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Abstract
We introduce new convolutions and correlations associated with the Fractional Fourier Transform (FrFT) which present 
a significant simplicity in both the time and FrFT domains. This allows for several consequences and applications, among 
which we highlight the design of some multiplicative filters in the FrFT domain having a significant simplicity when com-
pared with the already known ones. Thus, this has consequences, e.g.,  in signal filtering due to the need of modification of 
a calculated signal to remove undesirable aspects of the signal before it is used in a calculation or a controller. In special, 
we propose a new filter design implementation which exhibits advantages in comparison to other known ones. Concrete 
examples are presented to illustrate the theory.
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Introduction

Filter design is a crucial step in signal processing and it is 
used to distinguishing the true underlying signal from the 
noise. Thus, different methods, exhibiting distinct filtering 
possibilities, are welcome to be introduced. Associated with 
this, several objects take a central role. Namely, the integral 
transform in use (and its eventual flexibility and associated 
properties), as well as the convolution (or multiplicative 

operation which allows a factorization identity for its asso-
ciated integral transform). As about the possible integral 
transforms for the above purpose, the most classical one is 
the Fourier transform. Anyway, there are several generali-
zations. For instance, it is well-known that the Fractional 
Fourier Transform (FrFT), being a one parameter integral 
transform, includes, as a particular case, the Fourier Trans-
form. The great generality of the FrFT has been widely 
illustrated in several applications (being the most popular 
ones performed in the fields of signal processing, optics and 
quantum mechanics); cf. [1, 6, 17, 19–26, 28, 33].

In this work, we start by proposing two new convolutions 
associated with the FrFT and, then, will exploit some of their 
consequences. In particular, significant new consequences 
in sampling theory and filter design will be exhibited. In a 
global sense, we would like to point out that new convo-
lutions associated with integral transforms and equations 
continue to have a growing interest and exhibit a wide range 
of applications (cf., e.g., [2–4, 7–16, 18, 27, 31, 32] and the 
references therein).

In this section, we will recall the definition of the FrFT 
and some of its properties which we will use in the next 
sections. In view to have a better comparison, we start by 
presenting the definition of Fourier Transform (FT) and 
its inverse. We will use the FT and its inverse defined by
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respectively. It is well-known that the convolution associated 
with the FT and the corresponding factorization property 
play a central role e.g. in signal processing. Namely, the 
conventional convolution theorem for the FT can be used 
with great efficiency when constructing multiplicative filters 
in the FT domain. We recall that if f , h ∈ L1(ℝ), then for

we have the factorization property Z(u) = F(u)H(u) , which 
allows us to identify

where ∗ stands for the classic Fourier convolution operation 
in the time domain and, according with the notation (1), the 
elements F(u), H(u) and Z(u) represent the FTs of the signals 
f(t),  h(t) and z(t), respectively.

The FrFT (see [22]) being a generalization of the Fou-
rier transform, for any real angle � , may be defined by the 
help of the kernel

where

Indeed, the FrFT with angle � and its inverse are defined as

respectively.
In this paper, we will be always assuming that sin � ≠ 0 

(otherwise we would be simply dealing with a chirp mul-
tiplication operation).

Now we will recall some basic properties of F� which 
we will need later on. The majority of those properties 
follow basically from the definition of F�.

In first place, it is clear that F� is a linear, continuous 
and a one-to-one map from the Schwartz space S onto 
itself (and whose inverse is obviously also continuous).

Let C0(ℝ) be the Banach space of all continuous func-
tions on ℝ that vanish at infinity and endowed with the 
supremum norm ‖ ⋅ ‖∞ , and let

(1)F(u) ∶= �FT

{
f (t)

}
(u) ∶= ∫

ℝ

f (t)e−iutdt,

(2)f (t) =
1

2� ∫
ℝ

F(u)eiutdu,

(3)z(t) ∶= (f ∗ h)(t) ∶= ∫
ℝ

f (�)h(t − �)d�,

(4)(f ∗ h)(t) = �
−1
FT

{
F(u)H(u)

}
(t),

K�(u, t) ∶= K�e
i[

cot �

2
u2−ut csc �+

cot �

2
t2]
, sin � ≠ 0,

K� =

√
1 − i cot �

2�
.

(5)F±�(u) = (F±�f )(u) ∶= ∫
ℝ

f (t)K±�(t, u)dt,

be the norm that we will use in Lp(ℝ).
We have a Riemann–Lebesgue type lemma for the FrFT. 

Indeed, if f ∈ L1(ℝ) , then F�f ∈ C0(ℝ), and

We also have a Plancherel type theorem for the FrFT. Let 
f be a complex-valued function in the space L2(ℝ) and let

Then, as k → ∞ , F�f (u, k) converges strongly (over ℝ ) to a 
function, say F�f ∈ L2(ℝ) ; and, reciprocally,

converges strongly to f.
A Parseval type identity is also valid for the FrFT. For 

any f , h ∈ L2(ℝ) , the following identity holds

where ⟨⋅, ⋅⟩ is denoting the usual inner product in L2(ℝ) . 
Obviously, in the special case of h = f  , it holds

Let us recall some known convolutions for the FrFT con-
structed in recent years. Zayed [34] derived a new expression 
for a convolution operator which can be given as

and the convolution theorem associated with the FrFT can 
be written as

It easy to see that (6) requires three chirp multiplications to 
evaluate the defined integral convolution, and (7) does not 
exactly preserve the classical result for the FT since there 
exists an extra chirp multiplier in the right-hand side of it. 
Later, Wei and Ran [30] introduced a generalized convolu-
tion for the FrFT in the form

‖f‖p
p
∶=

1√
2𝜋

�
ℝ

�f (t)�pdt , 1 ≤ p < ∞,

‖F�f‖∞ ≤ 1√
� sin ��

‖f‖1.

F𝜃f (u, k) ∶= ∫|t|<k
K𝜃(u, t)f (t) dt.

f (u, k) ∶= ∫|t|<k
K−𝜃(u, t)F𝜃f (t) dt,

⟨F�f ,F�h⟩ = ⟨f , g⟩,

‖F�f‖2 = ‖f‖2.

(6)

(f ∗
�
h)(t) =

√
1 − i cot �

2�
e
−it2

cot �

2

[
f (t)eit

2 cot �

2 ∗ h(t)eit
2 cot �

2

]
,

(7)
F�

{
(f ∗

�
h)(t)

}
(u) = e

−iu2
cot �

2 ⋅ F�{f (t)}(u) ⋅ F�{h(t)}(u).
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where

Therefore, the factorization identity is satisfied:

However, the generalized operation (8) is not only depend-
ent on the time variable but it also depends on the transform 
domain variable “u”. Moreover, it can not be expressed by a 
one dimensional integral. In 2017, Anh et al.[3] proposed a 
new convolution operator

Therefore, in this case, the convolution theorem has the fol-
lowing form

where a(�) = cot �

2
 , b(�) = sec �. As can be seen, although (9) 

and (10) can be implemented in two different ways via the 
Fourier convolution, the corresponding convolution theorem 
(10) has an extra chirp multiplication. Furthermore, Wei [29] 
introduced a convolution operator for the FrFT, which can 
be defined as

Hence, the convolution theorem has the following form

Feng and Wang [15] derived a new expression for a convolu-
tion operator in the following way

Thus, here the convolution theorem for the FrFT has the 
form

(8)(f ∗
�
h)(t) =

√
1 − i cot �

2� ∫
ℝ

f (�)h(tΘ�)d�,

h(tΘ�) =

√
1 − i cot �

2�

√
1 + i cot �

2�
e(t

2−�2)
i cot �

2

∫
ℝ

F�{h(t)}(u)e
−

i(t−�)u

sin � du.

F�

{
(f ∗

�
h)(t)

}
(u) = F�{f (t)}(u) ⋅ F�{h(t)}(u).

(9)

(f ∗
�
h)(t) =

√
1 − i cot �

2�
e−iat

2
[
f (t)eiat

2

∗ h
(
t +

1

2ab

)
eia(t

2+t∕ab)
]
.

(10)
F�

{
f (∗

�
h)(t)

}
(u) = e−iau

2+iu
F�{f (t)}(u) ⋅ F�{h(t)}(u),

(f ∗
�
h)(t) =

�
1 − i cot �

�
e
−it2

cot �

2

�
f (t)eit

2 cot �

2 ∗ h(t)eit
2 cot �

2

�
(
√
2t).

F�

�
(f ∗

�
h)(t)

�
(u) = F�{f (t)}

�
u√
2

�
⋅ F�{h(t)}

�
u√
2

�
.

(f ∗
�
h)(t) = csc �e

−it2
cot �

2

[
f (t csc �)e

it2

sin 2� ∗ h(t)eit
2 cot �

2

]
.

F�

{
(f ∗

�
h)(t)

}
(u) = �FT

{
f (t)eit

2 cot �

2

}
(u) ⋅ F�{h(t)}(u).

This paper contains five sections organized as follows: Sec-
tions 2 and 3 introduce a new convolution and correlation for 
the FrFT, which present some simplifications and benefits in 
their properties. Moreover, the form of the new defined FrFT 
convolution and correlation operators are not only similar 
to the FT case but they also require less number of chirp 
multiplications (when compared with previous proposals). 
Section 4 derives two different ways to design filters as well 
as the multiplicative filters in the FrFT domain and the time 
domain, where some concrete cases are also exposed. Sec-
tion 5 is the conclusion of the work.

New product and convolution theorem 
for FrFT

The main purpose of this section is to introduce new con-
volutions associated with the FrFT so that we will obtain a 
new factorization identity for the FrFT. Therefore, several 
consequences of such property can be achieved.

Definition 1  We define a new convolution for the FrFT of 
two signals f(t) and h(t) by

Hence, according to the the classic Fourier convolution 
operation, the new convolution can be also expressed as

The implementation of the block diagram associated with 
the new convolution structure is shown in Fig.  1. Let 
f̄ (t) = f (t)eit

2 cot 𝜃

2 , and h̆(t) = h(t)e−it
2 cot 𝜃

2  ; then, the new con-
volution ⊗

𝜃

 can be rewritten as

Definition 2  Likewise, we define a dual operation of ⊗
𝜃

 and 
simplify it as ⊙

𝜃

 by

The new dual convolution ⊙
𝜃

 can be expressed as

(11)

(f ⊗
𝜃

h)(t) ∶=
1

2𝜋 ∫
ℝ

f (𝜏)h(t sin 𝜃 − 𝜏)e−
it cos 𝜃

2
(t sin 𝜃−2𝜏)d𝜏.

(12)

(f ⊗
𝜃

h)(t) ∶=
sin 𝜃

2𝜋

(
e
it2

sin 2𝜃

4 f (t sin 𝜃) ∗ e
−it2

sin 2𝜃

4 h(t sin 𝜃)
)
.

(13)(f ⊗
𝜃

h)(t) =
1

2𝜋

(
f̄ ∗ h̆

)
(t sin 𝜃).

(14)(f ⊙
𝜃

h)(t) ∶= ∫
ℝ

f (𝜏)h(t sin 𝜃 − 𝜏)e
it cos 𝜃

2
(t sin 𝜃−2𝜏)d𝜏.

(15)(f ⊙
𝜃

h)(t) =
(
f̆ ∗ h̄

)
(t sin 𝜃).
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Theorem 1  Let F�(u) and H�(u) be the FrFT of the signals 
f(t), h(t) with parameter � , respectively. 

	 (i)	 If f (t), h(t) ∈ L1(ℝ) then (f ⊗
𝜃

h)(t) ∈ L1(ℝ) . Moreo-

ver, 

	 (ii)	 We then have the factorization identity 

Proof 

	 (i)	 Using the Fubini’s theorem, we obtain 

(16)‖f ⊗
𝜃

h‖1 ≤ 1

� sin 𝜃�‖f‖1 ⋅ ‖h‖1.

(17)𝛹FT

{(
f ⊗

𝜃

h
)
(t)
}
(u) = F𝜃(u)H−𝜃(−u).

	 (ii)	 We realize that 

 Then, taking � = � , s = (� + v) csc � , we have 

This completes the proof of Theorem 1. 	�  ◻

�
ℝ

����
(f ⊗

𝜃

h)(t)
����
dt =

1

2𝜋 �
ℝ

�����ℝ

f (𝜏)h(t sin 𝜃 − 𝜏)e−
is cos 𝜃

2
(t sin 𝜃−2𝜏)d𝜏

����
dt

≤ 1

2𝜋 �
ℝ
�
ℝ

�f (𝜏)h(t sin 𝜃 − 𝜏)�dtd𝜏

≤ 1

2𝜋� sin 𝜃� �ℝ
�
ℝ

�f (𝜏)��h(t)�d𝜏dt

=
1

� sin 𝜃�‖f‖1 ⋅ ‖h‖1.

F�(u)H−�(−u) = ∫
ℝ
∫
ℝ

f (�)h(v)K�(u, �)K−�(−u, v)d�dv

= K�K−� ∫
ℝ
∫
ℝ

f (�)h(v)ei[u
2 cot �

2
−u� csc �+�2

cot �

2
]
e
−i[u2

cot �

2
+uv csc �+v2

cot �

2
]d�dv

=
1

2� sin � ∫
ℝ
∫
ℝ

e
i[−(�+v)u csc �+�2

cot �

2
−v2

cot �

2
]
f (�)h(v)d�dv.

F𝜃(u)H−𝜃(−u)

=
1

2𝜋 ∫
ℝ
∫
ℝ

e−iusf (𝜏)ei𝜏
2 cot 𝜃

2 h(s sin 𝜃 − 𝜏)e−i(s sin 𝜃−𝜏)
2 cot 𝜃

2 d𝜏ds

= ∫
ℝ

e−ius
{

1

2𝜋 ∫
ℝ

f (𝜏)ei𝜏
2 cot 𝜃

2 h(s sin 𝜃 − 𝜏)e−i(s sin 𝜃−𝜏)
2 cot 𝜃

2 d𝜏
}
ds

= 𝛹FT

{(
f ⊗

𝜃

h
)
(s)

}
(u).

f(t sin θ)f(t)

eit
2 sin 2θ

4

h(t sin θ)h(t)

e−it2 sin 2θ
4

Convolution

sin θ

2π

(f ⊗
θ
h) (t)

Fig. 1   Implementation process of the new convolution for FrFT
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Theorem 2  Let F�(u) and H�(u) be the FrFT of the signals 
f(t), h(t) with parameter � , respectively. 

	 (i)	 If f (t), h(t) ∈ L1(ℝ) , then (f ⊙
𝜃

h)(t) ∈ L1(ℝ) . Moreo-
ver, 

	 (ii)	 The factorization identity 

 holds true.

Proof  Having into account the knowledge of the last proof, 
here it is enough to prove item (ii). Using the definition of 
FrFT, we obtain

Then, taking the change of variables v = v and s = � − t sin � , 
we derive

(18)‖f ⊙
𝜃

h‖1 ≤ 2𝜋

� sin 𝜃�‖f‖1 ⋅ ‖h‖1.

𝛹FT

{
f (v)h(v)

}
(t) =

[
F𝜃(u)⊙

𝜃

H−𝜃(−u)
]
(t)

[
F𝜃(u) ⊙

𝜃

H−𝜃(−u)
]
(t)

= ∫
ℝ

F𝜃(𝜏)e
−i𝜏2

cot 𝜃

2 H−𝜃(𝜏 − t sin 𝜃)ei(𝜏−t sin 𝜃)
2 cot 𝜃

2 d𝜏

= K𝜃 ∫
ℝ
∫
ℝ

e
i[

cot 𝜃

2
𝜏2−𝜏v csc 𝜃+

cot 𝜃

2
v2]
e
−i𝜏2

cot 𝜃

2 f (v)

× H−𝜃(𝜏 − t sin 𝜃)ei(𝜏−t sin 𝜃)
2 cot 𝜃

2 d𝜏dv.

[
F𝜃(u)⊙

𝜃

H−𝜃(−u)
]
(t)

= K𝜃 ∫
ℝ
∫
ℝ

e
i[−v(s+t sin 𝜃) csc 𝜃+

cot 𝜃

2
v2]
f (v)H−𝜃(s)e

is2
cot 𝜃

2 dsdv

= ∫
ℝ

e−itvf (v)

{
K𝜃 ∫

ℝ

e
i[

cot 𝜃

2
s2−vs csc 𝜃+

cot 𝜃

2
v2]
H−𝜃(s)ds

}
dv

= ∫
ℝ

e−itvf (v)h(v)dv

= 𝛹FT

{
f (v)h(v)

}
(t).

The theorem is proved. 	�  ◻

Moreover, when the parameter of the FrFT have the spe-
cial form � = �∕2 , the convolution here proposed for the 
FrFT reduces to a convolution in the FT domain.

New correlation structures for the FrFT

In the remaining part of this paper, the complex conjugation 
will be denoted by the superscript “*”.

Definition 3  A new correlation for the FrFT of two signals 
f(t) and h(t) is defined as follows:

Let ĥ(t) = h∗(−t)e−it
2 cot 𝜃

2  ; then, the new correlation ⊛
𝜃

 can be 
expressed as

Definition 4  A dual operation of ⊛
𝜃

 , denoted by ⊕
𝜃

 , is defined 
by

Let h̃(t) = h∗(−t)eit
2 cot 𝜃

2  . Then, the new dual convolution ⊕
𝜃

 
can be rewritten in the form

Theorem 3  Let F�(u) and H∗
�
(u) are the FrFT of the signals 

f (t), h∗(t) with parameter � , respectively. We then have the 
factorization identity

Proof  We find that

(19)

(f ⊛
𝜃

h)(t) ∶=
1

2𝜋 ∫
ℝ

f (𝜏)h∗(𝜏 − t sin 𝜃)e−
it cos 𝜃

2
(t sin 𝜃−2𝜏)d𝜏.

(20)(f ⊛
𝜃

h)(t) ∶=
1

2𝜋

(
f̄ ∗ ĥ

)
(t sin 𝜃).

(21)(f ⊕
𝜃

h)(t) ∶= ∫
ℝ

f (𝜏)h∗(𝜏 − t sin 𝜃)e
it cos 𝜃

2
(t sin 𝜃−2𝜏)d𝜏.

(22)(f ⊕
𝜃

h)(t) ∶=
(
f̆ ∗ h̃

)
(t sin 𝜃).

𝛹FT

{(
f ⊛

𝜃

h
)
(t)
}
(u) = F𝜃(u)H

∗
𝜃
(u).

F�(u)H
∗
�
(u) = ∫

ℝ
∫
ℝ

f (�)h(v)K�(u, �)K
∗
�
(u, v)d�dv

= K�K−� ∫
ℝ
∫
ℝ

f (�)h∗(v)ei[u
2 cot �

2
−u� csc �+�2

cot �

2
]
e
−i[u2

cot �

2
−uv csc �+v2

cot �

2
]d�dv

=
1

2� sin � ∫
ℝ
∫
ℝ

e
i[−(�−v)u csc �+�2

cot �

2
−v2

cot �

2
]
f (�)h∗(v)d�dv.



450	 Mathematical Sciences (2023) 17:445–454

1 3

Then, taking � = � , s = (� − v) csc � , we get

Thus, the proof of the theorem is achieved. 	�  ◻

Here, we would like to remark that it is also possible to 
use the relationship between convolution and correlation 
definitions as a different technique to produce the above 
result (see [5] for a case involving the linear canonical 
transform).

Theorem 4  Let F�(u) and H�(u) be the FrFT of the signals 
f(t), h(t) with parameter � , respectively. Then, the following 
factorization identity holds true:

Proof  Having in mind the definition of FrFT, we have

Then, setting v = v and s = � − t sin � , we get

F𝜃(u)H
∗
𝜃
(u)

=
1

2𝜋 ∫
ℝ
∫
ℝ

e−iusf (𝜏)ei𝜏
2 cot 𝜃

2 h∗(𝜏 − s sin 𝜃)e−i(𝜏−s sin 𝜃)
2 cot 𝜃

2 d𝜏ds

= ∫
ℝ

e−ius
{

1

2𝜋 ∫
ℝ

f (𝜏)ei𝜏
2 cot 𝜃

2 h∗(𝜏 − s sin 𝜃)e−i(𝜏−s sin 𝜃)
2 cot 𝜃

2 d𝜏
}
ds

= 𝛹FT

{(
f ⊗

𝜃

h
)
(s)

}
(u).

𝛹FT

{
f (v)h∗(v)

}
(t) =

[
F𝜃(u)⊕

𝜃

H∗
𝜃
(u)

]
(t).

[
F𝜃(u)⊕

𝜃

H∗
𝜃
(u)

]
(t) = ∫

ℝ

F𝜃(𝜏)e
−i𝜏2

cot 𝜃

2 H∗
𝜃
(𝜏 − t sin 𝜃)ei(𝜏−t sin 𝜃)

2 cot 𝜃

2 d𝜏

= K𝜃 ∫
ℝ
∫
ℝ

e
i[

cot 𝜃

2
𝜏2−𝜏v csc 𝜃+

cot 𝜃

2
v2]
e
−i𝜏2

cot 𝜃

2 f (v)

× H∗
𝜃
(𝜏 − t sin 𝜃)ei(𝜏−t sin 𝜃)

2 cot 𝜃

2 d𝜏dv.

The theorem is proved. 	�  ◻

Filter design implementation

In this section, we will mainly discuss applications of the 
above new convolution theorems for the design of multipli-
cative filters in the FrFT domain.

First, the analysis of the hardware complexity is given. 
From (12), it is easy to find that there are two chirp multipli-
cations in the time domain (TD) of the proposed convolution 
process. Moreover, the convolution structure (17) contains six 
chirp multiplications in the transform domain (TFD). Second, 
the computational complexity of the multiplicative filters will 
be derived. Using (12), (17) and Fig. 1, the computational 
complexity of multiplicative filters is as follows: N-point 
inverse, N2 + 2N times of multiplication, and N(N − 1) times 
of addition of complex number for length N input samples. 
Therefore, a tabular form shown in the Table 1 summarizes the 

[
F𝜃(u)⊕

𝜃

H∗
𝜃
(u)

]
(t)

= K𝜃 ∫
ℝ
∫
ℝ

e
i[−v(s+t sin 𝜃) csc 𝜃+

cot 𝜃

2
v2]
f (v)H∗

𝜃
(s)eis

2 cot 𝜃

2 dsdv

= ∫
ℝ

e−itvf (v)

{
K𝜃 ∫

ℝ

e
i[

cot 𝜃

2
s2−vs csc 𝜃+

cot 𝜃

2
v2]
H∗

𝜃
(s)ds

}
dv

= ∫
ℝ

e−itvf (v)h∗(v)dv

= 𝛹FT

{
f (v)h∗(v)

}
(t).

Fig. 2   The model of the 
multiplicative filter in the FrFT 
domain

rin(t)

H(·)

Fθ(·) F−θ(·) rout(t)

Table 1   Quantitative 
comparison of the computation 
times of multiplicative filters

Parameter Anh et al.[3] Zayed [35] Proposed

FT conversion at � =
�

2
Yes Yes Yes

Hardware complexity TDTFD TDTFD TDTFD
(No. of chirp functions) 38 37 26
Computational complexity  N + (N2 + 4N)  N + (N2 + 4N)  N + (N2 + 2N)

(Multiplicative filters) +N(N-1) +N(N-1) +N(N-1)



451Mathematical Sciences (2023) 17:445–454	

1 3

comparative analysis of our proposed and known convolutions 
in [3, 35]. In this table, “Yes” is entered for the method where 
the relation is converted into the classical convolution theorem 
of FT at � =

�

2
 . From the Table 1, we derive that the positive 

fact that the computational complexity of our convolution is 
relatively small.

The symbols rin(t) and rout(t) are the input and output sig-
nals, respectively. Models of multiplicative filters in the FrFT 
domain have been discussed in [29, 35], which is shown in 
Fig. 2. Now, using the new convolution (17), we can express 
rout(t) as

From the above process, it is straightforward to realize that 
there are many ways to design a multiplicative filter based on 
different transform functions H−�(−u). For instance, we can 
choose the filter impulse h(t) so that H−�(−u) will be con-
stant over (u1, u2) , and zero or rapidly decreasing outside that 
region, if we are interested only in the frequency spectrum of 
the FrFT in the region (u1, u2) of the signal f(t).

Fig. 3 shows the new method of realizing the multiplicative 
filter in the FrFT domain. Comparing Fig. 3 and Fig. 2, it is 
easy to see that the computation of our new method is lower 
than the previous ones.

Now, the use of convolution in the time domain in multi-
plicative filter design will be discussed. We can use the new 
convolution (12) to implement the multiplicative filter. From 
(12), the output signal rout(t) can be expressed as

(23)rout(t) = �
−1
FT

{
F�(u)H−�(−u)

}
(t).

where g(t) is defined as

This shows that the multiplicative filter can be achieved 
through the conventional convolution of rin(t) and g(t) in 
the time domain. A realization of this method is given in 
Fig. 4. Thus, we can say that the performance of the method 
based on Fig. 4 is better than the one in Fig. 3 since the 
performance of the method in Fig. 3 needs to compute FT 
and FrFT, while for that in Fig. 4 we only need to compute 
through the Fast Fourier Transform.

According to the inverse FrFT formula, we get

where ̂̂H(u) = K𝜃H−𝜃(u)e
iu2

cot 𝜃

2 . Thus, from (25), we realize 
that

According to (24), we have

(24)rout(t) =
sin 𝜃

2𝜋

(
r̄in(t sin 𝜃) ∗ g(t)

)
,

(25)g(t) = h̆(t sin 𝜃).

h(t) = F𝜃

{
H−𝜃(u)

}
(t)

= K𝜃 ∫
ℝ

H−𝜃(u)e
i[u2

cot 𝜃

2
−tu csc 𝜃+t2

cot 𝜃

2
]du

= K𝜃e
it2

cot 𝜃

2 ∫
ℝ

H−𝜃(−u)e
−iut csc 𝜃e

iu2
cot 𝜃

2 du

= 2𝜋e
it2

cot 𝜃

2 𝛹
−1
FT

{
̂̂
H(u)

}
(t csc 𝜃)

g(t) = h̆(t sin 𝜃) = h(t sin 𝜃)e−i(t sin 𝜃)
2 cot 𝜃

2 = 2𝜋𝛹−1
FT

{
̂̂
H(u)

}
(t).

Fig. 3   New multiplicative filter 
in the FrFT domain

rin(t)

H−θ(−u)

Fθ(·) Ψ−1
FT (·) rout(t)

Scaling factor sinαrin(t)

e−it2 sin 2θ
4

g(t)

sin θ
2π

rout(t)

Fig. 4   Multiplicative filter in the FrFT domain using the convolution in the time domain
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Fig. 5   The WD of the X(t), rin(t)

Fig. 6   The result of multiplicative filter achieved by using the new convolution
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Using (4), we also obtain

Let 𝜑(u) = 𝛹FT

{
r̄in(t sin 𝜃)

}
(u) ⋅ ̂̂H(u) . Then, the output sig-

nal can be expressed as

Therefore, from (26), we can use the Fast Fourier Transform 
to reduce the computational complexity of this multiplica-
tive filter. Thus, we conclude that the computational com-
plexity of the method in (24), based on the new convolution, 
for the length of N samples, is O(Nlog2N) , which is the same 
as those introduced in [29, 32].

For the purpose of illustration, we use rin(t) as the 
or iginal input signal rin(t) = e−t

2

+ ei(t+10)
2

, where 
X(t) = e−t

2

,N(t) = ei(t+10)
2 are the desired signal and the 

additive noise, respectively. The Wigner distribution (WD) 
of X(t),N(t), rin(t) are plotted in Fig. 5.

The value of the � angle for filtering in the FrFT domain 
can be found from [23].

Fig. 6 shows the output signal of the multiplicative filter 
achieved using the new convolution with the Mean Square 
Error (MSE) equal to 0, 0025.

Using MATLAB language (version R2015a) on a system 
having configuration Intel (R) Core(TM)i3 − 5005 U CPU 
@2.00GHZ(4 CPUs), ∼ 2.0GHz processor having 4096MB 
RAM, the Table 2 shows the MSE of the proposed domain 
filtering, fractional domain filtering, and frequency domain 
filtering in the real, imaginary and absolute components.

Conclusion

We have introduced new convolutions to the FrFT which 
allow the identification of several consequences associated 
with FrFT. A remarkable issue in the present convolutions 

rout(t) =
sin 𝜃

2𝜋

(
r̄in(t sin 𝜃) ∗ g(t)

)

=
sin 𝜃

2𝜋

(
r̄in(t sin 𝜃) ∗ 2𝜋𝛹−1

FT

{
̂̂
H(u)

}
(t)
)

= sin 𝜃 ⋅

(
r̄in(t sin 𝜃) ∗ 𝛹

−1
FT

{
̂̂
H(u)

}
(t)
)
.

rout(t) = sin 𝜃 ⋅ 𝛹−1
FT

[
𝛹FT

{
r̄in(t sin 𝜃)

}
(u) ⋅ ̂̂H(u)

]
(t).

(26)rout(t) = sin � ⋅ �−1
FT
{�(u)}(t).

is their simplicity in the sense that they can be seen as 
the classical convolution of two functions. Some special 
cases of our new convolution (e.g. with properties directly 
associated with the Fractional Fourier Transform and the 
Fourier Transform) were also introduced. As a main con-
sequence and application, we have introduced different 
ways to design filters. Namely, a multiplicative filter in the 
FrFT domain have been analysed. We have concluded that 
the multiplicative filter through the convolution in the time 
domain can be realized by the classical FT and has the 
same capability, but less computational complexity, when 
compared with the method achieved in the FrFT domain. 
The results were illustrated in several concrete cases.
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