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Abstract
In this paper, we investigate the possible treatment of a class of fractional-order delay differential equations. In delay dif-
ferential equations, the evolution of the state depends on the past time, which increases the complexity of the model. The 
fractional term is defined in the Caputo sense, and to find its solution we discretize the unknown solution using a truncated 
series based on orthogonal Chelyshkov functions. Then, the resulting system in terms of the unknown coefficients is solved 
that guarantees to produce highly accurate solutions. A detailed error analysis for the proposed technique is studied to 
give some insight into the error bound of the proposed technique. The method is then tested on some examples to verify 
the efficiency of the proposed technique. The method proves the ability to provide accurate solutions in terms of error and 
computational cost and through some comparisons with other related techniques. Thus, the method is considered a promis-
ing technique to encounter such problems and can be considered as an efficient candidate to simulate such problems with 
applications in science.

Keywords Caputo fractional derivative · Chelyshkov functions · Collocation points · Fractional delay differential 
equations · Error bound.

Introduction

Fractional calculus has become a rapidly increasing branch 
of science that gained an increasing interest in recent years 
with various areas of applications ranging from physical 
attainments and engineering to natural phenomena and 

financial viewpoints. A regularly expanding number of frac-
tional frameworks show up typically in disciplines such as 
viscoplasticity, the vibration of earthquake motions, circuits 
in electrical engineering, and so on. The use of fractional 
operator extended in simulating these problems or phenom-
ena in the form of differential equations, especially with 
a delayed part which may refer to memory terms. While 
trying to describe any physical process, one may assume 
that the process depends only on the present state which is 
verified for a large of dynamical processes. This assump-
tion is not verified for all the physical processes which may 
lead to some drawbacks on the performance while analyzing 
the system. In this situation, the assumption may be better 
changed to consider that the behavior of the system may also 
depend on the previous information of the previous state 
which may provide better simulation but may increase the 
complexity of the model. These modified systems can be 
called the delay problem that has many applications in dif-
ferent areas of science and engineering. For example, Ock-
endon et al. [1] described the behavior and dynamics of a 
current collection system for an electric locomotive through 
some delayed systems. Also, Ajello et al. [2] introduced a 
delay model describing the stage-structured population 
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growth with density dependent on time delay. In addition, 
some other applications of delayed models in science [3] and 
biology can be found in [4, 5].

In recent years, there have been several attempts to solve 
integer and non-integer real-life models of different types. For 
example, Sedaghat et al. [6] adapted a colocation method based 
on Chebyshev polynomials for solving a delay pantograph dif-
ferential equations. Also, Bernoulli polynomials have been 
used to solve the pantograph delay differential equations as in 
[7]. In addition, Adel et al. [8] adapted a collocation method 
based on Bernoulli polynomials for solving pantograph-type 
equations of Lane–Emden type with applications in astrophys-
ics. Also, in [9] a delayed version of the famous Ambartsum-
ian model has been solved using Bernoulli functions. Yüzbaşı 
et al. have used various basis functions to solve generalized and 
multi-pantograph differential equations through collocation 
approaches in [10–13]. Izadi et al. in [14–21] employed some 
novel techniques for solving different types of equations using 
various polynomials acquiring good results. Other methods 
and models include neural network method for solving single 
delay differential equation [22], Zhou method [23], fractional-
order Boubaker polynomials [24], Taylor wavelet method [25], 
spectral collocation methods [26, 27], variational iteration 
method [28], one-leg �-method [29], hybrid of block-pulse 
functions and Taylor series [30], Hermite wavelet method [31], 
and Legendre pseudospectral method [32].

Orthogonal functions play an important role in finding 
numerical solutions to differential equations. These func-
tions play the role of converting the solution of the model 
into solving an algebraic system of equations. For example, 
Saadatmandi et al. [33] adapted the Legendre operational 
matrix of fractional derivative defined in the Caputo sense 
for solving the class of fractional-order differential equa-
tions. Also, Maleknejad et al. [34] provided a novel wavelet 
approach based on Müntz–Legendre polynomials for solv-
ing distributed order fractional differential equations in the 
time domain. Chebyshev polynomials have also been used to 
solve differential equations of different types. Li et al. [35] 
employed the Chebyshev wavelet method for solving nonlin-
ear fractional differential equations. In addition, the second 
kind Chebyshev wavelet has been used by Rashidinia et al. 
[36] to simulate the result of a general form of a distributed 
order fractional differential equations. A similar approach can 
be found by Li et al. in [35], and also the (shifted) Chebyshev 
polynomials have been utilized by Bhrawy et al. [37] for solv-
ing the linear fractional differential equations. In addition, 
the (shifted) Jacobi polynomials have been used to solve the 
fractional differential equations by Behroozifar et al. [38]. 
The block pulse polynomials have been used several times 
for solving different problems of the fractional type including 
Li et al. [39] for solving the fractional differential equations 
and Maleknejad et al. [40] for solving the nonlinear two-
dimensional fractional integro-differential equations.

Additionally, among these functions is the orthogonal Chely-
shkov polynomials which were presented by Chelyshkov in [41] 
for the first time and have been used for solving differential 
equations. Using these polynomials, some numerical solutions 
have been found to some models including linear functional 
integro-differential equations with variable coefficients [42], 
weakly singular integral equations in [43], Volterra–Fredholm 
integral equations in [44] and two-variable distributed order 
fractional differential equations in [45]. Moreover, the opera-
tional matrix of fractional derivatives utilizing Chelyshkov 
polynomials to solve multi-order fractional differential equa-
tions has been considered by Talaei et al. [46]. The technique of 
operational matrix of fractional integration for solving a class of 
nonlinear fractional differential equations has been proposed by 
Meng et al. [47] for finding the solution of nonlinear fractional 
differential equations and by Al-Sharif et al. [48] introducing 
the integral operational matrix of fractional order.

The main subject of this work is to solve the fractional 
delay differential equations (FDDEs) numerically with the 
approximation algorithm based on the Chelyshkov functions. 
Some novel aspects of the designed algorithm are as follows:

• A wide class of delay fractional differential equations are 
being considered with the fractional derivative defined in 
terms of the Caputo fractional derivative.

• A new method based on the Chelyshkov functions and their 
differentiation matrix is used to solve this type of equation 
dealing with different complexities of the problem.

• The comparison of the proposed results from the used 
technique is presented to check the correctness of the 
models proving the superiority of the proposed tech-
nique over other methods even for some examples with 
the exact solution depending on the fractional order.

• The error bound for the proposed technique is examined 
in details ensuring that the provided technique provides 
convergent solutions.

It is worth mentioning that to the best of our knowledge, this 
is the first time the proposed technique relying on Chely-
shkov functions is being considered for solving this wide 
class of fractional delay problems. In this paper, we consider 
the following FDDEs

where 𝛾 ≥ 𝜇 > 0 , and 𝜈 > 0 are some known constants as 
the orders of the fractional derivatives interpreting in the 
Caputo’s sense. Also, the parameters � , �(t) and (� t − �(t)) 
are the constant and variable delay arguments of the model, 
and G is a given function. The FADEs in (1) are dealt with 
the initial conditions

(1)

C
D

(𝛾)
t
𝜒(t) =G

(

t,𝜒(t), CD(𝜇)
t
𝜒(t),𝜒(𝜔 t − 𝜏(t)),

C
D

(𝜈)
t
𝜒(𝜔 t − 𝜏(t))

)

, 0 < t ≤ 1,
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Some researchers have studied on existence and uniqueness 
of delay fractional differential equations and fractional pan-
tograph equations. We refer the readers to [49–51].

The outline of this study is organized as follows. In 
Sect. 2, first, some preliminary facts regarding the frac-
tional operators are illustrated. Then, some definitions for 
the Chelyshkov functions are given from a different perspec-
tive. In Sect. 3, the steps of the proposed technique are illus-
trated in detail to obtain the approximate solution of (1). The 
error bounds in the L2 weighted and L∞ norms are obtained 
for the present method in Sect. 4. The numerical examples 

are solved by the suggested method in Sec. 5. In Sect. 6, we 
give a conclusion for the study.

Some preliminary facts

A review of fractional calculus

In this part, some fundamental information related to frac-
tional calculus will be given. The fractional derivative of f(t) 
in the Caputo sense is defined as follows [52]:

being m − 1 < 𝛼 < m , m ∈ ℕ , t > 0 , f ∈ Cm
−1

 , and D =
d

dx
 . 

When c is a constant, we have

Moreover, if it is f (t) = t� , then the Caputo fractional deriva-
tive of f becomes as follows [53]:

A review of Chelyshkov functions

In 2006 year, Chelyshkov defined a new polynomial via Jac-
obi polynomials P�,�

m
(t) in [41] and named them as Chely-

shkov polynomials. These polynomials are defined by

(2)𝜒 (k)(0) = 𝜋k, k = 0, 1,… , n − 1, n − 1 < 𝛾 ≤ n.

C
D

(�)
t
f (t) = J

m−�
D

m
f (t)

=
1

Γ(m − �) ∫

t

0

(t − x)m−�−1f (m)(x)dx,

(3)CD
(�)
t c = 0.

(4)CD
(𝛼)
t t𝛽 =

�

0, for 𝛽 ∈ ℕ0 and 𝛽 < ⌈⌈𝛼⌉⌉,
Γ(𝛽+1)

Γ(𝛽+1−𝛼)
t𝛽−𝛼 , for 𝛽 ∈ ℕ0 and 𝛽 ≥ ⌈⌈𝛼⌉⌉ or 𝛽 ∉ ℕ0 and 𝛽 > ⌊⌊𝛼⌋⌋.

It is also shown in [41] that y(z) = z ��,L(z) satisfies the fol-
lowing second-order differential equation

This implies that these polynomials are the solutions of the 
following differential equation in the Sturm-Liouville form

Chelyshkov polynomials were expressed more explicity in 
[41, 42] as follows:

The set of Chelyshkov polynomials {��,L(z)}L�=0 for 
L = 0, 1,… forms an orthogonal system on [0,  1] with 
respect to the weight function w(z) = 1 , namely

We now use of substitution z = t� with 𝛼 > 0 in (5) to get 
fractional-order Chelyshkov differential equation. In the 
singular Sturm–Liouville form, it can be written as follows

where ��
�,L

(t) ∶= ��,L(t
�) . Note that by setting � = 1 in (7) we 

will recover (5). Thus, after some manipulations in (6), the 
explicit expression of the solution of (7) becomes as follows

In here, the set {��
�,L

(t)}L
�=0

 for L = 0, 1,… are orthogonal 
with respect to w�(t) ≡ t�−1 for 0 ≤ t ≤ 1 in the sense that

In order to devise the Chelyshkov matrix approach, we con-
stitute the vector of Chelyshkov bases as

��,L(z) = (−1)L−� z� P0,2�+1

L−�
(2z − 1), � = 0, 1,… , L.

z2(1 − z)y�� − z2y� +
[

(L + 1)2z − �(� + 1)
]

y = 0.

(5)

d

dz

[

z2(1 − z)
d

dz
��,L(z)

]

+
[

L(L + 2)z − �(� + 1)
]

��,L(z) = 0.

(6)��,L(z) =
L−�
∑

m=0

(−1)m
(

L + � + m + 1

L − �

)

(

L − �m
)

z�+m, � = 0, 1,… , L.

�

1

0

��,L(z) �k,L(z)dz =
��k

� + k + 1
, �, k ≥ 0.

(7)
d

dt

[

(t�+1 − t2�+1)
d

dt
��
�,L

(t)
]

+
[

L(L + 2)t2�−1 − �(� + 1)t�−1
]

��
�,L

(t) = 0.

(8)

��
�,L

(t) =

L
∑

m=�

(−1)m−�
(

L + m + 1

L − �

)(

L − �

m − �

)

t
m�
, � = 0, 1,… , L.

�

1

0

��
�,L

(t) ��
k,L
(t)w�(t)dt =

��k
�(2� + 1)

, �, k ≥ 0.
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Here, MMM�
L
(t) =

[

1 t� t2� … tL�
]

 denotes the mono-
mial basis and EEEL is a lower triangular matrix of size 
(L + 1) × (L + 1) defined as follows. According to the case 
of being an odd number and even number of L, respectively, 
the matrix EEEL becomes as follows:

and

Clearly, the determinant of EEEL as the product of the diagonal 
elements in both cases is nonzero, since the product of the 
diagonal elements is not zero.

By utilizing our method, we will aim to obtain the 
approximate solutions of (1) in terms of Chelyshkov func-
tions with fractional powers in the form

Thus, we use the Chelyshkov matrix technique to determine 
(L + 1) unknown coefficients a� . In this respect, let us define 
the vector AAAL = [a0 a1 … aL]

t . With the aid of (9), we 
are able to rewrite �L,�(t) in (10)

The Chelyshkov Matrix Technique

Firstly, we constitute the matrix representations of all 
unknowns functions in  (1) by utilizing the solution 

(9)ΨΨΨ�
L
(t) =

[

��
0,L
(t) ��

1,L
(t) … ��

L,L
(t)
]

=MMM�
L
(t)EEEL.

EEEL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

L + 1

L

��

L

0

�

0 … 0 0

−

�

L + 2

L

��

L

1

� �

L + 2

L − 1

��

L − 1

0

�

… 0 0

⋮ ⋮ ⋱ ⋮ ⋮
�

2L

L

��

L

L − 1

�

−

�

2L

L − 1

��

L − 1

L − 2

�

…

�

2L

1

��

1

0

�

0

−

�

2L + 1

L

��

L

L

� �

2L + 1

L − 1

��

L − 1

L − 1

�

…

�

2L + 1

1

��

1

1

�

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

EEEL =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

L + 1

L

��

L

0

�

0 … 0 0

−

�

L + 2

L

��

L

1

� �

L + 2

L − 1

��

L − 1

0

�

… 0 0

⋮ ⋮ ⋱ ⋮ ⋮

−

�

2L

L

��

L

L − 1

� �

2L

L − 1

��

L − 1

L − 2

�

…

�

2L

1

��

1

0

�

0
�

2L + 1

L

��

L

L

�

−

�

2L + 1

L − 1

��

L − 1

L − 1

�

… −

�

2L + 1

1

��

1

1

�

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(10)�L,�(t) =

L
∑

�=0

a� �
�
�,L

(t).

(11)�L,�(t) = ΨΨΨ�
L
(t)AAAL.

form (11). By using (9), let us rewrite the solution form 
as

To our approximation algorithm, we associate a set of (L + 1) 
collocation points {tr}Lr=0 on [0, 1]. To this end, we employ

By evaluating the relation (12) at the collocation points (13) 
gives us the following matrix expression for the solution 
�(t) as

Next, our goal is to obtain the matrix representations for 
CD

(s)
t �L,�(t) for s = � , � . According to (12), we require to 

compute the s-order fractional derivatives denoted by MMM(s)
� (t) 

for s = � ,� . In  these cases, we get

Mathematically, the calculation of MMM(s)
� (t) is carried out through 

using properties  (3)–(4). Practically, we utilize the Algo-
rithm (3.1) to compute it efficiently. One can easily seen that the 
complexity of this algorithm not more than O(L + 1) [14, 54].

(12)�L,�(t) = ΨΨΨ�
L
(t)AAAL =MMM�

L
(t)EEEL AAAL.

(13)tr =
r

L
, r = 0, 1,… , L.

(14)XXX =MMMEEEL AAAL, XXX =

⎛

⎜

⎜

⎜

⎝

�L,�(t0)

�L,�(t1)

⋮

�L,�(tL)

⎞

⎟

⎟

⎟

⎠

, MMM =

⎛

⎜

⎜

⎜

⎝

MMM�
L
((t0)

MMM�
L
(t1)

⋮

MMM�
L
(tL)

⎞

⎟

⎟

⎟

⎠

.

(15)CD
(s)
t �L,�(t) =MMM(s)

� (t)EEEL AAAL.
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After evaluating the Eq. (15) at the collocation points, we 
have proved the following results

Theorem  3.1 The matrix forms of CD(s)
t �L,�(t) , s = � ,� , 

evaluated at the collocation points (13) are represented by

where

To express �(� t − �(t)) in a matrix form, the next theo-
rem will be established.

Theorem 3.2 For any function �(t) and constant � , the 
matrix form of �L,�(� t − �(t)) evaluated at the collocation 
points (13) has the matrix representation

(16)XXX(s) =MMM(s)EEEL AAAL,

XXX(s) =

⎛

⎜

⎜

⎜

⎜

⎝

CD
(s)
t �L,�(t0)

CD
(s)
t �L,�(t1)

⋮

CD
(s)
t �L,�(tL)

⎞

⎟

⎟

⎟

⎟

⎠

, MMM(s) =

⎛

⎜

⎜

⎜

⎝

MMM(s)
� (t0)

MMM(s)
� (t1)

⋮

MMM(s)
� (tL)

⎞

⎟

⎟

⎟

⎠

.

(17)XXX�,� = M̂MM F̂FF�,� ÊEEL ÂAAL.

Here, the matrices M̂MM, F̂FF�,� , ÊEEL , ÂAAL are as in (20) and the 
vector XXX�,� is given by

Proof Let us prove the result when � = 1 . Due to (12), we 
obtain

Our attempt is to write MMM1
L
(� t − �(t)) in terms of MMM1

L
(t) , 

which is already defined in (9). Using of binomial formula 
reveals that

Now, we introduce the matrix FFF�,�,L(t) depends on the 
parameters � , �(t) , and L as follows:

XXX�,� =

⎛

⎜

⎜

⎜

⎝

�L,�(� t0 − �(t0))
�L,�(� t1 − �(t1))

⋮

�L,�(� tL − �(tL))

⎞

⎟

⎟

⎟

⎠

.

(18)�L,�(� t − �(t)) =MMM1
L
(� t − �(t))EEEL AAAL.

(� t − �(t))n =
n
∑

k=0

(

n

k

)

�k(−�(t))n−k tk.

FFF�,�,L(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�

0

0

�

�0 �0(t) −

�

1

0

�

�0 �1(t)

�

2

0

�

�0 �2(t) … (−1)L
�

L

0

�

�0 �L(t)

0

�

1

1

�

�1 �0(t) −

�

2

1

�

�1 �1(t) … (−1)L−1
�

L

1

�

�1 �L−1(t)

0 0

�

2

2

�

�2 �0(t) … (−1)L−1
�

L

2

�

�2 �L−2(t)

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 …

�

L

L

�

�L �0(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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This enables us to express the vector MMM1
L
(� t − �(t)) in the 

form

After inserting the former relation (19) into (18), we have

We then insert the collocation points (13) into the preceding 
equation and obtain the following block diagonal matrices

By considering the definition of XXX�,� the proof is complete 
for � = 1 . For other values of � , see the following Remark. 
 ◻

Remark 3.3 Let us remark that the complexity of computing 
XXX�,�(� t − �(t)) via Theorem (3.2) is O((L + 1)3) . However, 
in practice, we calculate it through using the symbolic tool-
box in MATALB. In this case, the corresponding cost is 
of order O((L + 1)2) . In this respect, we first compute the 
monomial vector MMM�

L
(t) with the aid of symbolic notations. 

Once the vector MMM�
L
(t) is created, we substitute (� t − �(t)) 

into it to get

By placing the collocation points (13) in the last equation, 
we get the matrix

Thus, the matrix XXX�,� in Theorem (3.2) with lower efforts 
can be expressed as

The same conclusion can be drawn for � = 1 as well.

Now, let us construct an explicit expression for 
CD

(�)
t �L,�(� t − �(t)) at the collocation points (13). By dif-

ferentiating (12) with regard to the fractional derivative � 

(19)MMM1

L
(� t − �(t)) =MMM1

L
(t)FFF�,�,L(t).

�L,1(� t − �(t)) =MMM1
L
(t)FFF�,�,L(t)EEEL AAAL.

(20)

M̂MM =

⎛

⎜

⎜

⎜

⎝

MMM1
L
(t0) 000 … 000

000 MMM1
L
(t1) … 000

⋮ ⋮ ⋱ ⋮

000 000 … MMM1
L
(tL)

⎞

⎟

⎟

⎟

⎠

, ÊEE =

⎛

⎜

⎜

⎜

⎝

EEEL 000 … 000

000 EEEL … 000

⋮ ⋮ ⋱ ⋮

000 000 … EEEL

⎞

⎟

⎟

⎟

⎠

,

F̂FF�,� =

⎛

⎜

⎜

⎜

⎝

FFF�,�,L(t0) 000 … 000

000 FFF�,�,L(t1) … 000

⋮ ⋮ ⋱ ⋮

000 000 … FFF�,�,L(tL)

⎞

⎟

⎟

⎟

⎠

, ÂAAL =

⎛

⎜

⎜

⎜

⎝

AAAL

AAAL

⋮

AAAL

⎞

⎟

⎟

⎟

⎠

.

MMM�
L
(� t − �(t)) ≈MMM�

L
(t)
|

|

|t→(� t−�(t))
.

MMM�,� =

⎛

⎜

⎜

⎜

⎝

MMM�
L
(� t0 − �(t0))

MMM�
L
(� t1 − �(t1))

⋮

MMM�
L
(� tL − �(tL))

⎞

⎟

⎟

⎟

⎠

.

(21)XXX�,� =MMM�,� EEEL AAAL.

and then substituting (� t − �(t)) into the resultant equation, 
we get

Thus, we use the collocation points (13) in (22) to get

where

Now let us collocate the FDDEs model problem (1) at the 
set of collocation points (13) as follows:

for r = 0, 1,… , L . We put the matrix forms (14), (16),  (17) 
or (21), and (23) into (24) and thus get a fundamental non-
linear matrix equation.

In the linear case, we assume that

where �j(t) , j = 0, 1, 2, 3 and q(t) are some known functions. 
By collocating the preceding equation at the collocation 
points and then utilizing (14)-(23), we have

In (25), we have used the coefficient matrices as well as the 
vector QQQ as

We ultimately obtain the fundamental linear matrix equation 
for the underlying model problem (1).

Proposition 3.4 Suppose that the solution of (1) can be 
obtained in the form based on Chelyshkov functions (12). 
Then, we get

(22)CD
(�)
t �L,�(� t − �(t)) = CD

(�)
t MMM�

L
(� t − �(t))EEEL AAAL.

(23)XXX(�)
�,� =MMM(�)

�,� EEEL AAAL,

XXX(�)
�,� =

⎛

⎜

⎜

⎜

⎜

⎝

CD(�)
t �L,�(� t0 − �(t0))

CD(�)
t �L,�(� t1 − �(t1))

⋮
CD(�)

t �L,�(� tL − �(tL))

⎞

⎟

⎟

⎟

⎟

⎠

,

MMM(�)
�,� =

⎛

⎜

⎜

⎜

⎜

⎝

CD(�)
t MMM�

L(� t0 − �(t0))
CD(�)

t MMM�
L(� t1 − �(t1))
⋮

CD(�)
t MMM�

L(� tL − �(tL))

⎞

⎟

⎟

⎟

⎟

⎠

.

(24)
C
D

(�)
t
�(t

r
) − G

(

t
r
,�(t

r
), CD

(�)
t
�(t

r
),

�(� t
r
− �(t

r
)), CD

(�)
t
�(� t

r
− �(t

r
))
)

,

G ∶=�0(t)�(t) + �1(t)
CD

(�)
t �(t) + �2(t)

�(� t − �(t)) + �3(t)
CD

(�)
t �(� t − �(t)) + q(t),

(25)XXX(�) = Θ0XXX + Θ1XXX
(�) + Θ2XXX�,� + Θ3XXX

(�)
�,� +QQQ.

Θp =

⎛

⎜

⎜

⎜

⎝

�p(t0) 0 … 0

0 �p(t1) … 0

⋮ ⋮ ⋱ ⋮

0 0 … �p(tL)

⎞

⎟

⎟

⎟

⎠

, p = 0, 1, 2, 3, QQQ =

⎛

⎜

⎜

⎜

⎝

q(t0)

q(t1)

⋮

q(tL)

⎞

⎟

⎟

⎟

⎠

.
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Proof The proof of the fundamental matrix equation (26) 
is straightforward just by placing (14), (16), (21), and (23) 
into (25).  ◻

Note that in the case of � = 1 and using Theorem 3.1, we 
get the following modified matrix equation instead of (26) as

It is worth pointing out that the matrix equation (26) or (27) 
is linear in terms of unknown coefficient AAAL to be calcu-
lated. However, what is left to implement the initial condi-
tions (2) so that they take part in the fundamental matrix 
equation (26). This task is the subject of the next part.

Initial conditions in the matrix form

Our main concern is to express the initial conditions (2) in 
the matrix formats. This enables us to determine the solution 
of (1) through solving the linear or nonlinear fundamental 
matrix equation as described above.

Let us first transform �(0) = �0 into a matrix format. For 
this purpose, let us approach t → 0 in (12) yielding

For the remaining initial conditions, we require to compute 
dk

dtk
MMM�

L
(t) for k = 1, 2,… , n − 1 due to (12). This task is per-

formed by calling Algorithm 3.1 utilizing integer values 
s = 1,… , n − 1 . Upon defining MMM(k)

L,�
(t) ∶=

dk

dtk
MMM�

L
(t) and let-

ting t → 0 , we arrive at the following matrix relations

for k = 1, 2,… , n − 1.

Remark 3.5 For � = 1 , an alternative approach has been 
used in the literature, see cf. [14]. In this approach, one may 
find a relationship between MMM1

L
(t) and its k-order derivatives 

dk

dxk
MMM1

L
(t) through an differentiation matrix DDD for k ≥ 1 as

(26)

(

MMM(�) − Θ0MMM − Θ1MMM
(�) − Θ2MMM�,� − Θ3MMM

(�)
�,�

)

EEEL

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
YYY

AAAL = QQQ, or [YYY;QQQ].

(27)YYY ∶=
(

MMM(�) − Θ0MMM − Θ1MMM
(�) − Θ3MMM

(�)
�,�

)

EEEL AAAL − Θ2 M̂MM F̂FF�,� ÊEEL ÂAAL = QQQ.

ỸYY0 ∶=MMM�
L
(0)EEELAAAL = �0, or [ŶYY0;�0].

ỸYYk ∶=MMM
(k)

L,�
(0)EEELAAAL = �k, or [ŶYYk;�k],

(28)

dk

dtk
MMM1

L
(t) =MMM1

L
(t)DDDk, DDD =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 … 0

0 0 2 … 0

⋮ ⋮ 0 ⋮ ⋮

0 0 0 ⋱ L

0 0 0 … 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠(L+1)×(L+1)

.

Therefore, after differentiating (12) k times with respect to 
t, we find

It now suffices to let t → 0 to get

for k = 1, 2,… , n − 1.

We finally combine the fundamental matrix equa-
tion (26) or (27), and the matrix forms of the initial condi-
tions (2). To do so, the replacements of the first n rows of the 
matrix [YYY;QQQ] are carried out by the row matrices [ỸYYk;�k] for 
k = 0, 1,… , n − 1 . Let us denoted [ỸYY;Q̃QQ] to be the modified 
fundamental matrix equation. Once this linear or nonlinear 
algebraic matrix equation is solved, the unknown coeffi-
cients a� , � = 0, 1,… , L are determined and thus the desired 
approximation �L,�(t) of FDDEs (1) is computed.

Approximation results for Chelyshkov 
functions

An error bound in the L2
w

 norm

Let us consider the convergence properties of the Chely-
shkov functions in the weighted L2

w
[0, 1] norm. We recall 

that the norm of an arbitrary function h(t) with respect to 
the weight function w(t) is given by

By defining the space spanned by the Chelyshkov basis 
functions

we have the following theorem.

Theorem  4.1 Suppose that for s = 0, 1,… , L we have 
CD

(s�)
t �(t) ∈ C(0, 1] . Let us denoted �L−1,�(t) = ΨΨΨ�

L−1
(t)AAAL−1 

dk

dtk
�L,1(t) =

dk

dtk
MMM1

L
(t)EEEL AAAL =MMM1

L
(t)DDDk EEEL AAAL.

ỸYYk ∶=MMM1
L
(0)DDDk EEEL AAAL = �k, or [ŶYYk;�k],

‖h(t)‖w =

�

∫

1

0

�h(t)�2 w(t)dt.

S
�
L
= Span ⟨��

0,L
(t), ��

1,L
(t),… , ��

L,L
(t)⟩,
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to be the best approximation out of S�
L−1

 to �(t) . Then, we get 
an error bound as:

where |CD(L�)
t �(t)| ≤ M∞

�  , for t ∈ (0, 1].

Proof For a similar proof, we refer the readers to [55, Theo-
rem 2.].   ◻

An error bound in the L∞ norm

We now aimed to obtain an error bound for the suggested 
method in the L∞ norm. In the following theorem, we will 
construct an upper boundary of errors.

Theorem 4.2 (Upper Boundary of Errors) Let us assume that 
�(t) and �L,�(t) = ΨΨΨ�

L
(t)AAAL are the exact solution and the 

Chelyshkov series solution with �L-th degree of Eq. (1) in 
interval 0 ≤ t ≤ 1 . Let �Mac

L,�
(t) =MMM�

L
(t) ÃAAL be the expansion 

of the generalized Maclaurin series [56] by �L-th degree 
of �(t) . Then, the errors of the Chelyshkov series solution 
�L,�(t) are bounded as follows:

for some ct ∈ (0, 1) . Here, MMM�
L
(t) , ΨΨΨ�

L
(t) , and the matrix EEEL 

are defined in Sect. 2, relation (9).

Proof Firstly, by utilizing the triangle inequality and the gen-
eralized Maclaurin expansion �Mac

L,�
(t) by �L-th degree, we 

can arrange the error ‖�(t) − �L,�(t)‖∞ as follows:

According to  (12), the Chelyshkov series solution 
�L,�(t) = ΨΨΨ�

L
(t)AAAL can be written in the matrix form 

�L,�(t) =MMM�
L
(t)EEELAAAL . Also, we know that the expansion of 

the generalized Maclaurin series by �L-th degree of �(t) is 
�Mac
L,�

(t) =MMM�
L
(t) ÃAAL . Hence, by using this information, we 

can write the following inequality

‖�(t) − �L−1,�(t)‖w�
≤

1
√

(2L + 1)�

M∞
�

Γ(L� + 1)
,

(29)

‖�(t) − �L,�(t)‖∞ ≤
1

Γ(�(L + 1) + 1)

‖� (�(L+1))(ct)‖∞ + ‖ÃAAL‖∞ + ‖EEEL‖∞‖AAAL‖∞,

(30)

‖�(t) − �L,�(t)‖∞ = ‖�(t) − �Mac
L,� (t) + �Mac

L,� (t) − �L,�(t)‖∞

≤ ‖�(t) − �Mac
L,� (t)‖∞ + ‖�Mac

L,� (t) − �L,�(t)‖∞.

(31)

‖�Mac

L,� (t) − �
L,�(t)‖∞ = ‖MMM

�
L
(t) ÃAA

L
−MMM

�
L
(t)EEE

L
AAA
L
‖∞

≤ ‖MMM
�
L
(t)(ÃAA

L
−EEE

L
AAA
L
)‖∞

≤ ‖MMM
�
L
(t)‖∞

�

‖ÃAA
L
‖∞ + ‖EEE

L
‖∞‖AAAL

‖∞),

0 ≤ t ≤ 1.

The norm ‖MMM�
L
(t)‖ in [0, 1] is bounded as ‖MMM�

L
(t)‖∞ ≤ 1 . 

Then, Eq. (31) can be arranged as follows:

On the other hand, by utilizing that the reminder term of the 
generalized Maclaurin series [56] �Mac

L,�
(t) by �L-th degree is

where ct is some constant in (0, 1). Therefore, we get the 
following error bound

Lastly, by combining Eqs. (30),  (32) and  (33), we have 
proved the desired result.  ◻

Simulation examples

In this part, the applications of novel Chelyshkov matrix 
algorithm for the considered delay model (1) are demon-
strated through numerical simulations. We validate our 
numerical results by developing diverse test examples as 
well as a comparison with available computational and 
experimental results has been performed. For implementa-
tion and visualization, we utilize MATLAB software ver-
sion 2017a. In order to evaluate the accuracy as well as the 
convergence of the proposed Chelyshkov matrix technique, 
we define

However, the exact solutions are usually not at hand for some 
examples or at various values of fractional orders � ,�, � . In 
these cases, we define the residual error function to testify 
the accuracy of the presented approach

for t ∈ [0, 1].
Test case 5.1 We firstly consider the FDDEs model prob-

lem of the form [57–60]

(32)‖�Mac
L,� (t) − �L,�(t)‖∞ ≤ ‖ÃAAL‖∞ + ‖EEEL‖∞‖AAAL‖∞.

t�(L+1)

Γ(�(L + 1) + 1)
� (�(L+1))(ct), 0 ≤ t ≤ 1,

(33)

‖�(t) − �Mac
L,� (t)‖∞ ≤

1

Γ(�(L + 1) + 1)
‖� (�(L+1))(ct)‖∞.

EL,�(t) ∶= |�L,�(t) − �(t)|, t ∈ [0, 1].

(34)
R

L,�(t) ∶=
|

|

|

C
D

(�)
t
�
L,�(t) − G

(

t,�
L,�(t),

C
D

(�)
t
�
L,�(t),

�
L,�(� t − �(t)), CD(�)

t
�
L,�(� t − �(t))

)

|

|

|

,

CD
(�)
t �(t) + �(t) − �(t − �(t))

= 2t�(t) − �2(t) − �(t) +
2

Γ(3 − �)
t2−� −

1

Γ(2 − �)
t1−� ,
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being � ∈ (0, 1] and initial condition is �(0) = 0 . A straight-
forward calculation shows that true exact solution is given 
by �(t) = t2 − t for all values of � ∈ (0, 1].

Let’s begin computations by setting �(t) = ce−t , c = 0.01 
and using L = 2 . Taking this value of L would be sufficient 
to get an accurate solution. Using � and � both equal to unity, 
the approximate solution is

which is exactly the true solution. The aforesaid approxima-
tion along with the related absolute error is shown in Fig. 1.

Note, using diverse values of 0 < 𝛾 < 1 will also lead to 
the same exact solution as for � = 1 . In the next experiments, 
the results of absolute errors utilizing diverse values of 
� = 0.25, 0.5, 075 are reported. Table 1 tabulates the results 
of EL,�(t) , which are calculated at some points ti = 2i∕10 
while i varies from 0 to 5. A comparison with the outcomes 
of operational-based methods with constant � = 0.01 are 
presented in Table 1 to testify the validity of our numerical 
results. These methods are the Bernoulli wavelet method 
(BWM) [57], the Chebyshev spectral collocation method 
(CSCM) [59], and the Chebyshev functions of third kind 
(CFTK) [60] Looking at Table 1 reveals that our numeri-
cal model results are more accurate in comparison to other 
existing computational results.

�2,1(t) = 1.0 t2 − 1.0 t, t ∈ [0, 1],

Next, we investigate the influence of utilizing diverse 
delayed functions �(t) on the computed solutions. We take 
�(t) = et, e−t, sin(t),

√

t , �(t) = t10 . In all cases, the obtained 
approximate solutions by the Chelyshkov matrix approach 
are the same and coincide with the exact true solution. 
In Fig. 2, we depict the related absolute errors, which are 
obtained using � = 0.5 , � = 1 , and L = 2.
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Fig. 1  Graphs of the exact and computed solutions (left) and the resulting absolute errors (right) utilizing L = 2 , � , � = 1 in Example 5.1

Table 1  The comparison of 
absolute errors in Chelyshkov 
matrix approach in Example 5.1 
using L = 2 , � = 1 , and diverse 
� = 0.25, 0.5, 0.75, 1.0 and 
t ∈ [0, 1]

t Chelyshkov (L = 2) CSCM [59] BWM [57] CFTK [60]

� = 0.25 � = 0.5 � = 0.75 � = 1.0 � = 1.0 � = 1.0 � = 1.0

0.0 0.0000−00 0.0000−00 0.0000−00 0.0000−00 0.0000−00 − 0.0000−00

0.2 1.9593−17 4.1381−17 3.0435−17 2.4704−17 7.5856−14 0.00−00 1.1963−14

0.4 2.6598−17 6.4730−17 5.2182−17 3.9001−17 3.9079−14 1.11−16 1.6376−15

0.6 2.1015−17 7.0046−17 6.5242−17 4.2893−17 1.4516−14 3.15−14 7.2997−15

0.8 2.8442−18 5.7331−17 6.9614−18 3.6378−17 7.9603−14 3.23−14 4.9405−15

1.0 2.7915−17 2.6584−17 6.5299−17 1.9458−17 0.0000−00 0.00−00 0.0000−00
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Fig. 2  Graphs of the absolute errors utilizing L = 2 , � = 0.5, � = 1 , 
and diverse delayed functions �(t) in Example 5.1
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Test case 5.2 As the second test problem, let us consider 
the FDDEs of the form

with initial condition �(0) = 1 . It is not a difficult task to 
show that the exact solution of (5.2) for � = 1 is �(t) = et.

Firstly, N = 3, 5 being used for this example. Considering 
� , � = 1 , the resulting approximative solutions via Chely-
shkov matrix technique for t ∈ [0, 1] are as follows:

The obtained approximations along with the exact solution 
are visualized in Fig. 3. In addition to L = 3, 5 , the resulting 
absolute errors for L = 7, 9 are also depicted in this figure, 
but on the right plot. Clearly, the exponential convergence 

CD
(𝛾)
t 𝜒(t) −

1

2
𝜒(t) =

1

2
e

t

2𝜒
(

t

2

)

, 0 < 𝛾 ≤ 1,

�3,1(t) = 0.330827997 t
3 + 0.3380024642 t

2 + 1.070786443 t + 1.0,

�5,1(t) = 0.01535493092 t
5 + 0.03061950307 t

4 + 0.1749117548 t
3 + 0.4968973814 t

2

+ 1.000599604 t + 1.0.

of the proposed algorithm can be visible when the number 
of bases getting large.

Moreover, for � = 1 , the results of absolute errors EL,1(t) 
utilizing diverse values of L = 5, 7, 9 , and L = 11 are 
reported in Table 2. Comparisons are further made in this 
table between the outcomes of the present technique and the 
other existing methods, i.e., the Chebyshev wavelet method 
(CWM) [61] and the CFTK [60].

Let us consider the behavior of solutions when the 
fractional order 0 < 𝛾 < 1 is used. In this respect, we take 

� = 0.5, 0.75 . Additionally, we utilize � , � = 1 . Fig. 4 dis-
plays the solutions �10,�(t) , where both � = 1 and � = � are 
used for comparisons. In the right graph, the residual errors 
R10,�(t) for t ∈ [0, 1] are also depicted. It can be readily 
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Fig. 3  Graphs of the exact and computed solutions using L = 3, 5 (left) and the resulting absolute errors (right) for L = 3, 5, 7, 9 for � , � = 1 in 
Example 5.2

Table 2  The comparison of 
absolute errors in Chelyshkov 
matrix approach in Example 5.2 
utilizing L = 5, 7, 9, 11 , � , � = 1 , 
and diverse t ∈ [0, 1]

t Chelyshkov CWM [61] CFTK [60]

L = 5 L = 7 L = 9 L = 11

0.01 5.6939−06 2.1515−08 4.6094−11 6.4140−14 1.8256−04 7.1930−10

0.02 1.0815−05 3.9604−08 8.2118−11 1.1055−13 3.6845−04 8.5319−11

0.03 1.5410−05 5.4727−08 1.0999−10 1.4361−13 5.5740−04 2.8705−10

0.04 1.9520−05 6.7294−08 1.3133−10 1.6678−13 7.4921−04 4.6858−10

0.05 2.3187−05 7.7672−08 1.4749−10 1.8274−13 9.4361−04 5.1648−10

0.06 2.6450−05 8.6187−08 1.5959−10 1.9356−13 1.1403−03 4.7623−10

0.07 2.9344−05 9.3129−08 1.6854−10 2.0079−13 1.3391−03 3.8336−10

0.08 3.1903−05 9.8751−08 1.7511−10 2.0562−13 1.5396−03 2.6493−10

0.09 3.4160−05 1.0328−07 1.7991−10 2.0889−13 7.7417−03 1.4094−10

0.10 3.6143−05 1.0690−07 1.8342−10 2.1122−13 1.9449−03 2.5492−11
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observed that a smaller magnitude of error is achieved when 
the degrees of local basis functions � are taken as the frac-
tional order of model �.

Test case 5.3 The third test case is devoted to the follow-
ing nonlinear FDDEs defined on 0 ≤ t ≤ 1 as

The initial conditions are �(0) = 1 , � �(0) = 0 . For � = 2 , an 
easy calculation shows that �(t) = cos t is the exact solution 
of this model problem.

CD
(𝛾)
t 𝜒(t) = 1 − 2𝜒2

(

t

2

)

, 1 < 𝛾 ≤ 2.
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Fig. 4  Graphs of computed solutions (left) and the resulting residual errors (right) utilizing � = 0.5, 0.75 , � = 1, � for L = 10 in Example 5.2

Table 3  The comparison of 
absolute errors in Chelyshkov 
matrix approach in Example 5.3 
using � = 2 , � = 1 , and diverse 
L = 5, 8, 10, 15 and t ∈ [0, 1]

t Chelyshkov (� = 2, � = 1) MLWM (k = 1 ) [62] BWM (k = 2 ) [57]

L = 5 L = 8 L = 10 L = 15 M = 10 M = 20 M = 7 M = 9

0.0 0.0000−00 0.0000−00 0.0000−00 0.0000−00 5.200−08 2.10−08 1.05−10 1.62−11

0.2 9.1896−05 1.9429−08 4.1612−11 2.1947−15 7.780−08 2.09−08 3.21−11 3.30−13

0.4 2.4849−04 4.4676−08 9.0913−11 4.6862−15 1.107−07 2.08−08 3.81−11 4.17−12

0.6 3.9528−04 6.6873−08 1.3370−10 6.7532−15 1.445−07 2.04−08 1.31−06 1.08−08

0.8 5.1601−04 8.4152−08 1.6632−10 8.2528−15 1.792−07 2.00−08 1.82−06 1.62−08

1.0 6.0012−04 9.4882−08 1.8560−10 9.2612−15 2.218−07 1.97−08 − −
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Fig. 5  Graphs of computed solutions using L = 10, � = 1 (left) and the resulting residual errors (right) for diverse � = 1.5, 1.6,… , 2 in Exam-
ple 5.3
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First, we set � = 2, � = 1 . Utilizing L = 5, 10 in the 
Chelyshkov matrix procedure, we get the following poly-
nomial forms for the approximate solutions for t ∈ [0, 1] as 
follows:

and

Let us consider the series form of the exact solution, i.e., 
cos t ≈ 1 −

t2

2!
+

t4

4!
−⋯ +

t10

10!
 . A comparison between 

the achieved approximations and the exact one indicates 
the good alignment between them, especially when L is 

�5,1(t) = −0.005332031785 t5 + 0.05030385241 t
4

− 0.007577193623 t
3

− 0.496492205 t
2 + 1.0,

�10,1(t) = −2.2608 × 10
−7

t
10 − 1.9315 × 10

−7
t
9

+ 2.5175 × 10
−5

t
8 − 4.4477 × 10

−7
t
7

− 0.00138853644 t
6 − 1.9113 × 10

−7
t
5

+ 0.04166673776 t
4 − 1.7846 × 10

−8
t
3

− 0.4999999971 t
2 + 1.0.

increased. Moreover, the absolute errors EL,1(t) utilizing 
diverse values of L = 5, 8, 10, 15 in the approximate solu-
tions are presented in Table 3. The outcomes of the BWM 
[57] with k = 2 and various M = 7, 9 as well as the modified 
Laguerre wavelet method MLWM [62] with k = 1 and dif-
ferent M = 10, 20 are also reported in Table 3. We observe 
that the proposed method using a lower number of bases 
produces more accurate results than the BWM method does.

Figure 5 displays the numerical solutions corresponding 
to diverse fractional orders � = 1.5, 1.6, 1.7, 1.8 , and 1.9. 
Besides, Fig. 5 shows the results related to � = 2 at which 
the exact solution is available. In all plots, we use � = 1 
and L = 10 is taken. On the right panel, the behavior of 
residual errors R10,1(t) , t ∈ [0, 1] at different values of � are 
visualized.

Precisely speaking, in Table 4, the computed values of 
numerical solutions �10,1(t) for various � = 1.5, 1.6,… , 1.9 
at some points t ∈ [0, 1] for Example 5.3 are shown.

Test case 5.4 We consider the following FDDEs

CD
(𝛾)
t 𝜒(t) = −𝜒(t) − 𝜒(t − 0.3) + e0.3−t, 2 < 𝛾 ≤ 3.

Table 4  The computed 
solutions in Chelyshkov matrix 
method in Example 5.3 utilizing 
L = 10 , � = 1 , and diverse 
� = 1.5, 1.6,… , 1.9 for some 
t ∈ [0, 1]

t � = 1.5 � = 1.6 � = 1.7 � = 1.8 � = 1.9

0.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
0.1 0.98325448 0.98685997 0.98968875 0.99190598 0.99364314
0.2 0.94503961 0.95497768 0.96320209 0.96997274 0.97552540
0.3 0.89483587 0.91074173 0.92458655 0.93650818 0.94669131
0.4 0.83713208 0.85755934 0.87625184 0.89305617 0.90796510
0.5 0.77479964 0.79781013 0.82002502 0.84089796 0.86012696
0.6 0.71004581 0.73344144 0.75749395 0.78122521 0.80397603
0.7 0.64468227 0.66614770 0.69011669 0.71519702 0.74035041
0.8 0.58023922 0.59744331 0.61926341 0.64395981 0.67013188
0.9 0.51802302 0.52869663 0.54623336 0.56865274 0.59424405
1.0 0.45915462 0.46114920 0.47226123 0.49040648 0.51364719

Table 5  The comparison 
of numerical solutions in 
Chelyshkov matrix method in 
Example 5.3 utilizing L = 10 , 
� = 1 , and � = 3 for some 
t ∈ [0, 1]

t Chelyshkov (� = 3, � = 1) MLWM [62] BWM [57]

�10,1(t) E10,1,(t) Exact M = 20 M = 7

0.0 1.00000000 0.00−00 1.000000000000000 0.0+00 1.0000
0.1 0.90483742 6.83−12 0.904837418035960 1.0−10 −
0.2 0.81873075 3.90−11 0.818730753077982 1.0−10 0.8187
0.3 0.74081822 1.00−10 0.740818220681718 1.0−10 −
0.4 0.67032005 1.91−10 0.670320046035639 0.0+00 0.6703
0.5 0.60653066 3.11−10 0.606530659712633 1.0−10 −
0.6 0.54881164 4.59−10 0.548811636094027 1.0−10 0.5488
0.7 0.49658530 6.36−10 0.496585303791410 0.0−00 −
0.8 0.44932896 8.41−10 0.449328964117222 1.0+10 0.4494
0.9 0.40656966 1.07−09 0.406569659740599 3.0−10 −
1.0 0.36787944 1.33−09 0.367879441171442 2.0−10 −
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The given initial conditions are �(0) = 1 , � �(0) = −1 , and 
� ��(0) = 1 . If � = 3 , one can show that �(t) = e−t is the exact 
solution of (5.4).

First, we take � = 3 and � = 1 . We get the following poly-
nomial solutions when using L = 5, 10 in the Chelyshkov 
matrix approach on [0, 1] as follows:

�5,1(t) = −0.0046134994 t5 + 0.036777943 t
4

− 0.16319738 t
3 + 0.5 t

2 − 1.0 t + 1.0,

�10,1(t) = 1.5868 × 10
−7

t
10 − 2.4685 × 10

−6
t
9

+ 2.4368 × 10
−5

t
8 − 1.9798 × 10

−4
t
7

+ 0.0013885928 t
6 − 0.00833319237 t

5

+ 0.04166662023 t
4 − 0.1666666563 t

3

+ 0.5 t
2 − 1.0 t + 1.0.

Furthermore, the numerical evaluations of the latter 
approximate solution are presented in Table 5. The result-
ing absolute errors at some points t ∈ [0, 1] are also shown. 
The numerical results of two existing schemes, namely the 
MLWM [62] with k = 1,M = 20 and the BWM [57] utiliz-
ing k = 2,M = 7 , are reported in this table for comparison.

In the next study, we examine the impact of using non-
integer order values on the obtained numerical solutions. Let 
us consider L = 10 and � = 1 . The numerical evaluations at 
� = 2.5, 2.7, 2.9 are seen in Table 6. The associated residual 
errors are further presented in Fig. 6. This figure also shows 
the errors for other values of � = 2.6, 2.8, 3.

Our further goal is to examine the benefits of utilizing 
fractional-order Chelyshkov functions in the presented 
matrix technique.

Test case 5.5 Let us consider the nonlinear FDDEs of 
the form

where g(t) = 3
√

�

Γ(
5

2
−�)

t
3

2
−� − t

3

2 − t and with the initial condi-

tion �(0) = 0 . It can be seen that the exact solution is given 
by �(t) = t

√

t.
Let us first consider � =

1

2
 and L = 5 . To highlight the 

discrepancy between integer and non-integer order of basis 
functions, we set � = 1 and � =

1

2
 in the experiments. For 

� = 1 , the following approximate solution via Chelyshkov 
matrix technique is gotten on [0, 1]

which is obviously far from the exact solution. Even using 
a larger number of L cannot lead to a significant change in 
the accuracy of approximate solutions due to appearance of 
the fractional power in the exact solution. One remedy is to 
utilize a set of fractional bases so that the exact solution is 
written in terms of them. In this case, we set � =

1

2
 . Thus, we 

get MMM
1

2

5
= [1 t1∕2 t t3∕2 t2 t5∕2] . The corresponding 

approximation is

which is in excellent agreement with the exact solution. Note 
that one obtains also the same accurate solutions using a 
smaller number of bases. For instances, taking L = 3 with 
� =

1

2
 gives us

CD
(𝛾)
t 𝜒(t) = 𝜒(t) + 𝜒2

(

t

4

)

+ g(t), 0 < 𝛾 ≤ 1,

�5,1(t) = −0.1592325852 t5 + 0.6061142788 t
4

− 1.005116759 t
3 + 1.329574057 t

2

+ 0.2365275176 t + 2.005042339 × 10
−22

,

�
5,

1

2

(t) = 1.692665537 × 10
−14

t + 1.396525139 × 10
−13

t
2

+ 1.124313168 × 10
−15

t
1∕2 + 1.0 t

3∕2

− 9.409720268 × 10
−14

t
5∕2 − 3.597072825 × 10

−23
,

Table 6  Numerical solutions in Chelyshkov matrix method in Exam-
ple 5.4 utilizing L = 10 , � = 1 , and diverse � = 2.5, 2.7, 2.9 for some 
t ∈ [0, 1]

t � = 2.5 � = 2.7 � = 2.9

0.0 1.00000000 1.00000000 1.00000000
0.1 0.90444158 0.90466105 0.90479268
0.2 0.81623137 0.81756950 0.81842560
0.3 0.73399952 0.73753633 0.73992965
0.4 0.65700379 0.66371713 0.66848617
0.5 0.58479839 0.59547470 0.60339119
0.6 0.51712227 0.53231879 0.54403472
0.7 0.45385009 0.47387420 0.48988680
0.8 0.39496266 0.41986020 0.44048716
0.9 0.34052630 0.37007583 0.39543695
1.0 0.29067780 0.32438859 0.35439188
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Fig. 6  Plots of residual errors in Example 5.4 utilizing L = 10 , � = 1 
and diverse � = 2.5, 2.6,… , 3
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The same approximation result is obtained with L = 2 and 
� =

3

2
 as

�
3,

1

2

(t) =1.0071 × 10
−10

t − 5.0401 × 10
−11

t
1∕2

+ 0.9999999999 t
3∕2 − 1.1571 × 10

−22
.

All the above approximations together with related absolute 
errors are depicted in Fig. 7.

�
2,

3

2

(t) =1.000000152 t3∕2 − 0.0000004120797475 t
3

− 8.056246369 × 10
−20

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

t-axis

χ
L
,α
(t
)

Exact
L = 5, α = 1
L = 10, α = 1
L = 5, α = 1

2
L = 3, α = 1

2
L = 2, α = 3

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110−18

10−15

10−12

10−9

10−6

10−3

100

t-axis

E L
,α
(t
)

L = 5, α = 1
L = 10, α = 1
L = 5, α = 1

2
L = 3, α = 1

2
L = 2, α = 3

2

Fig. 7  Graphs of the exact and computed solutions (left) and the resulting absolute error (right) using � =
1

2
 and different L for � = 1,

1

2
,
3

2
 in 

Example 5.5

Table 7  The comparison 
of numerical solutions in 
Chelyshkov matrix method in 
Example 5.5 utilizing L = 3 , 
� =

1

2
,
3

4
 , and � =

1

4
,
1

2
,
3

4
 for 

some t ∈ [0, 1]

t � =
1

4
, � =

3

4
� =

1

2
, � =

1

2
� =

3

4
, � =

3

4

�
3,

3

4

(t) E
3,

3

4

(t) �
3,

1

2

(t) E
3,

1

2

(t) �
3,

3

4

(t) E
3,

3

4

(t)

0.0 0.00000000 1.9424−20 0.00000000 1.1571−22 0.00000000 2.9673−20

0.1 0.03162276 2.0690−08 0.03162278 8.5590−12 0.03162278 1.3328−09

0.2 0.08944268 4.0539−08 0.08944272 1.0011−11 0.08944272 2.8106−09

0.3 0.16431670 6.5829−08 0.16431677 1.1380−11 0.16431676 4.9317−09

0.4 0.25298211 9.8225−08 0.25298221 1.3127−11 0.25298220 7.8535−09

0.5 0.35355325 1.3875−07 0.35355339 1.5379−11 0.35355338 1.1678−08

0.6 0.46475781 1.8814−07 0.46475800 1.8175−11 0.46475799 1.6481−08

0.7 0.58566177 2.4700−07 0.58566202 2.1524−11 0.58566200 2.2327−08

0.8 0.71554144 3.1583−07 0.71554175 2.5420−11 0.71554172 2.9267−08

0.9 0.85381457 3.9507−07 0.85381497 2.9854−11 0.85381493 3.7350−08

1.0 0.99999951 4.8510−07 1.00000000 3.4813−11 0.99999995 4.6615−08

Table 8  The comparison of 
absolute errors in Chelyshkov 
matrix approach in Example 5.6 
utilizing L = 5, 7, 9, 11, 15 , 
� , � = 1 , and diverse t ∈ [0, 1]

t Chelyshkov CFTK [60]

L = 5 L = 7 L = 9 L = 11 L = 15

0.1 9.2249−05 4.4762−07 1.0859−09 1.6047−12 1.1607−14 1.60−07

0.2 1.0579−04 4.4058−07 9.8518−10 1.4025−12 9.8849−15 6.17−08

0.3 9.3122−05 3.7022−07 8.2400−10 1.1690−12 8.1952−15 4.65−08

0.4 7.6771−05 3.0675−07 6.7928−10 9.6105−13 6.7237−15 6.52−08

0.5 6.3038−05 2.5073−07 5.5357−10 7.8212−13 5.4653−15 5.03−08

0.6 5.1558−05 2.0224−07 4.4625−10 6.2978−13 4.3972−15 3.74−08

0.7 4.1086−05 1.6180−07 3.5522−10 5.0081−13 3.4941−15 3.62−08

0.8 3.1923−05 1.2646−07 2.7898−10 3.9287−13 2.7351−15 4.39−08

0.9 2.5382−05 9.7739−08 2.1344−10 3.0090−13 2.0971−15 6.20−09

1.0 2.0604−05 7.8735−08 1.7005−10 2.3610−13 1.5214−15 4.81−08
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We further utilize diverse � =
1

4
,
1

2
 , and � =

3

4
 in the com-

putations. Correspondingly, the values of � =
1

2
,
3

4
 are used. 

The numerical results are presented in Table 7 with L = 3 . 
By looking at the numerical results we can see that employ-
ing the fractional-order Chelyshkov functions gives rise to 
a considerable achievement of accuracy in the approximate 
solutions and even with a small number of bases.

Test case 5.6 We consider the following FDDEs as

where g(t) = e−t + (0.32t − 0.5)e−0.8t and with the initial 
condition �(0) = 0 . It can be seen that for � = 1 , the exact 
analytical solution is �(t) = te−t.

As for the previous examples, we consider first � , � = 1 
and L = 5 as well as L = 10 . Employing the Chelyshkov 
matrix technique, the following polynomial solutions are 
obtained on [0, 1] as

In comparison with the series expansion of te−t , we find 
that the obtained solutions are in good alignment especially 
when L getting larger. The exponential convergence of the 
proposed technique is presented in Table 8, in which we 
have used L = 5, 7, 9, 11 , and L = 15 . A comparison with the 
scheme CFTK [60] is further presented in Table 8.

CD
(𝛾)
t 𝜒(t) + 𝜒(t) =

1

10
𝜒
(

8t

10

)

+
1

2
CD

(𝛾)
t 𝜒

(

8t

10

)

+ g(t), 0 < 𝛾 ≤ 1,

�5,1(t) = 0.01943184902 t
5 − 0.1368955319 t

4 + 0.4782339744 t
3 − 0.991309991 t

2

+ 0.9983985365 t,

�10,1(t) = −1.4884 × 10
−6

t
10 + 2.1687 × 10

−5
t
9 − 1.9370 × 10

−4
t
8 + 0.001384157975 t

7

− 0.008330076157 t
6 + 0.04166510579 t

5 − 0.166666148 t
4 + 0.4999998831 t

3

− 0.999999983 t
2 + 0.9999999986 t.

Finally, we take L = 10 and see the effect of fractional 
order of differential equation as well as basis functions. 

The numerical solutions �10,�(x) utilizing diverse values of 
� = 0.25, 0.5, 0.75 are depicted in Fig. 8. To show the dis-
crepancy between integer and non-integer basis functions, 
the graphical representations of the solutions using two dif-
ferent � = 1 and � = � are shown in Fig. 8. As previously 
observed in the former examples and in our former expe-
riences with other polynomial bases [55], utilizing � = � 
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Fig. 8  The computed solutions using L = 10 , diverse 
� = 0.25, 0.5, 0.75, 1 , and � = 1, � in Example 5.6

Table 9  Numerical solutions in Chelyshkov matrix method in Exam-
ple  5.6 utilizing L = 10 , � = � , and diverse � = 0.25, 0.5, 0.75 for 
some t ∈ [0, 1]

t � =
1

4
� =

1

2
� =

3

4

0.1 0.29039260 0.22954107 0.15588145
0.2 0.30004456 0.27165189 0.22540010
0.3 0.29894859 0.28986962 0.26753966
0.4 0.29372619 0.29750179 0.29388207
0.5 0.28649050 0.29929305 0.30990428
0.6 0.27818645 0.29750809 0.31877140
0.7 0.26931410 0.29340526 0.32250815
0.8 0.26016601 0.28775308 0.32249218
0.9 0.25092480 0.28105208 0.31970055
1.0 0.24170948 0.27364365 0.31484688
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Fig. 9  Plots of residual errors in Example 5.6 utilizing L = 10 , � = � 
and diverse � = 0.25, 0.5, 0.75
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leads to more accurate results. Based on this fact, we report 
numerical results for different values of � = 0.25, 0.5, 0.75 in 
Table 9 while considering � = � . The related residual errors 
are shown in Fig. 9. 

Test case 5.7 Lastly, we consider the following nonlinear 
FDDEs

whose exact solution �� (t) = t
�+ 3

2 − t depending on the 
parameter � and with the initial condition �(0) = 0 . This 
model for � =

1

2
 considered in [63].

We take � = 1∕2 and � = 1 . We then utilize L = 2 and 
the collocation points {0, 1

2
, 1} . After solving the nonlinear 

fundamental matrix equation [ỸYY;Q̃QQ] described in Section 4, 
we get the coefficient matrix AAA2 as

Therefore, the resulting approximate solution obtained via 
our algorithm is

which clearly coincides with the exact solution excellently. 
Similarly, using L = 3 , we get

CD
(𝛾)
t 𝜒(t) = 𝜒

(

t

3

)

+ 𝜒2(t) + g(t), 0 < 𝛾 ≤ 1,

AAA2 =
(

0 −
1

4
−

1

4

)t

.

�2,1(t) = ΨΨΨ1
2
(t)AAA2 =

(

10t2 − 12t + 3 − 5t2 + 4t t2
)

AAA2 = t2 − t,

�3,1(t) = −1.466850252 × 10
−11

t
3 + 1.0 t

2 − 1.0 t

+ 5.30426519 × 10
−23

.

To validate our results and to make a comparison with the 
outcomes obtained via the Jacobi spectral Galerkin method 
(JSGM) [63], we calculate the L2 and L∞ error norms. In this 
respect, we compute

The results are tabulated in Table 10. Obviously, our results 
using less number of bases and less computational efforts are 
more accurate than those reported by the JSGM.

Finally, we examine the behavior of approximate solu-
tions when the fractional order � is varied on (0, 1]. To this 
end, we consider � = 0.1, 0.25, 0.5, 0.75 and � = 1 while the 
values of � are chosen appropriately as � =

1

5
,
1

4
, 1,

1

2
 accord-

ingly. Moreover, we take L = 8, 7, 2, 10, 5 , respectively, for 
each � . Graphical representations of the aforesaid approxi-
mations together with achieved absolute errors are shown 
in Fig. 10.

Conclusions

In this research, a class of linear and nonlinear fractional 
delay differential equations is being investigated. The 
solution to such models is found through a novel colloca-
tion method named the Chelyshkov collocation approach 
depending on the use of Chelyshkov functions. The frac-
tional derivative is defined in the Caputo type, and the frac-
tional differentiation matrices for the Chelyshkov functions 

EL,∞ ∶= max
0≤t≤1

EL,�(t), EL,2 ∶=
(

�

1

0

[�(t) − �L,�(t)]
2dt

)
1

2

.

Table 10  A comparison 
of L∞∕L2 error norms for 
Example 5.7

Chelyshkov JSGM [63]

L = 2 L = 3 L = 4 N = 4 N = 6 N = 8 N = 10

E
L,∞ 5.2883−11 2.9752−12 1.3649−13 2.3685−3 1.2851−5 1.4350−8 2.9356−11

E
L,2 1.0935−11 9.0818−13 3.3595−14 1.6312−3 2.3632−6 1.0032−8 1.1006−11
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are being derived. These matrices along with the colloca-
tion points are then used to convert the designed models 
into a system of algebraic equations and thus this system is 
then solved to find the unknown coefficients that are used 
to represent the required solution. A detailed error analy-
sis is being performed for the presented technique provide 
that the proposed approach ensures sufficient convergence. 
The method is tested for several examples of different types 
including some with the exact solution depending on the 
fractional order. The satisfactory absolute error results for 
all the examples ensure that the provided technique is bet-
ter than other related methods in terms of absolute error 
and computational cost. One can determine based on these 
accessible observers that the designed technique is accurate 
and fast. This may provide a future insight to some applica-
tions to this technique as to consider more complex models 
with applications.
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