for any investigator to convince the client or a

governmental body that a gravity wall that has stood the test

of time for more than 150 years or more is actually unsafe—

if a strong motion earthquake hit the site, unless he comes up

with a most realistic model that takes into cognizance almost

all the parameters that could affect its performance not-

withstanding the fact that despite M–O method’s popularity

due to its ease in application can give highly misrepresen-

tative results under many circumstances.
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A number of researchers in other countries have inves-

tigated this problem, like Steedman and Zeng [9], Saran

and Prakash [10], Saran and Gupta [11], Seed and Whit-

man [12], Whitman [13, 14], Richard and Elms [15], Das

and Puri [16] etc. In India, this problem has been investi-

gated by researchers like Choudhury et al. [17–19], Ghosh

et al. [20–22], Sarkar [23], and sundry others. However,

most of these researches are a variation of M–O method in

one form or other, trying to incorporate other soil condi-

tions like surcharge loading q or using logarithmic spiral

curves etc. within the basic M–O frame work. Major

lacunae that exists in M–O method can be summarized as

hereafter.

• M–O method assumes the wall to be perfectly rigid and

only considerers the soil subjected to peak ground

acceleration. This assumption is possibly not realistic,

as because the wall may have high stiffness, but the

stiffness is surely not infinite, and can affect the overall

seismic response. Structural influence of the wall itself,

on overall dynamic response is completely ignored in

M–O method.

• Its failure to predict the point of action of lateral thrust

which at best remains an approximation.

• M–O method was actually derived for dry cohesion less

backfill and really does not cater to soil with additional

surcharge over backfill, though the method has been

rampantly used or abused in many such cases.

Present paper tries to address some of these shortcom-

ings as proposed above and come up with a mathematical

model that is more realistic, and which may be used for

performance evaluation of such gravity retaining walls

under future earthquakes.

Proposed Method

To understand the essence of the proposed approach, the

simplest case of a gravity type retaining wall with cohesion

less dry back fill, level with the wall as shown in Fig. 1 is

considered. Boundary conditions like sloped soil will be

imposed at a later stage.

Wall Retaining Cohesion Less / Soil Only: Case-1

Shown in Fig. 1 is a cantilever gravity type retaining wall

with dry sandy backfill, with ground having no slope. It is

to be noted that the proposed mathematical model can also

be derived from a more generalized soil condition but this

has been considered first for sake of brevity and also to use

it as a benchmark for more generalized cases that will be

taken up subsequently. While performing the analysis it is

assumed here that

• The soil profile under active case is at incipient failure

when the failure line OR make an angle tan (45 ? //2)

as shown in Fig. 1.

• Since soil profile is already under failed condition

under static load (i.e. the active earth pressure is

already mobilized), it will not induce any stiffness to

overall dynamic response but will only contribute to

inertial effect.

• Since the gravity cantilever wall is of significant

thickness, its mass and stiffness contribution cannot

be ignored. The wall thus contributes both to stiffness

and inertia of the overall soil-structure system.

• The retaining wall is assumed to be fixed at base and

foundation compliance has been ignored for the time

being.

It will be observed that assumptions made above are

quite similar to what Mononobe and Mastsuo [2] or

Steedman and Zeng [9] has assumed in their analysis.

While Mononobe and Steedman both ignored effect of

wall, this has been considered in the present analysis.

Based on above assumptions the analysis is carried out as

elaborated hereafter.

Dynamic Flexural Response

For this, we start with a uniform fixed base cantilever beam

shown in Fig. 2 (ignoring the hydrostatic soil pressure

impinging on it). Under free vibration condition the

equation of equilibrium is expressed as

EI
o4u

oz4
¼ qA

o2u

ot2
ð1Þ

where u is the lateral displacement of the beam, q mass

density of beam material, A area of cross section of beam

(assumed uniform over its length), I moment of inertia of

the beam element and E Young’s modulus of the beam

material. For solution of Eq. (1), let uðz; tÞ ¼ YðzÞqðtÞ.
Based on separation of variable technique, Eq. (1) can be

separated into two linear differential equation and one of

which is Eq (2). The generic solution to this equation is

given by Eq. (3). Imposing the four boundary conditions

Fig. 1 A gravity retaining wall retaining dry cohesion less back fil
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(Fig. 2) as Eq. (4) we have the shape function as Eq. (5).

Where m is mode number 1, 2, 3 etc.

EI
d4Y

dz4

� �
� k4Y ¼ 0 where k4 ¼ qAx2

EI
ð2Þ

Y ¼ C1 sin kzþ C2 cos kzþ C3 sinh kzþ C4 cosh kz ð3Þ

1Þ Y ¼ 0 at z ¼ 0; 2Þ dY

dz
¼ 0 at z ¼ 0

3Þ d3Y

dz3
¼ 0 at z ¼ H; 4Þ d2Y

dz2
¼ 0 at z ¼ H

ð4Þ

Ym ¼ sin
lmz

H
� sinh

lmz

H
� am cos

lmz

H
� cosh

lmz

H

� �
ð5Þ

lm ¼ 1:875; 4:694; 7:855;
2m� 1

2
p; am

¼ sin lm þ sinh lm

cos lm þ cosh lm

ð6Þ

f b
i zð Þ ¼ sin

liz

H
� sinh

liz

H
� ai cos

liz

H
� cosh

liz

H

� �
ð7Þ

Equation (5) is actually the eigenvectors of the beam and

is usually expressed as Eq. (7). Here the superscript ‘b’

stands for bending and subscripts i stands for mode numbers

1, 2, 3 etc. Equation (7) will now be used to determine

the dynamic stiffness of the gravity wall cross section

shown in Fig. 1. Here wb is a dimensionless number

wb ¼ Bt � Bbð Þ=Bb, Ib moment of inertia of the wall at base

IðzÞ ¼ Ib 1þ wbz=Hð Þ3 and Ab cross sectional area at base

AðzÞ ¼ Ab 1þ wbz=Hð Þ. Now for a wall of variable cross

section under any loading q, the equation of equilibrium is

expressed as Eq. (8). We assume u ¼ u0f b
i ðzÞ as the

displacement profile to Eq. (8). If u0f b
i ðzÞ would have been

an exact solution then EIz d4u
�

dz4
� �

� q ¼ 0. Since it is not,

we have a residual error Re expressed as Eq. (9). To minimize

the error based on Galerkin’s weighted residual technique we

integrate it over the domain, multiplying it by the weighted

function f b
j ðzÞwhen

RH

0
Ref b

j ðzÞdz ¼ 0.

EIz d4u
�

dz4
� �

¼ q ð8Þ

Re ¼ EIz d4u
�

dz4
� �

� q ð9Þ

ZH

0

EIzu0

d2

dz2

d2f b
i ðzÞ

dz2

� �
f b
j ðzÞdz ¼

ZH

0

qf b
j ðzÞdz ð10Þ

On successive integration of Eq. (10) by parts one can have

Eq. (11). The first two terms of Eq. (11) cancels out leaving

Eq. (12). Considering Eq. (12) in the form K½ � Df g ¼ Pf g, we

conclude that, as per Galerkinian basis, the dynamic stiffness

matrix for a wall width varying linearly can be expressed as

Eq. (13). The mass matrix [M] can be expressed as Eq. (14).

EIzu0

d2

dz2

df b
i ðzÞ
dz

� �	 
H

0

� EIzu0

d2

dz2

df b
i ðzÞ
dz

� �	 
H

0

þ
ZH

0

EIzu0

d2

dz2

d2f b
i ðzÞ

dz2

	 

f b
j ðzÞdz ¼

ZH

0

qf b
j ðzÞdz

ð11Þ

ZH

0

EIzu0

d2

dz2

d2f b
i ðzÞ

dz2

	 

f b
j ðzÞdz ¼

ZH

0

qf b
j ðzÞdz ð12Þ

K½ �ij¼ EIb

ZH

0

d2

dz2
1þ wb

z

H

� �3 d2

dz2
f b
i ðzÞ

	 

f b
j ðzÞdz ð13Þ

M½ �ij¼
ccAb

g

ZH

0

1þ wb

z

H

� �
f b
i ðzÞf b

j ðzÞdz

þ Kacs

g

� �ZH

0

H � zð Þf b
i ðzÞf b

j ðzÞdz ð14Þ

Here, cc weight density of gravity wall, csWeight density

of backfilled soil, Kacoefficient of active earth pressure,

when either Rankine or Coulomb’s formulation can be used,

g acceleration due to gravity. In natural co-ordinates [K] and

[M] can be written as Eqs. (15) and (16). Where f b
i nð Þ and

f b
j nð Þ are expressed in Eq. (7) where n = z/H and X is a

dimensionless number expressed as X ¼ Ka cs=ccð Þ H=Bbð Þ.
From Eqs. (15) and (16), it is observed that stiffness matrix is

actually dependent on wb which is again a function of the

ratio Bt/Bb and the mass matrix is a function of both Bt/Bb and

soil parameter X. For instance, for Bt/Bb = 0.1 and X=0.3

one can have Eq. (17) for first three modes.

K½ �ij¼
EIb

H3

Z1

0

d2

dn2
1þ wbnð Þ3 d2

dn2
f b
i ðnÞ

	 

f b
j ðnÞdn ð15Þ

M½ �ij¼
ccAbH

g

	Z1

0

1þ wbnð Þf b
i ðnÞf b

j ðnÞdn

þ X
Z1

0

1� nð Þf b
i ðnÞf b

j ðnÞdn



ð16Þ

Fig. 2 A cantilever beam under

free vibration
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K½ �3�3¼
13:965 24:495 23:911

24:495 165:589 289:033

23:911 289:033 1:167� 103

2
64

3
75EIb

H3

M½ �3�3¼
0:616 0:246 �0:033

0:246 0:566 0:225

�0:033 0:225 0:662

2
64

3
75 ccAbH

g

ð17Þ

Considering the general Eigen value problem K½ � /f g ¼
k M½ � /f g and solving the same by Jacobi’s method [24], we

finally have time period and scaling vector [ub
i ] expressed

as Eq. (18). The time period can thus be generically

expressed by Eq. (19). Where, the term CTFi is given in

Table 1 in terms of Bt/B and X. Based on Eq. (19) if one

tries to estimate the time period of a gravity retaining wall

one could well under estimate it, as because the slenderness

ratio (H/Bb) for these type of wall are usually B2.0 and

shear deformation can play a significant role on the final

outcome [25].

Tf

� �
3�3
¼ H2

Bb

ffiffiffiffiffiffi
cc

gE

r 5:119 0 0

0 1:501 0

0 0 0:51

2
64

3
75

ub
i

� �
¼

1 0:297 �0:16

�0:165 �1 0:218

0:019 0:226 �1

2
64

3
75

ð18Þ

Tf

� �
i
¼ CTFi

H2

Bb

ffiffiffiffiffiffi
cc

gE

r
ð19Þ

Dynamic Shear Response

The free vibration equation of a shear beam of uniform

cross sectional area A can be expressed as Eq. (20). Solving

Eq. (20), it can be shown that the eigen vector of the

problem [7] can be expressed as f s
i ¼ cos 2i� 1ð Þp½

H � zð Þ=2H�. Here the superscript s stands for the term

shear and subscript i stands for mode 1, 2, 3 etc. Now since

in this case the area of wall varies as Az = Ab(1 ? wbz/H),

it changes the characteristics of the differential equation

when applying Galerkin’s technique it can be shown [26]

that the stiffness matrix can be expressed as Eq. (21) and

then by Eq. (22). In natural co-ordinates (n = z/H) this is

expressed as Eq. (23) and mass matrix is expressed as

Eq. (24). Where wb and X are dimensionless terms as

explained before. Expanding Eqs. (23) and (24) for a typical

value of Bt/Bb = 0.1 and X = 0.3 we have Eq. (25) for first

three modes.

! o2u

oz2
¼ 1

Vs2

o2u

ot2
ð20Þ

K½ � ¼ �
ZH

0

d

dz
GAz

d

dz
f s
i ðzÞ

	 

f s
j ðzÞdz ð21Þ

! K½ � ¼ �GAb

ZH

0

d

dz
1þ wb

z

H

� � d

dz
f s
i ðzÞ

	 

f s
j ðzÞdz ð22Þ

K½ � ¼ �GAb

H

Z1

0

d

dn
1þ wbnð Þ d

dn
f s
i ðnÞ

	 

f s
j ðnÞdn ð23Þ

! M½ �ij¼
ccAbH

g

"Z1

0

1þ wbnð Þf s
i ðnÞf s

j ðnÞdn

þ X
Z1

0

1� nð Þf s
i ðnÞf s

j ðnÞdn

#
ð24Þ

K½ � ¼ gGAb

H

0:904 �0:675 0:125

�0:675 6:332 �3:375

0:125 �3:375 17:188

2
64

3
75

M½ � ¼ ccAbH

g

0:228 �0:122 �0:014

�0:122 0:336 �0:122

�0:014 �0:122 0:345

2
64

3
75

ð25Þ

Here g ¼ a shear correction factor = 2/3 for rectangular

section. On Eigen-solution, this finally results in the time

period for shear deformation and the corresponding scaling

vector [us
i ] can be expressed as Eq. (26). Time period [Ts]i

in Eq. (26) can be generically expressed as Eq. (27).

Table 1 Values of CTFi for various Bt/Bb and X ratio

Bt/Bb X = 0.1 X = 0.2 X = 0.3 X = 0.4

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

0.00 4.268 1.349 0.456 4.458 1.409 0.477 4.640 1.466 0.496 4.815 1.521 0.515

0.05 4.585 1.399 0.469 4.750 1.451 0.488 4.909 1.500 0.506 5.063 1.548 0.524

0.10 4.831 1.410 0.474 4.977 1.456 0.492 5.119 1.501 0.510 5.257 1.545 0.527

0.15 5.026 1.401 0.475 5.158 1.444 0.493 5.287 1.485 0.510 5.413 1.525 0.526

0.20 5.186 1.381 0.474 5.308 1.421 0.491 5.426 1.459 0.508 5.542 1.497 0.523

0.25 5.321 1.356 0.472 5.433 1.393 0.488 5.544 1.429 0.504 5.652 1.464 0.519
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TS½ �i¼
H

Vs
ffiffiffi
g
p

3:173 0 0

0 1:355 0

0 0 0:852

2
64

3
75

us
i

� �
¼

�1 �0:49 0:288

�0:037 �1 0:413

4:467� 10�3 �0:057 1

2
64

3
75

ð26Þ

TS½ �i¼ CTS½ �i H
�

Vs

ffiffiffi
g
p� �

ð27Þ

where [CTS]i are the diagonal elements of the matrix in

Eq. (26) of [Ts]i. The values of CTS for the first three modes

for different Bt/B and soil parameter X are presented in

Table 2. The time period of flexure and shear can be now

combined. That is if a load vector P is applied on a body, the

displacement of the body due to bending as well as shear

deformation can be expressed as [27] Eq. (28). Where, dt is

total displacement of the system; db and ds are displacement

due to bending and shear. Eq. (28) can be expressed as Eq.

(29). Where P total load; Kb and Ks are stiffness due to

bending and shear deformation, respectively. Eq. (29) can be

expressed as Eq. (30) then Eq. (31). Where xe is combined

frequency of the system due to bending and shear, xb and xs

frequency due to bending and shear only.

dt ¼ db þ ds ð28Þ
P=Ke ¼ P=Kb þ P=Ks ð29Þ
m=Ke ¼ m=Kb þ m=Ks ð30Þ

1
�
x2

e ¼ 1
�
x2

b þ 1
�
x2

s ð31Þ

where m is total mass of the system. Equation (31) is precisely

the classical Dunkerley’s equation [28] by which combined

frequency of multi-body systems can be derived by treating

each system in isolation and is often used in Dynamic soil

structure interaction (DSSI) problems [29–31]. Equation (31)

finally yields Eq. (32). Substituting Eqs. (19) and (27) in

Eq. (32) and considering rs = H/Bb, the slenderness ratio of

the wall, the time period is given by Eq. (33).

T2
ei ¼ T2

bi þ T2
si ð32Þ

Tei ¼ CTFi

H2

Bb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cc

gE
1þ CTSi

CTFi

� �2
2 1þ mð Þ

gr2
s

" #vuut ð33Þ

Equation (33) is of particular interest as it explains the

effect of shear deformation that goes on to elongate the

time period. It will be observed from Eq. (33) that it is

strongly dependent on slenderness ratio rs. As Bb reduces,

value rs increase rapidly (in terms of its square), and for

large values of rs makes the second term within the

parenthesis insignificant when flexural mode dominates the

response. As per modal response analysis, Sd ¼ Sa=x2,

where Sd modal amplitude; Sa spectral acceleration

corresponding to time period T. Based on definition as

per IS-1893 (2002) [4], dynamic amplitude ui
t can be

expressed as Eq. (34). Here ji is modal mass participation

factor for ith mode and is expressed as Eq. (35).

ut
i ¼ jb

i b Sb
aiT

2
ei

�
4p2

� �
ub

i

� �T
f b
i nð Þ

� �
ð34Þ

jb
i ¼

Z1

0

1þ wbnð Þf b
i ðnÞdnþ X

Z1

0

ð1� nÞf b
i ðnÞdn

0
@

1
A�

�
Z1

0

1þ wbnð Þf b
i ðnÞ

2
dnþ X

Z1

0

ð1� nÞf b
i ðnÞ

2
dn

0
@

1
A

ð35Þ

Here, b ¼ ZI=2Rwhere Z zone factor, I importance factor

and R ductility or response reduction factor. ub
i is the scaling

vector as expressed in Eq. (18) we have Eq (36). For dynamic,

moment M ¼ �EIz d2u=dz2ð Þ, shear V ¼ �EIz d3u=dz3ð Þ
considering the gravity wall is predominantly a flexural

member we have Eqs. (37) and (38).

ut
i ¼ b

�
4p2

� �
jb

i Sb
aiT

2
ei ub

i

� �T
f b
i nð Þ

� �h i
ð36Þ

MiðnÞ ¼
�EIb 1þ wbnð Þ3b

4p2H2
jb

i Sb
aiT

2
ei ub

i

� �T d2

dn2
f b
i nð Þ

� �	 


ð37Þ

Table 2 Values of CTS for various Bt/Bb and X ratio

Bt/Bb X = 0.1 X = 0.2 X = 0.3 X = 0.4

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

0.00 2.74 1.193 0.761 2.862 1.247 0.795 2.978 1.297 0.827 3.091 1.346 0.858

0.05 2.856 1.236 0.782 2.97 1.284 0.813 3.08 1.331 0.843 3.186 1.376 0.872

0.10 2.962 1.266 0.794 3.07 1.311 0.824 3.173 1.355 0.852 3.274 1.397 0.879

0.15 3.06 1.287 0.802 3.162 1.33 0.83 3.326 1.372 0.857 3.356 1.412 0.883

0.20 3.15 1.303 0.807 3.247 1.344 0.834 3.34 1.384 0.86 3.432 1.423 0.885

0.25 3.234 1.315 0.81 3.326 1.355 0.836 3.415 1.393 0.862 3.503 1.43 0.886
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ViðnÞ ¼
�EIb 1þ wbnð Þ3b

4p2H3
jb

i Sb
aiT

2
ei ub

i

� �T d3

dn3
f b
i nð Þ

� �	 


ð38Þ

For consideration of vertical acceleration, it has been

shown by Chowdhury and Dasgupta [26] that Eq. (36) to (38)

get multiplied by a factor 1.5 when as per IS-1893 (2002) [4],

Sav the vertical acceleration, is taken as half of horizontal

acceleration Sax. Based on this, Eq. (36) to (38) gets modified

to Eq. (39) to (41). For passive earth pressure case the steps

remain exactly same, except use Kp in lieu of Ka.

ut
i ¼ 3b

�
8p2

� �
jb

i Sb
aiT

2
ei ub

i

� �T
f b
i nð Þ

� �h i
ð39Þ

MiðnÞ ¼
3EIb 1þ wbnð Þ3b
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2
ei ub
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dn2
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ViðnÞ ¼
3EIb 1þ wbnð Þ3b

8p2H3
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i Sb
aiT

2
ei ub
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� �T d3

dn3
f b
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� �	 


ð41Þ

Wall retaining cohesion less soil inclined at angle i with

horizontal: Case-2

For soil inclined at an angle i with horizontal we consider the

active and passive earth pressure coefficient as Eq. (42). Except

for this change in Ka and Kp all other steps as explained earlier

remains the same. An interesting point may be noted here is that,

in Mononobe’s equation when u� i� h\0, where h ¼
tan�1ðah=ð1� avÞ and ah and av are seismic coefficients in

horizontal and vertical direction, the active earth pressure

equation fails to give a solution as it becomes imaginary num-

ber. In the proposed solution this problem is well circumvented.

Ka ¼ cos i
cos i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 i� cos2 u

p
cos iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 i� cos2 u

p and

Kp ¼ cos i
cos iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 i� cos2 u

p
cos i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 i� cos2 u

p
ð42Þ

Results and Discussion

The procedure as proposed herein has been compared to a

2D finite element analysis (FEM) carried out by ANSYS

[32]. The comparison has been carried out for both cases.

Case-1 has also been compared with Mononobe’s expres-

sion as a cross check. The gravity wall examined herein has

following properties:

Properties of gravity retaining wall -Height (H) 10 m,

base width (Bb) 5 m, top width (Bt) 0.5 m, Modulus of

Elasticity of retaining wall (E) 1.2 9 107 kN/m2, Poisson’s

ratio (m) 0.15, unit weight (c) 24 kN/m3; Properties of

Backfilled soil—Angle of internal friction (/) 31.19o, unit

weight of soil (cs) 17 kN/m3, angle of inclination (i) 10o;

Seismic Code factors—As per IS 1893(2002) [4] zone

factor Z 0.36, importance factor I 3.0 and response reduc-

tion factor R 1.5.

The FEM model chosen for the gravity wall is as shown

in Fig. 3. Backfilled soil mass whose pressure is generi-

cally hydrostatic type in nature has been added as lumped

mass at the vertical face of wall. Time periods for two

cases based on proposed theory as well as by ANSYS are

furnished in Table 3. It is observed that time periods based

on proposed method are in commendable agreement with

those obtained from ANSYS. The mode shapes for first

three modes based on FEM analysis is shown for case 1 in

Fig. 4. Figure 4 shows modal response of the fixed base

gravity wall for the first three modes. Typical displace-

ment, bending moment and shear force curve for case 1

based on proposed method for first three modes and their

SRSS values are shown in Fig. 5. The static plus dynamic

moment and shear has been derived for case-1 and com-

pared with M–O method as shown in Table 4. It is evident

from above that M–O method underrates the magnitude of

moment and shear based on pseudo static approach. This is

because while M–O method calculate moments and shear

value based on presumed ah and av value but here the time

period effect plus modal mass participation combined with

mode shapes produces a much higher value, which M–O

Fig. 3 Finite element model of

the fixed base gravity wall

162 Indian Geotech J (April–June 2014) 44(2):156–166

123



method does not takes into consideration. Fixed base

dynamic amplitude, moments and shear for two cases are

as shown in Table 5. It is observed that the fundamental

mode is the most predominant mode and for all of the case,

a first mode modal analysis would suffice to evaluate its

seismic performance.

The objective of this research here is to use the same

boundary conditions as used by Mononobe, however

incorporating the time period factor that is the basic key to

dynamic response and develop a mathematical model that

is more realistic, rather than assuming a maximum peak

ground acceleration as assumed by M–O method which

may or may not be true in all cases..

Mononobe assumed the wall under Coloumb’s failure

condition and modified the earth pressure coefficient for Ka

and Kp considering the pseudo static lateral and vertical

force ahW and avW acting on the wall. Here the soil profile

makes and angle of 45 ? //2 and 45 - //2 with hori-

zontal plane for active and passive case respectively. The

concept is reiterated further as here under.

• After construction of the wall the soil has been back

filled behind the wall.

• After the backfilling is completed the wall is assumed

to have yielded slightly either by miniscule sliding or

tilting when the active earth pressure has already been

mobilized making angle 45 ? //2 and is under stable

condition under this situation.

• The earthquake comes and hits the wall under this

situation.

• Considering the active earth pressure is already gener-

ated (at the angle of 45 ? //2), due to minuscule

yielding of wall, the soil wedge acts as a rigid block

getting locked to the wall and move in phase with it.

The soil has no stiffness but contributes to the response

by its own inertia only. The damping is contributed by

the friction between the failed soil wedge and the soil

below along line OR.

• In case the wall remains unyielding after backfilling

and no active line generates, the mathematical model

becomes completely different when the dynamic

pressure on the wall is guided by propagation of shear

waves in a one dimensional infinite shear beam. The

details of such behavior are furnished in the paper

Chowdhury and Dasgupta [26].

Some Practical Remedial Measures

Based on 2D FEM analysis, or if analyzed by the proposed

method it will not be surprising if investigated and found

that many of the existing gravity retaining walls built

earlier would be structurally found unsafe if subjected to a

strong motion earthquake as per code. The question

remains as to how to retrofit them and make them perform

in a manner so that they can be attributed as seismically

safe? For this some strengthening measures are suggested

as in Fig. 6.

In case 1, if the design shear force due to seismic force is

found to be more than the sliding capacity of the wall, then

this additional shear force may be taken up by installing

additional piles behind the retaining wall (provided space

permits).The L shaped pile cap that connects the pile and

the wall can be connected to the existing wall by Hilti bolts

to transfer the thrust. The additional shear force can be

taken up by the lateral load capacity of the piles.

In case II (when there is no space behind the wall to

install piles) on can remove the back fill by about 1.5–2 m

and then drill a hole through the wall inserting a tie road

which is provided with a cap plate so that it may firmly

abut by the wall, further, in order to ensure that the load

Table 3 Comparison of fixed

base time periods
Case Proposed method By ANSYS

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

1 0.056 0.019 0.009 0.057 0.021 0.011

2 0.056 0.019 0.009 0.057 0.021 0.011

Fig. 4 First three modes shapes

of gravity wall by FEM for

Case-1
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transfer is smooth the hole surrounding the rod should

filled with high strength grout to hold the rod in position.

The rod is extended well beyond the active failure zone and

connected to an anchor block cast in situ. The additional

load is now taken up by the tied rod which in turn transmits

this load to the anchor block that finally transfers it to the

Fig. 5 a Displacement plot of

the wall for Case-1 by proposed

method for first three modes

(ue(n,1), ue(n,2), ue(n,3)) and its

SRSS value (ueSRSS(n))

b Dynamic bending moment

plot of the wall case-1 by

proposed method for first three

modes (Me(n,1), Me(n,2),

Me(n,3)) and its SRSS value

(MeSRSS(n)) c Dynamic shear

force of the wall case-1 by

proposed method for first three

modes (Ve(n,1), Ve(n,2),

Ve(n,3)) and its SRSS value

(VeSRSS(n))

Table 4 Comparison of moments and shear proposed versus M–O

method case-1

Proposed

(static ? dynamic)

case-1

M–O

(static ? dynamic)

case-1

Moment (kN/m) 2821 1825

Shear (kN) 559 424

Table 5 Dynamic Amplitude, Moments and Shears based on pro-

posed method

Case Amplitude

(mm)

Dynamic moment

(kN/m)

Dynamic

shear (kN)

1 0.80 1659 289

2 0.82 1684 292
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surrounding soil by passive pressure generated in the soil

once it is backfilled and tamped properly. The depth to

which the anchor block is to be provided would of course

depend upon the magnitude of additional force it is

expected to resist. Higher this force is deeper it should be

placed. In case the soil is aggressive in nature, the tied rod

my may be protected by providing corrosion resistive HVC

sleeves around it. The behavior of the wall of course does

not remain like a pure cantilever beam in this case, but acts

as a propped cantilever and stresses at critical sections are

to be checked accordingly.

Conclusion

A comprehensive analytical solution is proposed herein that

can predict behavior of a gravity retaining wall with cohesion

less / soil inclined at angle i with horizontal as backfill. The

results match well with a 2D finite element model especially in

terms of time period which is the key controlling factor in

terms of dynamic behavior of the soil-wall system. It would

however be difficult to predict with authenticity as to whether

FEM or the proposed method gives a more accurate result, as

both FEM, and the proposed method has some simplifying

assumption inherent in them. While FEM uses a conforming

linear/non conforming bilinear polynomial shape function to

arrive at the stiffness matrix, and based on isoparametric

formulation, when subjected to reduced Gaussian integration

would invariably have some error in it- as the procedure is

essentially numerical and converges Lower bound [33].

The proposed method on the other hand models an

essentially 2D plain stress problem by a 1D beam element,

however the simplifying assumption is offset by consid-

ering the effect of shear deformation over and above the

predominating flexural behavior and also assuming a trig-

onometric shape function which in essence is an infinite

polynomial series that minimizes further error if any in the

stiffness formulation (with no truncation error). Moreover,

applying Galerkin’s weighted residual method at the level

of differential equation significantly cuts down the com-

putational effort compared to FEM where Rayleigh–Ritz’s

method is actually applied, and a solution is sought based

on algebraic solution to the stiffness matrix. It would

perhaps suffice to say that both FEM and the proposed

method gives comparable results and comprehensively

establishes the fact that the simplifying assumption made in

M–O method based on rigid body mechanics is not really

realistic in terms of predicting seismic response of a gravity

retaining wall and could be quite misleading.
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