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Abstract
Silver nanowires (AgNWs), as one-dimensional nanometallic materials, have attracted wide attention due to the excellent 
electrical conductivity, transparency and flexibility, especially in flexible and stretchable electronics. However, the micro-
scopic discontinuities require AgNWs be attached to some carrier for practical applications. Relative to the preparation 
method, how to integrate AgNWs into the flexible matrix is particularly important. In recent years, plenty of papers have 
been published on the preparation of conductors based on AgNWs, including printing techniques, coating techniques, vacuum 
filtration techniques, template-assisted assembly techniques, electrospinning techniques and gelating techniques. The aim of 
this review is to discuss different assembly method of AgNW-based conducting film and their advantages.

Graphic abstract
Conducting films based on silver nanowires (AgNWs) have been reviewed with a focus on their assembly and their advantages.

Keywords  Silver nanowires conducting filns · Flexible electronics · Printed electronics · Electronic industry

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0134-0210
http://crossmark.crossref.org/dialog/?doi=10.1007/s40097-021-00436-3&domain=pdf


324	 Journal of Nanostructure in Chemistry (2021) 11:323–341

1 3

Introduction

In the past year, the global semiconductor industry has faced 
a huge challenge of insufficient production capacity. There 
are many factors affecting chip production, one of which 
is the work stoppings and production reductions of chip 
caused by COVID-19 and natural disasters (the Renesas 
Electric fire in Japan, the heavy snow in Texas, USA), on 
the other hand, the price of all kinds of chip raw materials 
continue to rise, such as polyvinyl chloride (PVC) prices 
rose by 60%, glass prices rose by 40%, copper prices rose by 
48%. In addition, the production capacity of high-end chips 
that rely on advanced manufacturing process is insufficient. 
Only Samsung and Taiwan Semiconductor Manufacturing 
Co., Ltd. (TSMC) have mastered the chips manufacturing 
process below 7 nm, so the production capacity of chips 
with advanced manufacturing process is insufficient. The 
development of more advanced manufacturing processes 
and the mass production of high-end chips are far from 
assured. The shortage of chips has led to a shortage of CPUs, 
graphics cards, electronic devices and other commodities 
and a massive price hike, and has had a huge impact on the 
global electronics industry. This also reveals the following 
two problems. The current electronic industry is extremely 
dependent on the traditional electronic materials. The man-
ufacturing techniques of traditional electronic materials, 
represented by silicon-based semiconductors, are about to 
encounter a bottleneck. Thus, there is an urgent need for 
new materials to make the electronics industry to leapfrog.

Throughout the past 100 years, the electronics industry 
has been developed rapidly [1–4]. Research in the field of 
electronics is becoming more and more thorough [5–13]. 
There has been a rapid rise in the literature about electronics 
and the publications on electronics from Scopus as shown 
in Fig. 1. The electronics industry has grown at a rapid rate 
since the 1940s. The electronics-related research papers have 
grown at a sequential growth rate of more than 1100% in 

1940s. The main reason is the development of electronic 
materials. The semiconductor material represented by Si 
promotes the development of computers. The development 
of Si chips (integrated circuits) has had the greatest impact 
on the development of the electronics industry. From the 
electronic tube computer (1946) covering more than 100 
m2, to the mobile phone that can be held in one hand, every-
thing depends on the advanced integrated circuit manufac-
turing process. With the invention of the transistor in Bell 
Laboratories in 1947, the electronics industry ushered in 
its first milestone. In 1958, the integrated circuit (IC) was 
invented. Since then, there has been a new outbreak in the 
electronics industry. As a result, research on electronic tech-
nology increased exponentially throughout the 1960s, with a 
sequential growth rate of 3,300%. In 1964, Moore’s Law was 
proposed by Moore, who predicted that the number of tran-
sistors on a chip would double every 18 months [14]. From 
the very beginning of the electron tube to the transistor to the 
small-scale IC to the present large-scale IC, Si seems to have 
become the natural material suitable for the IC because of 
the appropriate electrical properties, large reserves, mature 
purification process, stable chemical properties and other 
factors. The development of the electronic industry depends 
on the development of Si-based semiconductor materials, 
but at present Si material is about to face its physical limit, 
and the development of new materials is bound to bring 
revolutionary changes to the electronic industry [15].

On the other hand, the development of transparent con-
ductive film (TCF) also plays a catalytic role in the develop-
ment of the mobile electronics industry [16]. Among them, 
indium tin oxide (ITO) is a kind of TCF usually prepared 
by magnetron sputtering (MSP) [17]. Because of its high 
transmittance, good conductivity and stability, it has an irre-
placeable position in the fields of touch panel, liquid crystal 
display, solar cell and so on [18–21].

With the development of ITO and its application on 
mobile phones, the sales of touch screen mobile phones have 
a leapfrog growth. Demand for electronics is shifting from 
stationary desktop computers to portable mobile devices. 
Some tasks that once needed to be handled on a computer 
have been gradually handled by mobile devices, and the 
direction of the electronics industry is gradually shifting 
toward lightweight and portable development. However, 
the problems faced by ITO mainly focus on high cost of raw 
materials. A large number of rare metal indium is used in 
the preparation of ITO. On one hand, the price is relatively 
high; on the other hand, the reserve of indium is limited, 
resulting in the high price of ITO. Compared with AgNWs, 
graphene and CNTs, the transmittance and conductivity of 
ITO is lower. ITO cannot withstand bending and stretching.

The development of nanomaterials has pushed the revo-
lution of electronic industry [22–25]. More advanced pro-
cesses have been developed in nanomaterials in the field of 

Fig. 1   Literature search results of different years in Scopus with elec-
tronics as the keyword, data from Scopus
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IC. The manufacture process of MoS2 transistors with the 
gate length of 1 nm was developed, this process prompted 
small gate length, which would integrate more transistors on 
an integrated circuit resulting in excellent performance of 
the device, the advantages of this process even exceeded that 
of the Si-based IC processes [26, 27]. Che et al. prepared a 
transparent electrode by polyaniline (PANI)-grafted CNTs 
exhibiting excellent conductivity and transmittance [28]. 
Compared with ITO, PANI-grafted CNTs transparent elec-
trode also has a high flexibility, resulting in the development 
of flexible wearable device. All these advantages lead to the 
rapid development of nanomaterials and there is a trend to 
replace traditional materials [29–32].

With the further development of electronic technology, 
in many practical application areas, electronic devices need 
to be attached to the surface of living organisms to detect 
movement or body conditions, such as flexible displays, 
flexible supercapacitors, electronic skins, etc. [33–51]. To 
more closely combine electronic products with the human 
body and pursue the comfort of electronic devices, electronic 
devices need to be light, flexible, bendable and stretchable 
enough to adapt to body movements [52, 53]. And it needs to 
maintain stable work during the deformation process. Obvi-
ously, traditional rigid electronic materials will no longer be 
suitable for the flexible electronic field. Since 2018, the com-
mercialization of flexible electronics has gradually started 
from mobile phones. Major manufacturers have launched 
flexible fold-screen mobile phones and promoted them 
vigorously.

Excellent electrical property, flexiblity, and lightweight 
make nanomaterials be the potential materials to replace tra-
ditional rigid materials in flexible electronics [54–66]. Car-
bon-based nanomaterials, such as graphene and CNTs stand 
out among the nanomaterials due to the unique structure of 
high transparency, high specific surface area and excellent 
mechanical properties and it show an irreplaceable position 
in the fields of electronics, energy storage and so on [67–95]. 
But its rather poor uniformity in large scales limit its appli-
cations [96]. In addition, the conductivity of carbon-based 
materials (100–10,000 Ω/sq) is relatively poor compared to 
a traditional metallic conductors. The comparison between 
the conductivity and transparency of common nanomaterials 
and ITO is shown in Table 1.

In recent years, silver nanowires (AgNWs) as a one-
dimensional (1D) metallic nanostructural materials has 
attracted much attention and shows a potential trend to 
replace traditional electronic materials [97–110]. AgNWs 
are a kind of silver-based metallic nanowires, which have 
been the focus of attention for several years due to not 
only the excellent electrical conductivity (6.3 × 107 S m−1) 
and thermal conductivity (429 W m−1 K−1) of AgNWs in 
electronic devices but also outstanding conductivity, trans-
parency, thermal properties and mechanical properties 

afforded by their high aspect ratio [111–122]. Because of 
the excellent electrical properties and good operability in 
solution, AgNWs act as conductors or circuits printed in 
some flexible electronics and it show the transmittance 
of 80% which have even match with ITO in some studies. 
AgNWs have become a potential material to replace ITO 
(Table 1). And due to the characteristics of flexibility, low 
resistance, good operability, etc., AgNWs have surpassed 
ITO in some applications. Thus, the AgNWs are proved 
much suitable for solar cells, which is because of the large 
difference between diffusive transmittance and specular 
transmittance compared with ITO. This phenomenon is 
caused by the light scattering effects [123].

Another reason for the widespread use of AgNWs for its 
convenient preparation [130]. AgNWs can be synthesized 
by a variety of simple techniques, such as ultraviolet irra-
diation method, hydrothermal method and solution-based 
synthesis, etc. [131–133]. Zhou et al. prepared AgNWs by 
an ultraviolet irradiation method [134]. The mixed solu-
tion of AgNO3 and PVA was put under UV light for 48 h 
and then the AgNWs (silver nanorods) with a diameter 
of 15–20 nm and a length of 350 nm were got. Xu et al. 
prepared AgNWs by hydrothermal method [132]. Hexa-
methylenetetramine aqueous was dropped into AgNO3 
aqueous and then the gemini surfactant was added, after 
hydrothermal reaction at 100 ℃, the AgNWs were formed. 
The length of the AgNWs prepared in this method could 
reach 50 μm. Since the preparation method of AgNWs is 
more convenient, AgNWs have been already planned for 
mass production. This would also significantly reduce the 
cost of AgNWs, facilitating their replacement with tradi-
tional electronic materials.

All these properties make AgNWs be promising materials 
for the preparation of flexible stretchable electronic devices. 
However, the microscopic discontinuities make AgNWs 
attach to some carrier for practical applications. Relative to 
the preparation method, how to integrate AgNWs into the 
flexible matrix is particularly important. This review mainly 
discusses the assembly of conductive films of AgNWs, the 

Table 1   Comparison of properties between ITO and different trans-
parent conductive films

Sheet resistance/
conductivity

Transmittance Year References

Graphene 550 S·cm−1 70% 2008 [124]
Graphene 10 S·cm−1 – 2011 [125]
Graphene 350 Ω/sq 90% 2009 [126]
CNTs – 85% 2004 [127]
CNTs 160 Ω/sq 87% 2006 [128]
AgNWs 20 Ω/sq 80% 2010 [123]
ITO 304 Ω/sq 81% 2016 [129]
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fabrication methods of AgNW-based conducting film are 
still discussed in more details below [135, 136].

Assembly of AgNW‑based conducting film

AgNWs could be dispersed in many solvents such as etha-
nol, isopropanol and water with good solubility, so the 
AgNW-based conducting films are often manipulated in a 
solution process [137–143]. The AgNWs solution is trans-
ferred to the flexible matrix to fabricate conducting films 
by techniques such as printing, coating, vacuum filtration, 
template-assisted assembly and gelation [144–149].

Coating techniques

Coating technology is widely used in the manufacture of 
thin films. In terms of the preparation of conductive films 
of AgNWs, the dispersion solution of AgNWs is usually 
scraped, dropped or sprayed on the surface of the substrate 
evenly, and then the solvent evaporation. After coating pro-
cess, AgNWs network is formed on the substrate to form 
conductive pathway. Different coating methods often lead to 
different uniformity, electrical conductivity and transparency 
of the film, so we will discuss them as follows.

Meyer rod coating

Meyer rod coating is a kind of bar coating with the Meyer 
rod (a kind of metal bar wound around the metal wires). 
During the Meyer rod coating process, AgNWs solution is 
poured onto the surface of substrate, and then excess solu-
tion is scraped flat by Meyer rod (Fig. 2a). The thickness of 
AgNWs film determines the conductivity and transparency 
of the film, and the thickness could be tuning by varying the 
diameter of the metal wires around the bar.

Hu et al. prepared AgNWs electrodes by the Meyer rod 
coating process (Fig. 2b) [123]. The AgNWs ink was first 
poured onto the PET substrates and then coated by a Meyer 
rod. After drying by the infrared lamp, the AgNWs were 
formed uniformly on the polyethylene terephthalate (PET) 
substrates (Fig. 2c). And then a 20 nm thick Teflon was 
attached to surface of the AgNWs film to protect the elec-
trodes. The electrodes exhibit excellent conductivity and 
transmittance, compared with ITO (Fig. 2d).

The distribution of AgNWs is uneven leading to a poor 
uniformity of conductivity of AgNWs conducting film when 
large-scale conducting films were made. Zhang et al. solved 
this problem through a dynamic heating process [150]. To 
improve the uniformity of the conducting film, the prepared 
film was moving repeatedly under a xenon lamp in 0.05 m/s 
instead of the fixation. The temperature gradient of dynamic 
heating was more uniform in the dynamic heating process 

(Fig. 2e, f). The uniformity of conductive film prepared 
through the dynamic heating process was compared with 
traditional Meyer rod coating. 25 regions were partitioned 
in the PET substrate of 20 × 40 mm. The conductivity of 
the 25 regions of the conducting film prepared by dynamic 
heating and traditional process was measured separately. 
The uniformity of the conducting film prepared by dynamic 
heating is better.

Another way to improve the conductivity of a conductive 
film is through post-processing. For example, Song et al. 
also fabricated a transparent conducting film by the Meyer 
rod coating method [151]. AgNWs with the concentrations 
from 2 to 0.5 mM were coated by Meyer rod on glass or ITO 
substrate, respectively. Then the films were sintered at 150, 
200, 250, 300 and 400 ℃ (Table 2). The sheet resistance 
was sharply reduced from 80 to 6 Ω/sq when the sinter-
ing temperature rose to 300℃. But the AgNWs networks 
were broken at 400 ℃, which led to an open circuit. This is 
because the AgNWs began to weld together from 200 ℃, and 
the PVP began to be decomposed from 250 ℃. The transmit-
tance of the films could reach 65% and it is very smooth at 
the near-infrared regions (from 1100 to 1300 nm), which 
is advantageous over ITO for solar cells. In addition, the 
contact resistance can also be effectively reduced by coating 
the surface of AgNWs with GO (Fig. 2g) [152]. As shown 
in Fig. 2h, the surface roughness of the conductive film is 
significantly reduced after GO is covered. At the same time, 
the environmental stability of the conductive AgNWs films 
covered with graphene is also improved (Fig. 2i).

Spin coating

Spin coating is the common process for preparing mem-
branes in the laboratory. Spin coating is a process to form 
a uniform film on revolving platform by centrifugal force 
[153]. The volatile solvent evaporates during the rotation 
process and the film is left. The advantages of spin coating 
lie in fast fabrication of uniform and small films. However, 
it is hard to apply to large-scale industrial production due to 
the material loss during rotation and the thickness control is 
difficult. Lee et al. integrated AgNWs on the graphene sur-
face through the spin coating technology, which effectively 
enhanced the thermal and electrical conductivity of gra-
phene [154]. The transfer of electron/phonon energy carriers 
between polycrystalline organisms was effectively resolved, 
where AgNWs were equivalent to bridges (Fig. 3a, b).

Lang et al. prepared a transparent conductive films by a 
spin costing [155]. The polar organic–inorganic and the non-
polar organic–inorganic hybrid matrix were synthesized and 
then mixed with AgNWs. The mixed AgNWs ink was spun 
under different rotational speeds (from 300 to 5000 rpm). 
The thickness of the film could be controlled by the rota-
tional speed.
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Spray coating

In the spraying process, the AgNW dispersion is rapidly 
atomized through the nozzle under the action of compressed 
gas. The AgNWs are then uniformly attached to the substrate 
to form conductive network. Compared with spin coating 
and Meyer rod coating, spray coating can produce a more 
uniform conductive film.

AgNWs–exfoliated graphene (EG)-based transparent 
electrode with a low-surface roughness was prepared by 
Ricciardulli et al. through a spraying coasting process 

[156]. In most cases, the drawback of contact resistance 
and rough surface of AgNW-based conducting film is hard 
to avoid. The usual way to prove these problem is thermal 
annealing, high-force pressing and welding techniques 
[157–159]. However, exfoliated graphene was adopted 
to cover the surface of the AgNWs to reduce the contact 
resistance and surface roughness. In addition, the mechan-
ical stability and chemical stability were also improved 
after introducing the EG. First, the AgNW solution was 
spray costed onto the substrates and then the EG flakes 
were also spray coated onto the surface of AgNW net-
works (Fig. 4). Compared with spin coating and vacuum 
filtration, spray coating is a more suitable method, which 
always led to a randomly arrangement of EG and the vac-
uum filtration always led to vacancies. The spray coating 
is the most suitable method for this case.

Fig. 2   a Schematic diagram of fabrication process of the Meyer rod 
coating, b actual operation diagram of fabrication process of the 
Meyer rod coating, c AgNWs were formed uniformly on the PET 
substrates, d the electrodes exhibit excellent conductivity and trans-
mittance, compared with ITO. Adapted with permission from Ref. 
[123]. Copyright 2010 American Chemical Society. e The tem-
perature distribution of static drying, f the temperature distribu-

tion of dynamic heating. Adapted with permission from Ref. [150]. 
Copyright 2014 Yuan-Jun Song et  al. g flowchart of preparation of 
AgNWs/graphene oxide (GO) composite conductive films, h 3D 
AFM images of AgNWs films and GO/AgNWs films, i resistance 
changes of AgNWS and GO/AgNWS films at 80 °C and 75% RH for 
16 consecutive days. Adapted with permission from Ref. [151]. Cop-
yright 2020 IOP Publishing

Table 2   Sheet resistance under different sintering temperatures

Sintering temperature (℃) 150 200 250 300 400

Rs of sample 4 (Ω/sq) 80 45 15 6 /
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Drop casting

When the thickness and uniformity of the film are not 
needed to be considered, drop casting is a better choice. The 
solution of AgNWs with a definite concentration is dropped 
onto a substrate to evaporate the solvent. After evaporating, 
the AgNWs are left on the substrate. Or it also could be 
transferred to another matrix. But it is hard to ensure the 
uniformity of AgNW conducting film during dropping, and 
the coffee rings may be introduced at the drying process. The 
thickness of film is also uncontrollable.

Jiang et al. prepared a self-healing sensor intercalated 
with AgNWs by the drop casting process [160]. The 

AgNW solution was dropped at the tetrafluoroethylene 
(TFE) plate. The ambient temperature was then raised 
to 60 ℃ for 1 h to ensure the volatilization of solvent 
and the formation of AgNW film. Subsequently, a self-
healing polymer was attached to the AgNWs on the TFE 
plate and heated to 90 ℃ for 30 s, and then a pressure of 
0.2 MPa was applied at 90 ℃ for 1 min to keep tightly 
contact of polymer and AgNW film (as shown in Fig. 5). 
The conductivity can be healed after damaging due to the 
discontinuous network of AgNWs which can can wrig-
gle to the original location with the healing process of 
polymer substrate. Thus, no sintering or welding process 
is adopted.

Fig. 3   Schematic diagram of 
energy carriers propagated by 
materials before and after the 
addition of Indonesian rice noo-
dles. a Polycrystalline graphene 
film; and b AgNW/ graphene 
film. Adapted with permission 
from Ref. [154]

Fig. 4   a The fabrication process of the spray-coated AgNWs-EG-
based electrode. b The SEM images of AgNW network coated by 
EG. c The change of sheet resistance during multiple bending of 

AgNWs and AgNWs-Eg flim. Adapted with permission from Ref. 
[156]. Copyright 2018 WILEY–VCH
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Printing techniques

Flexible printing electronics refers to a technology that 
combines printing technology with flexible electronics 
[161–166]. By means such as screen printing and inkjet 
printing, the conductive ink is transferred to a flexible sub-
strate to form a specific pattern [167, 168]. Flexible printed 
electronics have drawn much attention in recent years 
according to the large scale, low cost and versatile manufac-
turing. Compared with coating technology, flexible printing 
technology is suitable for the occasions with more refined 
patterns, such as flexible circuit board, flexible thin-film 
transistors, etc. [169–172]. The shape or pattern of conduc-
tor could also be precisely designed before fabricating. For 
example, Gao et al. realized the printing of piezoresistive 
pressure sensors on nanocellulose paper (NCP) as shown in 
Fig. 6a [173]. Cui et al. used the method of electrohydrody-
namic (EHD) printing to achieve the minimum line width of 
45 µm, as shown in Fig. 6b [174]. There have been a large 
number of flexible electronics fabricated by the printed elec-
tronics techniques including flexible displays, sensors and 
solar sell, etc. [175–180].

Printing technology involves several key technical points, 
i.e., the preparation of conductive ink, printing and post-
processing. According to different printing methods, print-
ing technology can be divided into screen printing and inkjet 
printing.

Screen printing techniques

The screen printing technique is the most widely used print-
ing techniques. The design of printing pattern is a unique 
feature of printing technology. In this process, a custom-
made screen with open areas of desired pattern is used as the 
print template. The AgNW ink is added on the custom-made 
screen. When a squeegee is scraped over the surface of the 
screen, the AgNW ink remains on the substrate through the 
open areas in the screen and the desired pattern forms. For 
example, Ali et al. used screen printing technology to design 
two kinds of patterns (i.e., straight and folded), and printed 

them on flexible thermoplastic polyurethane (TPU) to pre-
pare flexible strain sensors (as shown in Fig. 6c) [181]. The 
size of the printed pattern is 28 mm long, 4 mm wide, and 
0.8 mm line width, as shown in Fig. 6c. A more elaborate 
structure was designed in the work of Liang et al. [182]. A 
10 × 6 thin-film transistor (TFT) array is screen printed on 
a flexible PET substrate with a resolution of up to 50 µm, 
as shown in Fig. 6d, e. Actually, the rheological behavior 
of ink affects the resolution of printing. The peak holding 
step (PHS) test was carried out to analyze the change in 
viscosity of three kinds of AgNW inks with different AgNW 
contents (i.e., 6.0%, 6.6% and 7.3%), respectively. The shear 
rates were varied to simulate the scraping process and the 
recovery process (Fig. 6e). Once the squeegee scrapes the 
ink through the screen, the ink could flow through the screen 
due to the decreasing viscosity of ink. While, when the force 
of the squeegee disappears, the ink does not recover to the 
original viscosity immediately. This gives the ink time to 
level out. In contrast, the high viscosity ink has less time to 
level out, which lead to coffee rings, as shown in Fig. 6f. The 
low viscosity ink is inclined to achieve sharper print lines 
[183]. Xu et al. used AgNW ink with a low concentration 
(for example, 2.5 mg/mL) and low viscosity (0.74 Pa·s at 
shear rates of 10 s−1) to screen print a 2.5 cm × 2.5 cm trans-
parent electrode, and covered it with GO to ensure electrode 
stability [184]. The transparency of the prepared transparent 
electrode reaches 83.5% and the square resistance reaches 
11.9 Ω/sq. The authors applied it to a long-term wearable 
heart rate monitoring device.

Inkjet printing techniques

Inkjet printing is a common non-contact printing technology 
in our daily life [185]. Books, documents, pictures and so 
on can be printed by inkjet printing technique. Inkjet print-
ing technique is crucial in printed electronics. Compared 
to screen printing technology, inkjet printing is more flex-
ible in applications and is suitable for a variety of materi-
als such as paper, glass, PET, TPU due to its non-contact 

Fig. 5   The fabrication process 
of AgNW-based sensor. 
Adapted with permission from 
Ref. [160]. Copyright 2019 
WILEY–VCH
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characteristics. It’s worth noting that an ordinary commer-
cial printer can complete the printing process of electronics.

Inkjet printing technique was demonstrated in Choi’s 
work [186]. The inkjet printing process can be easily real-
ized through a desktop inkjet printer (HP Deskjet 1010), as 
shown in Fig. 7a. In this study, a mixture of single-walled 
carbon nanotubes (SWNTs), activated carbon (AC) powders 
and AgNWs were mixed to form printing ink. The mixed 
ink was subjected to the sonication-driven scission process 
to avoid printer nozzle blockage caused by the long AgNWs 
and then the ink was printed on paper to form flexible solid 
supercapacitors and it had a good electrical performance, 
in the circuit it could light up an LED lamp, as shown in 
Fig.  7b, c. Cellulose nanofibril (CNF) was used as the 
primer layer sprayed onto A4 paper in advance to reduce 
the capillarity phenomenon of paper, which can improve 
the printing resolution. Generally, the surface of substrate 
plays an important role for printing electronics. For wetting 
substrates (such as A4 paper), the rough surface may induce 

the capillarity. The capillarity causes the ink to spread and 
reduces the resolution of printing. While for non-wetting 
substrates such as polyethylene terephthalate (PET), the poor 
adhesion for ink may lead to the formation of coffee ring. 
However the surface of the CNF primer layer is between 
wetting and non-wetting substrates, and there is no capillar-
ity and coffee-ring appearance on the surface of CNF primer 
layer, as shown in Fig. 7d [186]. Similarly, Gao et al. used 
a nanocellulose paper with a smooth surface as a printing 
carrier [173]. Printing on NCPs, which have a smoother sur-
face, yields sharper patterns than PET, as shown in Fig. 7e.

Compared with screen printing, because the ink needs to 
pass through the nozzle, inkjet printing has higher require-
ments for the size of the printed nanomaterial, the size of 
its requirements is usually long and its size is less than 1/50 
of the nozzle aperture. However, for the metal nanowires, 
because of the one-dimensional structure, the requirements 
are more loose. For example, Finn et al. used 2.2 μm AgNWs 
to carry out inkjet printing through a 21.5 μm nozzle, and 

Fig. 6   a The piezoresistive pressure sensors prepared by printing 
silver nanowires on NCP. Adapted with permission from Ref. [173].
Copyright 2019 American Chemical Society; b optical images of 
AgNW lines printed on PDMS. Adapted with permission from Ref. 
[174]. Copyright 2009 Royal Society of Chemistry, c two patterns 
are printed by AgNWs on TPU, one of which is a straight line and 
the other is a wavy line (schematics and photographs). Adapted with 

permission from Ref. [181].Copyright 2018 Elsevier, d flexible TFT 
arrays prepared by screen printing of AgNWs, e The resolution of 
TFT Arrays can reach 50 µm, f the Rheological behavior of 3 kinds of 
AgNW inks and g the coffee rings of high viscosity ink appeared in 
the printing process. Adapted with permission from Ref. [182]. Copy-
right 2016 WILEY–VCH
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achieved a line width of 1–10 mm and a thickness of 2 μm 
[185].

Zhang et  al. adopted electrohydrodynamic inkjet 
(E-Inkjet) printing to effectively improve the printing resolu-
tion, and the printing principle is shown in the Fig. 7f [187]. 
The print resolution of 30 μm is achieved by applying a 
voltage between the nozzle and the substrate, as shown in 
Fig. 7g.

Electrospinning

Electrospinning process is the common way to fabricate 1D 
conductive nanofibers [188–198]. Electrospinning works 
in a similar way to e-Inkjet, where a strong electric field 
between the nozzle and the printing substrate transfers the 
solution from the nozzle to the printing platform. Unlike 

E-Inkjet, the solution used for electrospinning is usually a 
pre-polymerized solution of AgNWs mixed with a polymer. 
In this process, AgNWs are mixed with a polymer solution, 
sprayed into a strong electric field to form small fibers and 
collected onto a substrate to form a conductive network.

Generally, the specific surface area of nanowires is large, 
and it is easy to be oxidized when exposed in the air, thus 
affecting the performance. Conductive films prepared by 
means of coating and printing need to be post-processed 
to isolate AgNWs from the environment. Electrospinning 
prevents oxidation by placing a polymer coating directly on 
the outside of AgNWs.

The electrospun AgNWs-polyvinylidene fluoride (PVDF) 
nanofibers were demonstrated by Cheon et al. [199]. The tri-
boelectric nanogenerator (TENG) with AgNWs-PVDF has 
been fabricated by the electrospinning process. The AgNWs 

Fig. 7   a Inkjet printing on paper can be done using only commercial 
printers, b cyclic voltammetry curves of two printed supercapacitors 
of different sizes, c printed SCs are used to light a LED, d the influ-
ence of substrate on the effect of inkjet printing. Adapted with per-
mission from Ref. [186]. Copyright 2016 WILEY–VCH, e AgNWS 

trace comparison diagram printed on PET surface and NCP surface. 
Adapted with permission from Ref. [173]. Copyright 2019 American 
Chemical Society, f the printing principle of E-inkjet printing and g 
print trace obtained by E-inkjet printing. Adapted with permission 
from Ref. [187]. Copyright 2021 Springer Nature
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and PVDF were dissolved in the mixed solvent of N,N-dime-
thyl acetamide and acetone for 5 min of ultrasonic process-
ing and 3 h of stirring to make sure the solution uniform. 
Then the electrospun process was performed (Fig. 8a, b,c). 
In the presence of an electrostatic field, the polymer solution 
is emitted from the needle tip (Taylor cone) to a collector 
(Al foil) for 2 h. In the process, polymer fibers with the 
highly oriented crystalline polymer chains are formed. These 
nanofibers were collected and cut into 2 × 2 cm2 nanofib-
ers mat (Fig. 8d). The addition of AgNWs makes it easier 
to trap the charge and induce the tribocharges. (Fig. 8e). 
After thermal treatment at 160℃ for 2 h, the PVDF-AgNWs 
nanofibers mat was treated as the electrodes of TENGs and 
served as the negative triboelectric potential. The compact 
spinning technique was used to prepare a core sheath silver 
nanowire/polyvinylpyrrolidone [200]. Due to the presence 
of PVP coating, the nanofibers prepared have the properties 
of insulation. Pan et al. used the mixed solution of AgNWs 
and AgNPs to prepare a transparent conductive film through 
the near-field electrospinning process. The film reached 70% 
transparency and 0.032 Ω/sq square resistance, which was 
similar to that of ITO [201].

Vacuum filtration

In vacuum filtration process, AgNWs are prepared as dis-
persion and passed through the filtration funnel. Solvent 
flows over the membrane and AgNWs remain on the mem-
brane to form an AgNWs network, which is then trans-
ferred to the substrate. Xu et al. prepared a transparent 

conductive film based on AgNWs [202]. The light trans-
mittance of the prepared transparent conductive film can 
be adjusted from 65.6 to 87.5% and sheet resistance from 
177.3 to 4.95 Ω/sq by controlling the weight density of the 
silver nanowire solution.

Shen et  al. fabricate a AgNWs and tungsten oxide 
(WO3) based electrochromic electrode for supercapacitors 
by the vacuum filtration method [203]. First, the PDMS 
was spin-coated on the flexible PET substrate and it was 
pre-cured. Subsequently, the AgNWs ethanol solution was 
diluted by deionized water and then vacuum filtered on a 
filter membrane. The AgNWs film on the filter could be 
easily transferred onto the pre-cured PDMS. Then the WO3 
was deposited on the flexible substrates with a 600 nm 
thickness. The composite electrode exhibits an areal 
capacitance of 13.6 mF/cm2 and corresponding specific 
capacitance of 138.2 F/g when the scan rate is 10 mV/s. 
And it also shows the electrochromic property. The color 
could be changed between dark blue and transparent when 
a negative (dark blue) or positive (transparent) bias poten-
tial is applied, respectively. This is caused by the reaction 
of the transformation between WO3 and HxWO3 (Fig. 9).

In general, the silver nanowires of AgNWs films pre-
pared by vacuum pumping and filtration are physically 
bonded, and the uniformity of deposition is difficult to 
be controlled, resulting in poor electrical conductivity. 
Mushtaq et al. deposited AgNWs in the poly(Ethersulfone) 
(PES) membrane first, and then electroplating the pris-
tine AgNWs membrane with a layer of silver in the post-
treatment method [204]. Electroplating treatment of the 
conductive film has a better uniformity and conductivity.

Fig. 8   a The schematic diagram of TENG, b the SEM images of 
PVDF-AgNWs and nylon, c the structure diagram of PVDF-AgNWs 
and nylon, d schematic illustration of electrospinning process, e the 

surface potentials of PVDF and PVDF-AgNWs. Adapted with per-
mission from Ref. [199]. Copyright 2017 WILEY–VCH
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Template‑assisted assembly

Template-assisted assembly refers to the method of using 
templates to assemble some specific shapes or specific struc-
tures. Template-assisted assembly technology can usually 
obtain a three-dimensional ordered onlooker structure.

Physical template assembly is the common template-
assisted assembly. The template is usually a polymer with 
a specific structure or a substance with a network structure, 
such as polyurethane, sponge, foam nickel, etc. PU is a com-
monly used template material in various polymer templates. 
On one hand, because PU is a common commodity foam 
material, on the other hand, because PU has a unique net-
work structure. Ge et al. utilized commercial PU foam as a 
template to form a stretchable AgNWs conductor with a spe-
cific binary network structure [205]. The PU was immersed 
in the ethanol solution of AgNWs, with the evaporation of 
ethanol, the AgNWs were left on the surface of the PU to 

form a conductive network. The existence of this unique 
binary network enables PU/AgNWs to still exhibit a high 
conductivity of 19.2 S cm−1 under 50% strain. Another rea-
son for choosing PU as a template is that it is easy to be 
removed. Wu et al. utilized PU as a template to assist in 
the preparation of graphene/AgNWs foam [206]. The PU 
template is immersed in an aqueous solution of GO and 
AgNWs. GO is then reduced to graphene by dopamine and 
attached to the foam surface together with AgNWs. Then the 
PU foam is formed by pyrolysis at 700 °C. After removing 
the template, the material can still maintain the shape of the 
template (Fig. 10a).

In addition to polymers with specific structures, ice is 
often used as a template. Ice-template method is the com-
mon template-assisted assembly method to fabricate 3D 
AgNWs networks. In this process, AgNWs aqueous solu-
tion is frozen to make the water condense into ice crystals, 
and then the ice crystals are sublimated by vacuum drying 

Fig. 9   The fabrication process 
of the electrochromic electrode. 
Adapted with permission from 
Ref. [203]. Copyright 2006, The 
Royal Society of Chemistry

Fig. 10   a SEM image of graphene/AgNWs foam. Adapted with per-
mission from Ref. [206]. Copyright 2014 American Chemical Soci-
ety, b the schematic diagram of ice-templated process, c the SEM 
images of the 3D networks of AgNWs–GO skeleton under different 
magnifications. Adapted with permission from Ref. [207]. Copyright 
2018 WILEY–VCH, d schematic diagram of the capillary-assisted 
fluidic assembly process, e optical microscopy images of AgNWs 

prepared by CFA technique, f spray-coating technique. Adapted with 
permission from Ref. [208]. Copyright 2012 Royal Society of Chem-
istry, g three-phase interface assembly and its four-step principle dis-
play diagram and h the SEM images of the AgNWs conductive film 
prepared by three-phase interface assembly. Adapted with permission 
from Ref.[209]. Copyright 2010 WILEY–VCH
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technology to form 3D AgNWs networks. Ice-templated 
method was adopted by Xue et al. to prepare hierarchical 
AgNWs–graphene host for Li-ion batteries. The viscous 
mixed aqueous solution of AgNWs and GO was blade-
coated onto substrate and then dipped in liquid nitrogen 
[207]. Small and orderly ice crystals were formed in the 
AgNWs–GO hydrogel. Subsequently, the freeze-drying 
process was carried, leaving the voids in the AgNWs–GO 
hydrogel during the sublimation of the small ice crystals. 
An ordered 3D network was formed (Fig. 10b, c).

Regular alignment of AgNWs is realized through capil-
lary-assisted fluidic assembly (CFA) (Fig. 10d) [208]. The 
capillary array is used as a template for the self-assembly 
of AgNWs. When the AgNW solution flows through the 
capillary, the AgNWs will self-assemble along the direc-
tion of the capillary in the capillary. As the AgNWs flow 
out of the capillary, the AgNWs form a well-aligned con-
ductive film on the substrate (Fig. 10e, f). The oriented 
AgNWs exhibit excellent anisotropic conductivity. In 
parallel, it exhibits far lower square resistance and higher 
transparency than randomly distributed AgNWs conduc-
tive films.

In other studies, the template does not refer to a specific 
shape of solid, but a specific interface structure. A specific 
water–oil-air interface is used as a template to achieve a 
special orderly oriented AgNWs film assembly by Shi et al. 
[209]. A water dispersion of AgNWs was dropped on the 
chloroform solution to construct a template with a three-
phase interface structure (Fig. 10g). The AgNWs realize a 
process from the water–oil interface to the water–oil-gas 
interface and then to the water–gas interface, during which 
they self-assemble into a film. The evaporation of chlo-
roform at the oil–gas interface makes the pressure at the 
oil–gas interface lower than the water–oil interface, forming 
a pressure gradient (Δ P). The ΔP causes the directional 

movement of AgNWs. The AgNWs assembled in this way 
have excellent regularity (Fig. 10 h).

Gelation

The gelation is a method to construct 3D nanofiller network 
[210–212]. The AgNWs are first mixed with the precursor 
solution of hydrogels. Then the gelation reaction is car-
ried out to fix AgNWs in the hydrogels to make the con-
ductive pathway form. In this method, AgNWs are often 
lapped together in a three-dimensional manner, and higher 
concentrations are usually required to achieve conductivity 
improvement. This often leads to poor transparency.

Lim et al. prepared stretchable conductors with AgNWs 
and alginate hydrogels by the gelation methods [213]. The 
AgNWs and sodium alginate were mixed at 70 ℃, and then 
dried at 40 ℃. 0.1 M CaCl2 aqueous solution was then added 
for 20 min to make sure the cross-linking between the algi-
nate chains happening (Fig. 11). The conducting film exhib-
its excellent conductivity, which the impedance of the film 
is extremely stable and maintains the low value of 8.5 Ω. 
The conducting film could be cut into any shape by laser 
according to the actual usage (Fig. 11). The conductivity 
of AgNWs conducting film (≥ 0.3 wt% AgNWs) exhibits a 
stretch insensitivity when the strain is between 0 and 30%. 
However, the color of the film shows opaque metallic silver, 
which makes the film hard to be used in the optical field.

Conclusions and prospects

With the development of flexible electronic, AgNWs as an 
important component of flexible electronics devices have 
shown the potential to replace or even surpass traditional 
conductors. However, there are still some factors that limit 

Fig. 11   The schematic diagram of the fabrication process of AgNW-based alginate hydrogels film. The film can be cut into any shapes by laser 
after forming
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AgNW-based conducting film to replace traditional elec-
trodes. One is the synthesis of higher quality AgNWs, which 
have a higher aspect ratio and yield a ratio and must be suit-
able for mass production. The other and most critical point 
is to develop more appropriate fabrication techniques. The 
microscopic discontinuities make AgNWs be attached to 
some carrier for practical applications. Relative to the prep-
aration method, how to integrate AgNWs into the flexible 
matrix is particularly important.

Although AgNW-based transparent conductive films have 
surpassed traditional electronic materials in many proper-
ties, it is still challenging to replace traditional electronic 
materials. Although the preparation method of AgNWs has 
been relatively complete, the high cost of raw material silver 
makes the cost of printed circuits and other aspects high. 
Due to the large specific surface area, the AgNW material is 
very prone to oxidation in the air, resulting in performance 
degradation. How to treat the surface of the conductive film 
to prevent oxidation is a problem worthy of consideration. 
Although graphene is used for surface treatment in some 
studies, its high cost is still difficult to apply in actual places. 
The commonly used methods for post-treatment of AgNW-
based transparent conductive films are thermal annealing 
or chemical annealing, which often requires higher tem-
peratures or expensive chemical reagents, which is also an 
obstacle to the commercialization of AgNWs.

In this review, we discussed the assembly techniques for 
obtaining the AgNWs conducting film in flexible electronics. 
In these fabrication techniques, the printing techniques are 
suitable for detailed printed circuit. The coating techniques 
are suitable for large-scale preparation of conductive films. 
The 3D fabrications including are suitable for 3D conduct-
ing networks. We believe that with the development of flex-
ible technology, the manufacturing technology of AgNWs 
conducting film will be further developed, and the commer-
cialization of the AgNW-based flexible conducting film is 
coming.
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