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Abstract
Some novel solutions to a system of coupled Schrödinger–Korteweg–de Vries equations are explored in this work by employ-
ing the extended sinh-Gordon equation expansion method to the proposed system. Some novel forms of explicit complex 
hyperbolic and complex trigonometric function solutions such as singular, combined singular, dark, bright, combined dark–
bright, periodic wave, dipole soliton, and other solutions are retrieved and explored into their corresponding system via 
MAPLE software. Two- and three-dimensional graphs are provided to illustrate this study’s novelty. All combined solutions 
are particularly new in the interactions of capillary-gravity water waves. Extended sinh-Gordon equation expansion method 
provides an effective tool to explore new precise wave solutions and overcome the difficulties of the ansatz method. All our 
results in this work play an essential role in explaining various phenomena in ocean and coastal engineering.

Keywords  Soliton solutions · Coupled Schrödinger–KdV equations · Extended sinh-Gordon equation expansion method

Introduction

There is no vulnerability that numerous scenarios in nature 
can be outlined beneath the modeling of nonlinear partial 
differential equations ( ℕℙ𝔻𝔼 s) with their explanatory or 
numerical arrangements. To understand such scenarios to 
ℕℙ𝔻𝔼 s by their explanatory arrangements (analytic solu-
tions), mathematicians, engineers, and researchers have a 
common connection in examining the traveling wave solu-
tions to ℕℙ𝔻𝔼 s by expository strategies due to their critical 
part and pertinence in liquid mechanics, scientific material 
science, plasma material science, nonlinear optics, and other 
related building sciences [1–8]. Many recent studies have 
employed fractional-order calculus as a tool in studying the 
fractional-order differential equations and their obtained 
solutions [9, 10, 40–43, 45].

Coupled nonlinear Schrödinger–KdV equations 
(Schrödinger–Korteweg–de vries) are considered as 
one of the vital models related to such of inquire about 
areas. Colorado [11] investigated the presence of bound 
and ground states for a framework of coupled nonlinear 
Schrödinger–KdV equations. A few studies have been 
conducted on developing modern traveling wave solu-
tions for a system of coupled Schrödinger–KdV equations 
by utilizing different expository and numerical strategies, 
such as the strategy of generalized amplified tanh function, 
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Laplace decomposition, Petrov–Galerkin, homotopy per-
turbation, Adomian’s decomposition, homotopy analy-
sis, Nehari manifold, and solitary wave and Bifurcation 
[12–16, 6, 18, 46]. Ma provided a brief overview of soliton 
solutions obtained through the Hirota direct method, dis-
cussed bilinear formulation of soliton solutions in both 
(1+1)-dimensions and (2+1)-dimensions together with 
applications to various integrable equations and analyzed 
the Hirota conditions for N-soliton solutions [19]. In [20], 
they discussed about how to construct and classify nonlo-
cal PT-symmetric integrable equations via nonlocal group 
reductions of matrix spectral problems which are used to 
formulate a kind of Riemann–Hilbert problems and thus 
inverse scattering transforms (for more instance, consider 
[21, 22, 44]).

Kaya et al. and Alomari et al. considered the following 
Schrödinger–KdV equations

under an initial condition �(y, 0) = ρ1(y) and �(y, 0) = ρ2(y) 
[12, 17]. In 2015, Colorado introduced the dimensionless 
form of a system of coupled nonlinear Schrödinger–KdV 
equations 

 where � is a real coupling constant, �(y, s) and �(y, s) are 
complex functions that stand for the short wave profile and 
real function that represents long wave profile, respectively 
[11]. Equation (1a) and (b) is well-known models that have 
been shown up within the marvels of intelligent between 
brief and long dispersive waves emerging from liquid 
mechanics, particularly the intuitive of capillary-gravity 
water waves. Álvarez-Caudevilla et al. in [13] analyzed the 
existence of solutions of the following higher-order system, 
coupling nonlinear Schrödinger–KdV equations

with � = �(y, s) ∈ (C) , � = �(y, s) ∈ ℝ and � ∈ ℝ the cou-
pling parameter. Also, Baskonus et al. extracted some opti-
cal soliton solutions from the following decoupled nonlinear 
Schrödinger–KdV equation with Kerr law nonlinearity aris-
ing in dual-core optical fibers by using the extended sinh-
Gordon equation expansion method,

i�s + �yy − �� = 0,

�s + 6��y + �yyy −
(
|�|2

)
y
= 0,

(1a)i�s + �yy − ��� +
(
|�|2

)
� = 0,

(1b)i�s + �yyy + ��y −
1

2
�
(
|�|2

)
y
= 0,

i�s − �yyyy + |�|2� + ���� = 0,

�s − �yyyyy +
1

2
(|�|�)y +

1

2
�
(
|�|2

)
y
= 0,

where �, � are field envelopes, y is the propagation co-ordi-
nate, 1

�1
 is the group velocity mismatch, �2 is the group veloc-

ity dispersion, �4 is the linear coupling coefficient, and �3 is 

defined as �3 =
2�m2

kBeff

 , where m2 is the nonlinear refractive 

index, k is the wavelength, and Beff  is effective mode area of 
each wavelength [23]. Soliton is characterized as a localized 
waveform that engenders along the framework with steady 
speed and undeformed shape [24]. It can be found in all 
fields of nonlinear dynamics for a variety of shapes, such as 
singular, combined singular soliton, dark, bright, combined 
dark–bright, and many other related forms. Such soliton 
shapes are explored with various nonlinear integer and frac-
tional-order evolution equations via newly generalized or 
modified integration schemes such as the extended Jacobi’s 
elliptic function approach [25], the sinh-Gordon equation 
expansion method [26, 27], the generalized exp(�(�))-expan-
sion method [28], the modified Kudryashov method [29], 
and the semi-inverse variational principle [30].

The extended sinh-Gordon equation expansion method 
has never been considered in the framework of Equ. 1a) and 
(b). In any case, there are a few investigations that have been 
considered on understanding other frameworks of ℕℙ𝔻𝔼 s 
by extended sinh-Gordon equation expansion method [23, 
31–34]. Extended sinh-Gordon equation expansion method 
could be considered as a vigorous and capable method that 
can be effectively connected to both numbers and frag-
mentary arranged ℙ𝔻𝔼 s to build different shapes of soliton 
arrangements such as particular, singular, combined singu-
lar soliton, dark, bright, combined dark–bright, and other 
related solutions, and to overcome some challenges emerg-
ing from utilizing the single wave ansatz method [35, 36]. In 
addition, Bulut et al. [37] applied the extended sinh-Gordon 
equation expansion method for their formulated space-time 
fractional nonlinear Schrödinger equation in the sense of 
conformable derivatives, and they successfully obtained 
several solitons solutions such as dark, bright, combined 
dark–bright, singular, combined-singular, and singular peri-
odic wave solutions. For more information about conform-
able derivative which is a type of local fractional deriva-
tive and some approximate-analytical methods for solving 
second-order wave equation, we refer to [38].

The most objective of this investigation is to explore 
some novel shapes of unequivocal complex hyperbolic and 
complex trigonometric work arrangements by utilizing the 
extended sinh-Gordon equation expansion method in dif-
ferent shapes such as dull, shinning, combined dark–bright, 
particular, combined particular optical, occasional wave, 

i
(
�y + �1�s

)
+ �2�ss + �3|�|2� + �4� = 0,

i
(
�y + �1�s

)
+ �2�ss + �3|�|2� + �4� = 0,
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dipole soliton and other related arrangements in a framework 
of coupled nonlinear Schrödinger–KdV Equ. 1).

This work is organized as: In Sect. 2, we step-by-step 
examine ℕℙ𝔻𝔼 s. The arrangement strategy of the over-
seeing framework of coupled nonlinear Schrödinger–KdV 
equations is explored in Sect.  3 through the extended 
sinh-Gordon equation expansion method. In Section 3, we 
build different shapes of soliton arrangements such as sin-
gular, combined singular optical, dark, bright, combined 
dark–bright, periodic wave, dipole soliton and other arrange-
ments. The found soliton arrangements and their graphical 
representations are discussed in Sect. 4. In Sect. 5, we con-
clude our investigation.

Outlines of the extended sinh‑Gordon 
equation expansion method

In this portion, a point-by-point portrayal of the extended 
sinh-Gordon equation expansion method is displayed. The 
exp-function method has been introduced to nonlinear equa-
tions, particularly KdV equation, and it has been discussed 
in detail in [39] where generalized solitary and periodic 
solutions can be resulted from the usage of this method. 
To utilize our strategy, we require the following steps from 
[32, 33].

Step 1: Consider the common shape of a coupled ℕℙ𝔻𝔼s:

where � = �(y, s) , � = �(y, s) are characterized in Equation 
(1), and each of �1 and �2 may be a polynomial work, with 
respect to a few capacities or indicated factors, which con-
tains the nonlinear terms and most elevated arranged sub-
ordinates of � and � . We begin by presenting the complex 
wave changes:

where � = y − �s and �(y, s) = ky + �s + �0 . Then, by sub-
stituting Equs. (4) and (5) into Equs. (2) and (3), we have:

(2)�1

(
�, �, �y, �y, �s, �s, �yy, �yy, �ys, �ys, �ss, �ss,…

)
= 0,

(3)�2

(
�, �, �y, �y, �s, �s, �yy, �yy, �ys, �ys, �ss, �ss,…

)
= 0,

(4)�(y, s) = ϕ(�) exp(i�(y, s)),

(5)�(y, s) = Φ(�),

(6)ℌ1

(
ϕ,Φ,

d

d�
ϕ,

d

d�
Φ,

d2

d�2
ϕ,

d2

d�2
Φ,…

)
= 0,

(7)ℌ2

(
ϕ,Φ,

d

d�
ϕ,

d

d�
Φ,

d2

d�2
ϕ,

d2

d�2
Φ,…

)
= 0,

here each of ℌ� (� = 1, 2) is a polynomial of ϕ(�) and Φ(�) . 
The delineations of k, � , � and � are shown in Sect. 3.

Step 2: Presently, we consider the formal arrangements of 
Equs. (6) and (7) as takes after:

here ℘(�) satisfies the following equation [32]:

This is a transformed form of sinh-Gordon equation. The 
parameters � and � have different values in the following 
two cases:

Case I. ( Equ.10) is reduced to

whenever � = 0 and � = 1 . This can be a streamlined shape 
of the sinh-Gordon equation. Thus, Equ. (11) concedes the 
following solutions [32]

here (i =
√
−1) , and

Therefore, from ϕ(�) and Φ(�) in Equs. (8) and (9), we 
obtain:

and 

Case II. Equ. (10) becomes

(8)ϕ(℘) =

N1∑

𝚤=1

cosh𝚤−1 ℘
[
b̄𝚤 sinh℘ + ā𝚤 cosh℘

]
+ ā0,

(9)Φ(℘) =

N2∑

𝚤=1

cosh𝚤−1 ℘
[
B̄𝚤 sinh℘ + Ā𝚤 cosh℘

]
+ Ā0,

(10)℘
� =

√
� + � sinh2 ℘.

(11)℘
� = sinh (℘),

(12)sinh (℘) = ±i sech �, cosh℘ = − tanh �,

(13)sinh℘ = ± csch �, cosh℘ = − coth �.

(14)ϕ(�) =

N1∑

�=1

(− tanh �)�−1
[
±i b� sech � − a� tanh �

]
+ a0,

(15)

Φ(�) =

N2∑

�=1

(− tanh �)�−1
[
±iB� sech � − A� tanh �

]
+ A0,

(16a)ϕ(�) =

N1∑

�=1

(− coth �)�−1
[
±b� csch � − a� coth �

]
+ a0,

(16b)

Φ(�) =

N2∑

�=1

(− coth �)�−1
[
±B� csch � − A� coth �

]
+ A0.

(17)℘
� = cosh℘,
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whenever � = 1 and � = 1 . Typically too a streamlined shape 
of the sinh-Gordon equation. Essentially, Equation (17) con-
cedes the following solutions [32]:

and

So, from Equs.8) and (9), we obtain

and

Step 3: By substituting the values of N1 and N2 into Equs. 
(8) and (9), which are determined by using the homogene-
ous balance principle, along with Equation (11), we have 
a nonlinear framework of conditions in terms of sinh�(℘) 
and cosh�(℘) . Setting up the coefficients of sinh�(℘) and 
cosh�(℘) to zero, we have frameworks of conditions and the 
values of A� , B� , a� , b� and � , � are found. Now, by substitut-
ing the results into Equs. (14) and (15), we can retrieve the 
solitary wave solutions of Equs. (2) and (3) (as in Case I). 
As a result, one may continue the same way for Case II and 
can get the particular and occasional wave arrangements of 
Equs. (2) and (3).

Investigation of single and other wave 
arrangements

We consider Equs. (1a) and (b) as traveling wave transfor-
mations such that k is the soliton frequency, while � is the 
wave number of the soliton and �0 is a phase constant [11]. 
On the other hand, � is the speed of the soliton [11]. By part 
the real and imaginary parts of Equ. 1a) and (b), individu-
ally, we have

(18)sinh℘ = tan �, cosh℘ = ± sec �,

(19)sinh℘ = − cot �, cosh℘ = ± csc �.

(20)ϕ(�) =

N1∑

�=1

(± sec �)�−1
[
b� tan � ± a� sec �

]
+ a0,

(21)Φ(�) =

N2∑

�=1

(± sec �)�−1
[
B� tan � ± A� sec �

]
+ A0,

(22)ϕ(�) =

N1∑

�=1

(± csc �)�−1
[
−b� cot � ± a� csc �

]
+ a0,

(23)Φ(�) =

N2∑

�=1

(± csc �)�−1
[
−B� cot � ± Aj csc �

]
+ A0.

(24)ϕ�� −
(
k2 + �

)
ϕ − �ϕΦ + ϕ3 = 0,

and �ϕ� − 2kϕ� = 0 . Indeed, � = 2k . It gives the speed of the 
soliton in terms of the soliton recurrence.

Here, a recently compelling adaptation of the extended 
sinh-Gordon equation expansion method is utilized to inves-
tigate modern single wave and other arrangements of Equs. 
(24) and (25).

For case I: ℘� = sinh℘

If we take N1 = 1 and N2 = 2 in Equs. (8)–(9), (14)–(15) and 
(16a)–(b), at that point, we get the formal arrangements of 
Equs. (24) and (25) as taken after:

and

where either A1 or A2 or B1 or B2 or a1 or b1 may be zero, but 
not all of them ended up zero at the same time. By substitut-
ing Equs. (26) and (27) into Equs. (24) and (25), we obtain 
a system of nonlinear algebraic equation ( ℕ𝔸𝔼 ). Then, by 
solving the system, we have the following results:

Set 1:

where

and A2 = −12 , a1 = ±i
√
12� + 2 . By substituting Set 1 into 

Equations (28)–(29) and (30)–(31), the following solitary 

(25)Φ�� − 2kΦ −
1

2
�ϕ2 +

1

2
Φ2 = 0,

(26)ϕ(℘) = b1 sinh℘ + a1 cosh℘ + a0,

(27)
Φ(℘) = B1 sinh℘ + B2 sinh℘ cosh℘

+ A1 cosh℘ + A2 cosh
2
℘ + A0,

(28)ϕ(�) = i b1 sech � − b1 tanh � + b0,

(29)
Φ(�) = iB1 sech � − iB2 tanh � sech

− A1 tanh � + A2 tanh
2 A + A0,

(30)ϕ(�) = b1 csch � − a1 coth � + �0,

(31)
Φ(�) = B1 cschB − B2 coth � csch �

− A1 coth � + A2 coth
2 � + A0,

−� =
1

2
�3 + k2 + 2k� +

1

12
�2 + 8� + 2,

A0 =
1

2
�2 + 2k +

1

12
� + 8,

A1 = B1 = B2 = a0 = b1 = 0,
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wave solutions for Equ. (1a)–(b) which can be determined 
as:

and

Set 2:

where

and A2 = −12 , b1 = ±i
√
12� + 2 . Again by substituting Set 

2 into Equs. (28)–(29) and (30)–(31), we obtain here wave 
solutions

and

(32)

�1,2(y, s)

= ±i
�√

12� + 2 tanh(y − 2ks)
�

× exp (i (ky

−
�
1

2
�3 + k2 + 2k� +

1

12
�2 + 8� + 2

�
s + �0

��
,

(33)�1,2(y, s) =
1

2
�2 + 2k +

1

12
� + 8 − 12 tanh2(y − 2ks),

(34)

�3,4(y, s)

= ±i
�√

12� + 2 coth(y − 2ks)
�

× exp (i (ky

−
�
1

2
�3 + k2 + 2k� +

1

12
�2 + 8� + 2

�
s + �0

��
,

(35)�3,4(y, s) =
1

2
�2 + 2k +

1

12
� + 8 − 12 coth2(y − 2ks).

−� =
1

2
�3 + k2 + 2k� +

1

12
�2 − 4� − 1,

A0 =
1

2
�2 + 2k +

1

12
� + 8,

A1 = B1 = B2 = a0 = a1 = 0,

(36)

�5,6(y, s)

= ∓i
�√

12� + 2 sech (y − 2ks)
�

× exp (i (ky

−
�
1

2
�3 + k

2 + 2k� +
1

12
�2 − 4� − 1

�
s + �0

��
,

(37)�5,6(y, s) =
1

2
�2 + 2k +

1

12
� + 8 − 12 tanh2(y − 2ks),

Set 3-a:

where

A1 = B1 = a0 = 0 , A2 = −6 , B2 = 6 and

After substituting the arrangement in Set 3-a into Equs. 
28)–(29) and (30)–(31), we construct the following wave 
solutions:

and

(38)

�7,8(y, s)

= ∓i
�√

12� + 2 csch (y − 2ks)
�

× exp (i (ky

−
�
1

2
�3 + k

2 + 2k� +
1

12
�2 − 4� − 1

�
s + �0

��
,

(39)�7,8(y, s) =
1

2
�2 + 2k +

1

12
� + 8 − 12 coth2(y − 2ks).

−� =
1

2
�3 + k2 + 2k� +

1

12
�2 + 2� +

1

2
,

A0 =
1

2
�2 + 2k +

1

12
� + 5,

a1 = ∓i
√
3� + 0.5, b1 = ±i

√
3� + 0.5.

(40)

�9,10(y, s)

= ±i

(√
3� +

1

2
tanh(y − 2ks) −

√
3� +

1

2
sech (y − 2ks)

)

× exp (i (ky

−
(
1

2
�3 + k2 + 2k� +

1

12
�2 + 2� +

1

2

)
s + �0

))
,

(41)

�9,10(y, s)

=
1

2
�2 + 2k +

1

12
� + 5

− 6 tanh2(y − 2ks) + 6i tanh(y − 2ks) sech (y − 2ks),

(42)

�11,12(y, s)

= ±i

(√
3� +

1

2
coth(y − 2ks) −

√
3� +

1

2
csch (y − 2ks)

)

× exp (i (ky

−
(
1

2
�3 + k

2 + 2k� +
1

12
�2 + 2� +

1

2

)
s + �0

))
,

(43)

�11,12(y, s)

=
1

2
�2 + 2k +

1

12
� + 5

− 6 coth2(y − 2ks) − 6 coth(y − 2ks) csch (y − 2ks).
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Set 3-b:

where

A1 = 0 , A2 = −6 , B1 = 0 , B2 = −6 , a0 = 0 and

By substituting Set 3-b into Equs. 28)–(29) and (30)–(31), 
we extract the following wave solutions:

and

For case‑II: ℘� = cosh(℘)

If we take N1 = 1 and N2 = 2 in Equs. 8)–(9), (20)–(21) 
and (22)–(23), we obtain the following formal solutions 
of Equs. 24) and (25):

−� =
1

2
�3 + k2 + 2k� +

1

12
�2 + 2� +

1

2
,

A0 =
1

2
�2 + 2k +

1

12
� + 5,

a1 = ∓i

√
3� +

1

2
, b1 = ±i

√
3� +

1

2
.

(44)

�13,14(y, s)

= ±

(
i

√
3� +

1

2
tanh(y − 2ks) −

√
3� +

1

2
sech (y − 2ks)

)

× exp (i (ky

−
(
1

2
�3 + k

2 + 2k� +
1

12
�2 + 2� +

1

2

)
s + �0

))
,

(45)

�13,14(y, s)

=
1

2
�2 + 2k +

1

12
� + 5

− 6 tanh2(y − 2ks) − 6 tanh(y − 2ks) sech (y − 2ks),

(46)

�15,16(x, t)

= ±i

(√
3� +

1

2
coth(y − 2ks) −

√
3� +

1

2
csch (y − 2kts)

)

× exp (i (ky

−
(
1

2
�3 + k

2 + 2k� +
1

12
�2 + 2� +

1

2

)
s + �0

))
,

(47)

�15,16(y, s)

=
1

2
�2 + 2k +

1

12
� + 5

− 6 coth2(y − 2ks) + 6 coth(y − 2ks) csch (y − 2ks),

(48)ϕ(℘) = b1 sinh℘ + a1 cosh℘ + a0,

and

where either A1 or A2 or B1 or B2 or a1 or b1 may be zero, but 
not all of them ended up zero at the same time. By substitut-
ing Equs. 46)–(47) into Equs. 24)–(25), we get a framework 
of ℕ𝔸𝔼 and by tackling the frameworks we have the taking 
after three sets.

Set 1:

where

and A2 = −12, a1 = ±i
√
12� + 2 . Again by substituting 

Set 1 into Equs. 48)–(49) and (50)–(51), we can determine 
the following trigonometric work arrangements for Equs. 
1a)–(b):

and

(49)
Φ(℘) = B1 sinh℘ + B2 sinh℘ cosh℘

+ A1 cosh℘ + A2 cosh
2
℘ + A0,

(50)ϕ(�) = b1 sec � + a1 tan � + a0,

(51)
Φ(�) = B1 sec � + B2 tan � sec �

+ A1 tan � + A2 tan
2 � + A0,

(52)ϕ(�) = −b1 cot℘ + a1 csc � + a0,

(53)
Φ(�) = −�1 cot � − B2 cot � csc �

+ A1 csc � + A2 csc
2 � + A0,

−k =
1

4
�2 +

1

24
� + 2,

−� =
1

16
�4 +

1

48
�3 +

577

576
�2 +

1

6
� + 5,

A0 = A1 = B1 = B2 = a0 = b1 = 0,

(54)

�15,16(y, s)

= ±i
�√

12� + 2 sec
�
y + 2

�
1

4
�2 +

1

24
� + 2

�
s
��

× exp
�
i
�
−
�
1

4
�2 +

1

24
� + 2

�
y

−
�
1

16
�4 +

1

48
�3 +

577

576
�2 +

1

6
� + 5

�
s + �0

��
,

(55)�15,16(y, s) = −12 sec2
(
y + 2

(
1

4
�2 +

1

24
� + 2

)
s
)
,



297Mathematical Sciences (2024) 18:291–303	

1 3

Set 2:

where

and A2 = −12 , a1 = ±i
√
12� + 2 . By substituting Set 2 into 

Equs. 48)–(49) and (50)–(51), again, we determine the fol-
lowing trigonometric work arrangements:

and

Set 3-a:

(56)

�17,18(y, s)

= ±i
�√

12� + 2 csc
�
y + 2

�
1

4
�2 +

1

24
� + 2

�
s
��

× exp
�
i
�
−
�
1

4
�2 +

1

24
� + 2

�
y

−
�
1

16
�4 +

1

48
�3 +

577

576
�2 +

1

6
� + 5

�
s + �0

��
,

(57)�17,18(y, s) = −12 csc2
(
y + 2

(
1

4
�2 +

1

24
� + 2

)
s
)
.

k =
1

4
�2 +

1

24
� + 2,

−� =
1

16
�4 +

49

48
�3 +

673

576
�2 +

49

6
� + 5,

A0 = �2 +
1

6
� + 8,

A1 = B1 = B2 = a0 = b1 = 0,

(58)

�19,20(y, s)

= ±i
�√

12� + 2 sec
�
y + 2

�
1

4
�2 +

1

24
� + 2

�
t
��

× exp
�
i
�
−
�
1

4
�2 +

1

24
� + 2

�
y

−
�
1

16
�4 +

49

48
�3 +

673

576
�2 +

49

6
� + 5

�
s + �0

��
,

(59)

�19,20(y, s)

= �2 +
1

6
� + 8 − 12 sec2

(
y + 2

(
1

4
�2 +

1

24
� + 2

)
s
)
,

(60)

�21,22(y, s)

= ±i
�√

12� + 2 csc
�
y + 2

�
1

4
�2 +

1

24
� + 2

�
t
��

× exp
�
i
�
−
�
1

4
�2 +

1

24
� + 2

�
y

−
�
1

16
�4 +

49

48
�3 +

673

576
�2 +

49

6
� + 5

�
s + �0

��
,

(61)

�21,22(y, s)

= �2 +
1

6
� + 8 − 12 csc2

(
y + 2

(
1

4
�2 +

1

24
� + 2

)
s
)
.

where

A1 = B1 = a0 = 0 , A2 = −6 , B2 = 6,

and

After substituting Set 3-a into Equs. 48)–(49) and (50)–(51), 
we produce the following trigonometric work arrangements:

and

Set 3-b:

k = ±
√
Δ,

� = −
1

16
�4 −

1

48
�3 +

287

576
�2

− �

�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4
,

A0 =
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ,

a1 = −i

√
3� +

1

2
, b1 = i

√
3� +

1

2
,

(62)Δ = 36�4 + 12�3 − 287�2 − 48� + 144.

(63)

�23,24(y, s)

= −i

�
3� +

1

2
tan

�
y ± 2

√
Δs

�
+ i

�
3� +

1

2
sec

�
y ± 2

√
Δy

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(64)

�23,24(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 tan2
�
y ± 2

√
Δs

�
+ 6 tan

�
y ± 2

√
Δy

�
sec

�
y ± 2

√
Δs

�
,

(65)

�25,26(y, s)

= −i

�
3� +

1

2
csc

�
y ± 2

√
Δs

�
− i

�
3� +

1

2
cot

�
y ± 2

√
Δs

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(66)

�27,28(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 csc2
�
y ± 2

√
Δy

�
− 6 cot

�
y ± 2

√
Δs

�
csc

�
y ± 2

√
Δs

�
.
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where

A1 = 0 , A2 = −6 , B1 = 0 , B2 = 6 , A0 = 0 , and

After substituting Set 3-b into Equs. 48)–(49) and (50)–(51), 
we extract the following trigonometric work arrangements:

and

Set 3-c:

k = ±
√
Δ,

� = −
1

16
�4 −

1

48
�3 +

287

576
�2

− �

�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4
,

A0 =
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ,

a1 = i

√
3� +

1

2
, b1 = −i

√
3� +

1

2
.

(67)

�29,30(y, s)

= i

�
3� +

1

2
tan

�
y ± 2

√
Δs

�
− i

�
3� +

1

2
sec

�
y ± 2

√
Δy

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(68)

�29,30(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 tan2
�
y ± 2

√
ΔS

�
+ 6 tan

�
y ± 2

√
Δy

�
sec

�
y ± 2

√
Δs

�
,

(69)

�31,32(y, s)

= i

�
3� +

1

2
csc

�
y ± 2

√
Δy

�
+ i

�
3� +

1

2
cot

�
y ± 2

√
Δs

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(70)

�31,32(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 csc2
�
y ± 2

√
Δs

�
− 6 cot

�
y ± 2

√
Δs

�
csc

�
y ± 2

√
Δs

�
.

k = ±
√
Δ,

� = −
1

16
�4 −

1

48
�3 +

287

576
�2

− �

�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4
,

where

A1 = 0 , A2 = −6 , B1 = 0 , B2 = −6 , A0 = 0 and

By substituting the Set 3-c into Equs. 48)–(49) and 
(50)–(51), we obtain the following trigonometric work 
arrangements:

and

Set 3-d:

where

A1 = B1 = a0 = 0 , A2 = −6 , B2 = −6 and

A0 =
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ,

a1 = −i

√
3� +

1

2
, b1 = i

√
3� +

1

2
.

(71)

�33,34(y, s)

= −i

�
3� +

1

2
tan

�
y ± 2

√
Δs

�
+ i

�
3� +

1

2
sec

�
y ± 2

√
Δs

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(72)

�33,34(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 tan2
�
y ± 2

√
Δs

�
− 6 tan

�
y ± 2

√
Δs

�
sec

�
y ± 2

√
Δs

�
,

(73)

�35,36(y, s)

= −i

�
3� +

1

2
csc

�
y ± 2

√
Δs

�
− i

�
3� +

1

2
cot

�
y ± 2

√
Δs

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(74)

�35,36(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 csc2
�
y ± 2

√
Δs

�
− 6 cot

�
y ± 2

√
Δs

�
csc

�
y ± 2

√
Δs

�
.

k = ±
√
Δ,

� = −
1

16
�4 −

1

48
�3 +

287

576
�2

− �

�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4
,

A0 =
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ,
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By substituting the Set 3-d into Equations (48)–(49) and 
(50)–(51), we extract the following trigonometric work 
arrangements:

and

Set 4-a:

where

A2 = −12 , b1 = i
√
12� + 2 and

a1 = i

√
3� +

1

2
, b1 = −i

√
3� +

1

2
.

(75)

�37,38(y, s)

= i

�
3� +

1

2
tan

�
y ± 2

√
Δs

�
− i

�
3� +

1

2
sec

�
y ± 2

√
Δs

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(76)

�37,38(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 tan2
�
y ± 2

√
Δs

�
− 6 tan

�
y ± 2

√
Δs

�
sec

�
y ± 2

√
Δs

�
,

(77)

�39,40(y, s)

= i

�
3� +

1

2
csc

�
y ± 2

√
Δs

�
+ i

�
3� +

1

2
cot

�
y ± 2

√
Δs

�

× exp
�
i
�
±
√
Δy +

�
−

1

16
�4 −

1

48
�3 +

287

576
�2

−�
�
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ
�
+

37

12
� +

1

4

�
s + �0

��
,

(78)

�39,40(y, s)

=
1

2
�2 +

1

12
� + 1 +

1

12

√
Δ

− 6 csc2
�
y ± 2

√
Δs

�
− 6 cot

�
y ± 2

√
Δs

�
csc

�
y ± 2

√
Δs

�
,

k = ±
√
Λ,

� = −
1

16
�4 −

1

48
�3 +

1151

576
�2

− �

�
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ
�
+

37

3
� − 2,

A0 =
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ,

A1 = B1 = B2 = a0 = a1 = 0,

(79)Λ = 36�4 + 12�3 − 1151�2 − 192� + 2304.

By substituting the Set 4-a into Equs.  (48)–(49) and 
(50)–(51), we explore the following trigonometric work 
arrangements:

and

Set 4-b:

where

A1 = 0 , A2 = −12 , B1 = 0 , B2 = 0 , a0 = 0 , a1 = 0 and 
b1 = −i

√
12� + 2 . By substituting the Set 4-b into 

Equs.  (48)–(49) and (50)–(51), we obtain the following 
trigonometric work arrangements:

(80)

�41,42(y, s)

= i
√
12� + 2 sec

�
y ∓ 2

√
Λs

�

× exp
�
i
�
±
√
Λy +

�
−

1

16
�4 −

1

48
�3 +

1151

576
�2

−�
�
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ
�
+

37

3
� − 2

�
s + �0

��
,

(81)

�41,42(y, s)

=
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ

− 12 tan2
�
y ∓ 2

√
Λs

�
,

(82)

�43,44(y, s)

= i
√
12� + 2 cot

�
y ∓ 2

√
Λs

�

× exp
�
i
�
±
√
Λy +

�
−

1

16
�4 −

1

48
�3 +

1151

576
�2

−�
�
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ
�
+

37

3
� − 2

�
s + �0

��
,

(83)

�43,44(y, s)

=
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ

− 12 csc2
�
y ∓ 2

√
Λs

�
.

k = ±
√
Λ,

� = −
1

16
�4 −

1

48
�3 +

1151

576
�2

− �

�
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ
�
+

37

3
� − 2,

A0 =
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ,
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and

Discussion and graphical illustration 
of the attained solutions

This section discusses our attained results and their three-
dimensional (3D) and two-dimensional (2D) graphical rep-
resentations that can be helpful in understanding the proper 
physical meaning of the coupled Schrödinger–KdV equa-
tions. The extended sinh-Gordon equation expansion method 
is successfully employed by constructing various types of 
wave solutions to coupled Schrödinger–KdV equations. The 
specified governing equations of (1a)–(1b) have been previ-
ously investigated by diverse methods [12, 13, 11, 14, 16, 6].

According to all previous studies, singular, dark, bright, 
and periodic waves solutions have not been constructed yet. 
In our work, we have developed some particular, singular, 
combined singular, dark, bright, combined dark–bright, 
periodic, singular periodic wave solutions, and other solu-
tions to the coupled Schrödinger–KdV equations through 
the extended sinh-Gordon equation expansion method. For 
the first time ever, this research paper can be assured that 
all singular, combined-singular, combined dark–bright, 
periodic, and singular periodic wave solutions have been 

(84)

�41,42(y, s)

= −i
√
12� + 2 sec

�
y ∓ 2

√
ΛS

�

× exp
�
i
�
±
√
Λy +

�
−

1

16
�4 −

1

48
�3 +

1151

576
�2

−�
�
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ
�
+

37

3
� − 2

�
S + �0

��
,

(85)

�41,42(y, s)

=
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ

− 12 tan2
�
y ∓ 2

√
Λs

�
,

(86)

�43,44(y, s)

= −i
√
12� + 2 cot

�
y ∓ 2

√
Λs

�

× exp
�
i
�
±
√
Λy +

�
−

1

16
�4 −

1

48
�3 +

1151

576
�2

−�
�
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ
�
+

37

3
� − 2

�
s + �0

��
,

(87)

�43,44(y, s)

=
1

2
�2 +

1

12
� + 4 +

1

12

√
Λ

− 12 csc2
�
y ∓ 2

√
Λs

�
,

Fig. 1   3D plot �(x, t) with forms for Equation (32): a real portion, b 
imaginary portion with k = 0.5 , � = 1 , �0 = 0 , and c, d: 2D line plot 
of a and b individually at t = 0

Fig. 2   3D plot �(x, t) with forms for (33): a real part with k = 0.5 , 
� = 1 , and b: 2D line plot of a at t = 0

Fig. 3   3D plot �(x, t) with forms for Equation  (40): a real part, b 
imaginary part with k = 1 , � = 2 , �0 = 0 , and c, d: 2D line plot of a 
and b individually at t = 0
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discussed and investigated. It too ought to be specified that 
the legitimacy of the extricated solutions is examined by 
substituting each of the precise solutions back into its com-
paring equation.

All of our generated solutions have some physi-
cal significance. To ensure such types of realization, 
we have displayed some 3D graphs with contour and 
2D line graphs among the detected singular solitons, 

combined-singular solitons, dark solitons, bright soli-
tons, combined dark–bright solitons, periodic, and singu-
lar- periodic wave solutions for different values of their 
arbitrary parameters, which are indicated in Figs. 1, 2, 3, 
4, 5, 6, 7, 8.

For Equs.  (1a) and (b), dark solitons, bright soli-
tons, combined dark–bright solitons, singular solitons, 
combined singular solitons, and singular periodic wave 
solutions are reported in Equs.  (32)–(33), (46)–(47) 
and Equs. (54)–(55), (86)–(87). In order to have a good 
understanding of the physical properties, the 3D graphs 
with contour and 2D line graphs are included among the 
obtained solutions under the choice of suitable values of 
arbitrary parameters. The perspective view of the obtained 
solutions prescribed by Equs.  (32)–(33), (40)–(41), 
(42)–(43) and (54)–(55) can be seen in the 3D and 2D 
graphs at t = 0 , which appear in Figs. 1, 2, 3, 4, 5, 6, 78, 
respectively.

Fig. 4   3D plot �(x, t) with forms for Equation  (41): a real part, b  
imaginary part with k = 1 , � = 2 , and c, d: (2D) line plot of a and b 
individually at t = 0

Fig. 5   3D plot �(x, t) with contours for Equation (42): a real part, b 
imaginary part with k = 1 , � = 2 , �0 = 0 , and c, d: 2D line plot of a 
and b individually at t = 0

Fig. 6   3D plot �(x, t) with forms for (43): a real part with k = 1 , 
� = 2 , and b: 2D line plot of a at t = 0

Fig. 7   3D plot �(x, t) with forms for (54): a real part, b imaginary 
part with � = 1 , �0 = 0 , and c, d: 2D line plot of a and b individually 
at t = 0
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Therefore, it is clear from the graphical outputs that the 
procedure of the extended sinh-Gordon equation expansion 
method will contribute for other related equations for obtaining 
more new soliton and other solutions.

Conclusions

Extended sinh-Gordon equation expansion method has 
been applied in this study to generate novel soliton and 
other solutions of the coupled Schrödinger–KdV equa-
tions. As a result, unused unequivocal complex hyperbolic 
and complex trigonometric work arrangements have been 
found, which are communicated by singular, combined 
singular, dark, bright, combined dark–bright, periodic 
wave soliton, and other shapes. All obtained arrangements 
fulfill their comparing condition. The 3D charts with form 
and 2D charts have been appeared for a few of the found 
solutions. All our results are fundamental in clarifying 
the physical meaning of some nonlinear models emerging 
from nonlinear sciences. The constructed solitons have 
never been discussed in any of the previous studies [12, 
13, 11, 14, 16, 6] in Schrödinger–KdV systems. In this 
manner, it is very apparent that this work gives a great 
contribution to this field of research due to its significance 
in numerous areas of material science.
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