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Abstract
This paper is aimed at rectifying the numerical solution of linear Volterra–Fredholm integro-differential equations with the 
method of radial basis functions (RBFs). In this method, the spectral convergence rate can be acquired by infinitely smooth 
radial kernels such as Gaussian RBF (GA-RBF). These kernels are made by a free shape parameter, and the highest accu-
racy can often be achieved when this parameter is small, but herein the coefficient matrix of interpolation is ill-conditioned. 
Alternative bases can be used to improve the stability of method. One of them is based on the eigenfunction expansion for 
GA-RBFs which is utilized in this study. The Legendre–Gauss–Lobatto integration rule is applied to estimate the integral 
parts. Moreover, the error analysis is discussed. The results of numerical experiments are presented to demonstrate stable 
solutions with high accuracy compared to the standard GA-RBFs, the analytical solutions, and the other methods.

Keywords Volterra–Fredholm integro-differential equation · Gaussian radial basis function · Legendre–Gauss–Lobatto 
quadrature · Eigenfunction expansion · Collocation method
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Introduction

The study of integro-differential equations (IDEs) arises 
from its abundant applications in the real world, such as 
finance [46], ecology and evolutionary biology [37], medi-
cine [20], mechanics and plasma physics [2, 23, 27] and 
other cases. Therefore, computational methods to solve 
these types of equations are noteworthy by many scientists. 
Some methods for solving these equations include: Bessel 
functions [50], Wavelets [11, 42], Adomian decomposition 
method [25, 29], compact finite difference method [51, 52], 
Galerkin method [7, 35], homotopy analysis method [24, 
39] and radial basis functions method [12, 21, 28, 30, 45].

Recently, the radial basis functions (RBFs) meshless 
method has been used as an effective technique to interpo-
late and approximate the solution of differential equations 
(DEs), and integral equations (IEs). In the RBF method, we 
do not mesh the geometric space of the problem, but instead 
use some scattered points in the desired domain. Since the 
RBF method uses pairwise distances between points, so it 
is efficient for problems with high dimensions and irregular 
domains. First time, Hardy introduced MQ-RBF which was 
motivated by the cartographic problem [26], and later Kansa 
utilized it to solve parabolic, hyperbolic and elliptic partial 
differential equations [32]. Frank [18] examined about 30 
two-dimensional approaches to interpolation and demon-
strated that the best ones are MQ and TPS.

Radial basis functions are classified into two main classes 
[8, 33]:

Class 1. Infinitely smooth RBFs.
These basis functions are infinitely differentiable and 

depend on a parameter, called shape parameter � (analo-
gous Multiquadric(MQ), inverse multiquadric (IMQ) and 
Gaussian (GA)).

Class 2. Infinitely smooth (except at centers) RBFs.
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These basis functions are not infinitely differentiable 
and are lacking the shape parameter. Also, these functions 
have less accurate than ones in Class 1. (analogous Thin 
Plate Splines (TPS)).

Selecting the optimal shape parameter is still an open 
problem. Some attempts have been made to overcome this 
problem. For MQ-RBF, Hardy [26] expressed � = 0.815d 
in which d =

1

N

∑N

i=1
di , N is the number of data and di is 

the distance between the ith data point and its closest 
neighborhood. Franke [19] defined � =

1.25D√
N

 where D is 
the diameter of the smallest circle containing all data 
points. Carlson and Foley [5] declared that a good value 
of � is independent of the number and position of the grid 
points. Furthermore, they employed the same value of � 
for MQ and IMQ RBF interpolation. Rippa [43] showed 
that the optimal value depends on the number and position 
of grid points, the approximated function, the accuracy of 
calculation and the kind of RBF interpolation. Moreover, 
Rippa introduced an algorithm based on the Leave-One-
Out Cross Validation (LOOCV) method for any RBF and 
any dimension by minimizing a cost function. In [3], Azar-
boni et al. presented the Leave-Two-Out Cross Validation 
(LTOCV) method which is more accurate than the LOOCV 
one. In RBFs, when the shape parameter is small and the 
basis function is near to be flat, the accuracy of method 
increases, but in this case, the system of equations is ill-
conditioned. To overcome this problem, researchers have 
made many efforts that have led to the production of stable 
methods for small values of the shape parameter, like the 
Contour-Pade method [17], the RBF-QR method [15, 16, 
34] and the Hilbert-Schmidt SVD method [6].

Fasshauer et al. established a new procedure to calcu-
late and evaluate Gaussian radial basis function interpo-
lants in a stable way with a concentration on small values 
of the shape parameter; see [14] and references therein. 
Using this, Rashidinia et al. introduced an effective stable 
method to estimate Gaussian radial basis function inter-
polants which has been performed by the eigenfunction 
expansion [41]. This approach is based on the properties of 
the orthogonal eigenfunctions and their zeros. They tested 
various interpolations and solved the boundary value prob-
lems in one and two dimensions by applying their method.

In this paper, we focus on high-order Volterra–Fred-
holm integro-differential equations in the following gen-
eral form

with initial-boundary conditions

(1)

m∑

k=0

pk(x)y
(k)(x) + �1 �

b

a

k1(x, t)y
(l1)(t)dt

+ �2 �
x

a

k2(x, t)y
(l2)(t)dt = f (x), a ≤ x ≤ b,

, where rjk, sjk, qj, �1, �2, a and b are real constants, m ∈ ℕ , 
l1, l2 are two non-negative integers, y(0)(x) = y(x) is an 
unknown function, pk and f are known and continuous 
functions on [a, b] and the kernels k1 and k2 are known 
and analytical functions that have suitable derivatives on 
[a, b] × [a, b] . With the help of Legendre–Gauss–Lobatto 
approximation for integrals and collocation points, we intend 
to develop the eigenfunction expansion method to solve (1) 
under the conditions (2).

The method proposed in this work transforms the main 
problem to a system of linear algebraic equations. By solv-
ing the resulting system, the coefficients of expansion for 
the solution are found. In illustrative examples, very small 
values for the shape parameter are employed. Numerical 
results show stable solutions with high accuracy and appro-
priate condition number compared to the standard GA-RBF 
method.

This paper is arranged as follows: In Sect. 2, a review 
of previous studies about standard RBFs interpolation 
and eigenfunction expansions are mentioned. The Leg-
endre–Gauss–Lobatto nodes and weights are described in 
Sect. 3. In Sect. 4, the present method is explained. Section 5 
is assigned to a discussion on the residual error. Numerical 
examples are included in Sect. 6.

The preliminaries and basic definitions

In this section, we briefly describe some basic definitions 
and items required in this work.

Standard RBFs interpolation method

Definition 1 [48] A function � ∶ ℝ
d
→ ℝ is called 

radial basis whenever there exists a univariate function 
� ∶ [0,∞) → ℝ such that �(x) = �(r) , where r = ‖x‖ and 
‖ ⋅ ‖ is usual Euclidean norm.

Definition 2 A real-valued continuous function � ∶ ℝ
d
→ ℝ 

is called positive definite whenever for any N distinct points 
{xi}

N
i=1

∈ ℝ
d and � = (g1, g2,… , gN)

T
∈ ℝ

N , we have

The function � is called strictly positive definite if unequal 
in (3) becomes equal only for � = 0.

(2)

m−1∑

k=0

(
rjky

(k)(a) + sjky
(k)(b)

)
= qj, j = 0, 1, 2,… ,m − 1.

(3)
N∑

i=1

N∑

j=1

gigj�
(
xi − xj

) ≥ 0.



447Mathematical Sciences (2022) 16:445–458 

1 3

Definition 3 (Scattered data interpolation problem [13, 38, 
47]). For given data fi ∈ ℝ at scattered data {xi}Ni=1 ∈ ℝ

d , 
we find a continuous function W such that

One of the efficient methods for interpolating scattered 
points is the RBF method. An RBF approximation is pre-
sented as follows:

To interpolate the given values {fi}Ni=1 at scattered data set 
� = {xi}

N
i=1

, , namely center nodes, where �(r) is a radial 
kernel.

In  order  to  acqui re  unknown coef f ic ients 
� = (c1, c2,… , cN)

T , we apply the interpolation conditions 
(4) which is equivalent to solving the following system

so that �ij = �

(‖‖‖xi − xj
‖‖‖
)
 and � = (f1, f2,… , fN)

T .
If the function � is strictly positive definite, then the 

matrix � is positive definite and so non-singular. There-
fore, the system of equations corresponding to the inter-
polation problem has a unique solution. Some popular 
choices of radial kernels are summarized in Table 1.

The following theorem is related to the convergence of 
RBFs interpolation:

Theorem  1 If 
{
xi
}N

i=1
 are N nodes in the convex space 

𝛺 ⊂ ℝ
d and

when �̂�(𝜂) < c(1 + |𝜂|)−2l+d for any y(x) satisfies in ∫ (ŷ(𝜂))2∕�̂�(𝜂)d𝜂 < ∞, 
then

in which � refers to RBFs and the constant c depends on 
RBFs, �̂� and ŷ are supposed to be the Fourier transforms of 

(4)W
(
xi
)
= fi, i = 1, 2,… ,N.

(5)W(x) =

N∑

i=1

ci�(
‖‖x − xi

‖‖), x, xi ∈ ℝ
d.

(6)�� = �,

h = max
x∈�

min
1≤i≤N

‖‖x − xi
‖‖2,

‖‖‖y
(𝛼)

N
− y(𝛼)

‖‖‖∞ < chl−𝛼 ,

� and y respectively, y(�) denotes the �th derivative of y, yN is 
the RBFs approximation of y, d is space dimension, l and � 
are non-negative integers.

Proof A complete proof is presented in [49, 53].   ◻

It can be seen that not only RBFs itself but also its any 
order derivative has a good convergence.

An eigenfunction expansion for Gaussian RBFs

Let the Gaussian kernel be a positive definite function. So, 
the coefficient matrix in the system (6) is non-singular but 
often ill-condition. Using Mercer’s theorem, a decompo-
sition of the matrix � is found which overcomes the ill-
conditioning of system.

Theorem 2 (Mercer). If X ⊆ ℝ
d be closed, then a continuous 

positive definite kernel K ∶ X × X → ℝ has an eigenfunction 
expansion

so that �n are positive eigenvalues, �n are orthogonal eigen-
functions in L2(X) and the series converges absolutely and 
uniformly. Moreover,

Proof A complete explanation is given in [36, 40, 41].  
 ◻

So, GA-RBFs can be written by

The eigenfunctions �n are orthogonal with respect to the 
weight function �(x) = �√

�
e−�

2x2 , and

where Hn−1 are Hermite polynomials of degree n − 1 defined 
by the following recursion relation

In addition,

K(x, y) =

∞∑

n=1

�n�n(x)�n(y), x, y ∈ X,

�n�n(x) = �X

K(x, y)�n(y)dy, x ∈ X, n ≥ 0.

(7)e−�
2‖x−y‖2 =

∞�

n=1

�n�n(x)�n(y).

(8)�n(x) =
√
�ne

−�2x2Hn−1(��x), n = 1, 2,… ,

(9)
{

Hn+1(x) = 2xHn(x) − 2nHn−1(x), n ≥ 0,

H−1(x) = 0, H0(x) = 1.

Table 1  Some radial functions that are strictly positive definite, infi-
nitely smooth and depend on a free shape parameter � which controls 
their flatness

Name of Function RBF Form

Gaussian (GA) �(r) = e
−�2r2

Multiquadric (MQ) �(r) =
√
1 + �2r2

Inverse multiquadric (IMQ) �(r) =
1√

1+�2r2

Inverse quadric (IQ) �(r) =
1

1+�2r2
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and

Also, by applying (8) and (9) we get

The parameters � and � are called the shape and the global 
scale parameters, respectively. Although they are freely cho-
sen, but they have an important effect on the accuracy of the 
method. For GA-RBFs, if � is fixed and � → 0, then � → 1 , 
� → 0, the eigenfunctions �n converge to the normalized 
Hermite polynomials H̃n(x) =

1√
2n−1� (n)

Hn−1(�x) and the 

eigenvalues behave similarly 
(

�2

�2

)n−1

⋅ This content indicates 
that one of the sources of ill-conditioning is the eigenvalues 
�n [6, 14].

The stable method for Gaussian RBF interpolation 
in one dimension space

By applying the assumptions mentioned before, we now inter-
pret the interpolation by the Gaussian RBF using Mercer’s 
series. According to Eq. (5), the Gaussian RBF approximation 
is as the following form

To use Mercer’s series, we have to truncate the expansion 
at the finite length L. If L is selected large enough, then 
interpolation by the truncated expansion converges to the 
one based on the full series [22, 41]. So, the Gaussian kernel 
can be approximated as follows

, where �T
1
(x) =

(
�1(x),… ,�N(x)

)
,� =

(
c1,… , cN

)T
,

∫
ℝ

H2
n−1

(x)e−x
2

dx =
√
�2n−1� (n), n = 1, 2,… ,

�n =

√
�2

�2 + �2 + �2

(
�2

�2 + �2 + �2

)n−1

, n = 1, 2,… ,

� =

(
1 +

(
2�

�

)2
) 1

4

, �n =
�

2n−1� (n)
,

�2 =
�2

2

(
�2 − 1

)
.

(10)

�
�n+1(x) = ��x

�
2

n
�n(x) −

�
n−1

n
�n−1(x), n ≥ 1,

�0(x) = 0, �1(x) =
√
�e−�

2x2 .

(11)W(x) =

N∑

i=1

cie
−�2(x−xi)

2

.

(12)WL(x) =

N∑

i=1

ci

L∑

n=1

�n�n(x)�n(xi) = �T
1
(x)��1�,

� =

⎛
⎜
⎜
⎝

�1 0

⋱

0 �N

⎞
⎟
⎟
⎠
, �1 =

⎛
⎜
⎜
⎝

�1

�
x1
�

… �1

�
xN

�

⋮ ⋮

�N

�
x1
�

… �N

�
xN

�
⎞
⎟
⎟
⎠
.

To obtain unknown coefficients ci , the linear system of Eqs. 
(6) is written as follows

then

By substituting (13) into (12) we achieve

This stable interpolation function is called “interpolant with 
the cardinal basis” which lacks the matrix � as one of the 
sources of ill-conditioning.

Theorem 3 [41] Let

and WL be in the form of Eq. (12). Then, 

when  L → ∞ then  ||W(x) −WL(x)
|| → 0, ,  where 

C = max{|cj|, j = 1,… ,N} , and

Legendre–Gauss–Lobatto nodes 
and weights

Let {Pi}i≥1 be Legendre polynomial functions of order i which 
are orthogonal with respect to the weight function �(x) = 1 , 
on the interval [−1, 1] . These polynomials satisfy in the fol-
lowing formulas

The Legendre–Gauss–Lobatto nodes can be found as follows

, where P�
i
(x) is the derivative of Pi(x) . No explicit formula 

for the nodes {xj}N−1j=2
 is known, and so they are computed 

numerically using subroutines [9, 10]. The integral approxi-
mation of function f on the interval [−1, 1] is

� = �T
1
��1�,

(13)� = �−1
1
�−1�−T

1
�.

(14)WL(x) = �T
1
(x)�−T

1
�.

W(x) =

N∑

i=1

ci

∞∑

n=1

�n�n(x)�n(xi),

��W(x) −WL(x)
�� ≤

�
2

�L

NC��
√
�2 + �2 + �2

e�
2b2 EL

1 − E
,

E =
�2

�2 + �2 + �2
.

P1(x) = 1, P2(x) = x,

Pi+1(x) =
(

2i+1

i+1

)
xPi(x) −

(
i

i+1

)
Pi−1(x), i = 2, 3,… .

(15)

(
1 − x2

j

)
P�
N

(
xj
)
= 0,

−1 = x1 < x2 < ⋯ < xN = 1,
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, where wj are Legendre–Gauss–Lobatto weights presented 
in [44]

and Ef  is the error term specified by

Also, if f(x) is a polynomial of degree ≤ 2N − 3 then the 
integration in Eq. (16) is exact.

Method of solution

The main aim of this section is to solve high-order linear Vol-
terra–Fredholm integro-differential equations in the form (1) 
with the conditions (2). First of all, we consider the grid points 
{xi}

N
i=1

 into integral domain [a, b]. Then, the unknown solution 
of equation can be approximated by GA-RBFs as follows

, where � =
(
s(x1),… , s(xN)

)T is an unknown vector, �T
1
(x) 

and �1 are defined in the Sect. 2.3. By substituting Eq. (17) 
into Eqs. (1) and (2), we get

and

(16)∫
1

−1

f (x)dx =

N∑

j=1

wjf
(
xj
)
+ Ef ,

wj =
2

N(N − 1)

1
(
PN−1

(
xj
))2 , j = 1, 2,… ,N,

Ef = −
N(N − 1)322N−1[(N − 2)!]4

(2N − 1)[(2N − 2)!]3
f (2N−2)(�),

� ∈ (−1, 1).

(17)y(x) = �T
1
(x)�−T

1
�,

(18)

m∑

k=0

pk(x)(�
(k)

1
(x))T�−T

1
�

+ �1 ∫
b

a

k1(x, t)(�
(l1)

1
(t))T�−T

1
�dt

+ �2 ∫
x

a

k2(x, t)(�
(l2)

1
(t))T�−T

1
�dt = f (x),

Now, by collocating Eq. (18) at interior points {xi}N−mi=1
 we 

have

To use the Legendre–Gauss–Lobatto rule for Eq. (20), we 
apply the following transformations

So,

and by using (16) we write

(19)

m−1∑

k=0

(
rjk�

(k)

1
(a)) + sjk�

(k)

1
(b)

)T

�−T
1
� = qj,

j = 0, 1, 2,… ,m − 1.

(20)

m∑

k=0

pk(xi)(�
(k)

1
(xi))

T�−T
1
�

+ �1 ∫
b

a

k1(xi, t)(�
(l1)

1
(t))T�−T

1
�dt

+ �2 ∫
xi

a

k2(xi, t)(�
(l2)

1
(t))T�−T

1
�dt = f (xi),

i = 1, 2,… ,N − m.

t =
b − a

2
�1 +

b + a

2
, �1 ∈ [−1, 1], for Fredholm,

t =
xi − a

2
�2 +

xi + a

2
, �2 ∈ [−1, 1], for Volterra .

m∑

k=0

pk(xi)(�
(k)

1
(xi))

T�−T
1
�

+ �1
b − a

2 ∫
1

−1

k1

(
xi,

b − a

2
�1 +

b + a

2

)

(
�

(l1)

1

(
b − a

2
�1 +

b + a

2

))T

�−T
1
�d�1

+ �2
xi − a

2 ∫
1

−1

k2

(
xi,

xi − a

2
�2 +

xi + a

2

)

(
�

(l2)

1

(
xi − a

2
�2 +

xi + a

2

))T

�−T
1
�d�2

= f (xi), i = 1, 2,… ,N − m,

(21)

�∑m

k=0
pk(xi)�

(k)

1
(xi) +�1

b−a

2

∑M

j=1
w
1jk1

�
xi,

b−a

2
�
1j +

b+a

2

�
�

(l
1
)

1

�
b−a

2
�
1j +

b+a

2

�

+�
2

xi−a

2

∑M

j=1
w
2jk2(xi,

xi−a

2
�
2j +

xi+a

2
)�

(l
2
)

1

�
xi−a

2
�
2j +

xi+a

2

��T
�−T

1
�

≃ f (xi), i = 1, 2,… ,N − m,
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,  where  ��j  and w�j  ,  (� = 1, 2) a re  the  Leg-
endre–Gauss–Lobatto nodes and weights into [−1, 1] , 
respectively. Finally, an N × N  system of linear algebraic 
equations is produced such that the N − m first row is related 
to Eq. (21) and m remained row is related to Eq. (19). By 
use of the �������� command in MATLAB, the value of 
unknown vector � and consequently the solution y(x) is 
obtained.

Error analysis

In this section, we try to find an upper bound for the residual 
error when the presented method is derived for (1). Suppose 
that y and ỹ are the exact solution and the approximate one, 
respectively. Define

The main result of this section is formulated through the 
following theorem.

Theorem 4 Assume Mp,M,R1,R2,R
′
1
,R′

2
 are real positive 

numbers and

For the residual error function, that is RE(x) , we have the 
following bound

in which

Proof Using (1) one can write

RE(x) =

m∑

k=0

pk(x)
(
y(k)(x) − ỹ(k)(x)

)

+ 𝜃1 ∫
b

a

k1(x, t)
(
y(l1)(t) − ỹ(l1)(t)

)
dt

+ 𝜃2 ∫
x

a

k2(x, t)
(
y(l2)(t) − ỹ(l2)(t)

)
dt.

E =
�2

�2 + �2 + �2
,

R(N) =
N(N − 1)322N−1[(N − 2)!]4

(2N − 1)[(2N − 2)!]3
.

|RE(x)| ≤Mp

m∑

k=0

Tk + |�1|
(
b − a

2
NR1Tl1 + R(N)R�

1

)

+ |�2|
(
b − a

2
NR2Tl2 + R(N)R�

2

)
,

Tj =
NcM��e�

2b2EL

√
�2 + �2 + �22L

�
L

2

�
!

∞�

n=L+1

j�

i=0

�
j

i

�
(2��)in!
�

n−i−1

2

�
!

, j = k, l1, l2.

We define e(x) = y(x) − ỹ(x) . By utilizing (16), it is obvious

, where there exists an � ∈ (−1, 1) so that

Moreover, for each a ≤ x ≤ b

, where there exists an � ∈ (−1, 1) so that

(22)

RE(x) =

m∑

k=0

pk(x)
(
y(k)(x) − ỹ(k)(x)

)

+ 𝜃1 ∫
b

a

k1(x, t)
(
y(l1)(t) − ỹ(l1)(t)

)
dt

+ 𝜃2 ∫
x

a

k2(x, t)
(
y(l2)(t) − ỹ(l2)(t)

)
dt.

(23)

∫
b

a

k1(x, t)e
(l1)(t)dt

=
b − a

2 ∫
1

−1
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,
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N(N − 1)322N−1[(N − 2)!]4

(2N − 1)[(2N − 2)!]3

×
�2N−2

��2N−2

(
k1

(
x,
b − a

2
� +

b + a

2

)
e(l1)

(
b − a

2
� +

b + a

2

))
.

(24)
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On the other hand, for every 0 ≤ k ≤ m one obtains

If c = max

{|||cj
||| ∶ j = 1,… ,N

}
 then we have

Since

we can write

Because of d
dx
e−�

2x2 = −2�2xe−�
2x2 , for every 0 ≤ i ≤ k there 

exists an Mi > 0 on the interval [a, b] such that

Putting M = max
{
Mi ∶ i = 0, 1,… k

}
 enables one to 

conclude

According to the asymptotic expansion of Hermite polyno-
mials [41],

, it is easy to see that

|||y
(k)(x) − ỹ(k)(x)

||| =
||||||

N∑

j=1

cj

∞∑

n=L+1

𝜆n𝜑
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n
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||�n||
|||�
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√
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2b2
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The inequality (26) shows that when L → ∞ then e(k)(x) con-
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If we set Mp = max
{
|pk(x)| ∶ k = 0, 1,… ,m

}
 , by applying 

(22), (23) and (27) the expected result is achieved.   ◻

Numerical examples

In this section, several examples are given to assess the per-
formance of present method. A uniform data set from size 
N in one dimension is considered. The number of Leg-
endre–Gauss–Lobatto nodes is denoted by M. Assume that 
y and ỹ refer to the exact solution and the approximate one, 
respectively. The accuracy of method is measured by apply-
ing the absolute error, namely |e(x)| , the maximum absolute 
error (L∞ error ) and the Root-Mean-Square error (RMS error) 
overall N data points as follows:

All of the numerical computations are performed in MAT-
LAB R2015a, on a laptop with an Intel(R) Core(TM) 
i5-6200U, CPU 2.40GHz, 8GB(RAM).

(27)

|||||�
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(28)L∞ = max
a≤xi≤b

||e(xi)||, i = 1,… ,N,

(29)RMS =

�∑N

i=1
e2(xi)

N
.

Example 1 Let us consider linear Volterra IDE of the first 
kind

with the initial conditions y(0) = y�(0) = 0 . The exact solu-
tion for this equation is y(x) = x2.

Put M = 4 , � = 0.4 and � = 0.1 . The comparison of RMS 
error, L∞ error and condition number for different values of 
N between the present method and the standard GA-RBF 
one are given in Table 2. It indicates that the error values 
and condition numbers of present method are better than 
those of the standard one. Because the eigenfunctions �n 
are orthogonal, so the matrix �1 in Eq. (14) is relatively 
well behaved. Also, by removing the matrix � into (14), 
as one of the sources of ill-conditioning for the small val-
ues of � , the present method is more stable, and the con-
dition number is significantly less than that of classical 
GA-RBF. Figure 1 displays the absolute error as a function 
of x ∈ [0, 1] for N = {4, 6, 11} which decreases when the 
number of data points increases. The RMS error as a func-
tion of � ∈ [0.01, 1] for N = {4, 6, 11} is shown in Figure 2. 
It can be seen that for small � the RMS error value is less 
for N = {4, 6}.

�
x

0

cos(x − t)y��(t)dt = 2 sin(x), 0 ≤ x ≤ 1,

Table 2  Comparison between 
the present method and the 
standard GA-RBF one with 
M = 4 , � = 0.4 and � = 0.1 for 
Example 1

Method N = 4 N = 6 N = 11

Present method RMS error 4.2206e-03 8.8118e-06 5.0092e-08
L∞ error 5.6047e-03 1.1656e-05 1.5002e-07
Condition number 42.3291 251.1209 5.1999e+05

Standard GA-RBF RMS error 1.2931e-02 1.2942e-04 7.8357e-07
L∞ error 1.8719e-02 1.5548e-04 1.0705e-06
Condition number 1.8794e+04 1.3602e+09 7.6208e+17
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Fig. 1  Absolute error of present method as a function of x for differ-
ent values of N for Example 1
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Example 2 Consider first-order Volterra IDE

The exact solution is y(x) = x cos(x).
We use M = 5 , � = 0.09 and � = 1.9 . The comparison 

of RMS error for different values of N between the present 
method and the methods introduced by [4] are expressed in 
Table 3. It shows that the error values in the present method 
are better than those of [4]. Table 4 declares the RMS error 
results of present method, L∞ error and condition number for 
different values of N. Figure 3 displays the absolute error as 
a function of x ∈ [0, 1] for N = {5, 8, 12} , which decreases 
by increasing the number of data points. The RMS error as a 
function of � ∈ [0.01, 2] for N = {5, 8, 12} is shown in Fig. 4.

y� = 1 − 2x sin(x) + �
x

0

y(t)dt, y(0) = 0, 0 ≤ x ≤ 1.

Example 3 Let us consider linear Fredholm IDE

under the initial conditions y(0) = 1 and y�(0) = 1. Here, the 
exact solution is y(x) = ex.

Assume M = 4 , � = 0.01 and � = 1.9 . The comparison of 
absolute errors on the interval [−1, 1] between the present 
method and the method described by [21] are expressed in 
Table 5. It indicates that the absolute error values of pre-
sent method for N = 13 are better than those of described 
in [21] for N = 1000 . The RMS error in [21] for N = 1000 
is 2.87486e-08, whereas the RMS error of our method is 
4.1029e-11 for N = 13 . Table 6 presents the RMS error 
results, L∞ error and condition number of present method 
for different values of N. Figure 5 displays the absolute error 
as a function of x ∈ [−1, 1] for N = {6, 8, 11, 13} , which 

y��(x) + xy�(x) − xy(x)

= ex − 2 sin(x)

+ ∫
1

−1

sin(x)e−ty(t)dt, −1 ⩽ x ⩽ 1,
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Fig. 2  RMS error of present method as a function of � for different 
values of N for Example 1

Table 3  Comparison between 
the present method and the 
methods of [4] with M = 5 , 
� = 0.09 and � = 1.9 for 
Example 2

Method N = 10 N = 15 N = 20

Present method RMS error 1.7685e-10 7.9087e-11 7.3685e-11
GRBF of [3] for GA-RBF RMS error 2.8852e-07 2.6959e-07 9.0134e-07
IGRBF of [3] for GA-RBF RMS error 4.1743e-08 1.9768e-07 3.0391e-07
GRBF of [3] for MQ-RBF RMS error 3.2830e-07 1.9996e-06 4.7677e-07
IGRBF of [3] for MQ-RBF RMS error 3.4020e-08 8.0225e-07 1.0683e-07
GRBF of [3] for IMQ-RBF RMS error 8.0619e-07 3.6005e-07 1.1740e-06
IGRBF of [3] for IMQ-RBF RMS error 8.9479e-08 6.0615e-08 2.5984e-07

Table 4  Numerical results with 
M = 5 , � = 0.09 and � = 1.9 for 
Example 2

Method N = 5 N = 8 N = 12

Present method RMS error 1.3318e-03 1.5216e-07 8.4876e-11
L∞ error 1.7431e-03 2.0642e-07 2.7553e-10
condition number 81.7126 1.3223e+03 1.5774e+05
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Fig. 3  Absolute error of present method as a function of x for differ-
ent values of N for Example 2
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decreases by increasing the number of data points. The RMS 
error as a function of � ∈ [0.01, 1.5] for N = {6, 8, 11, 13} is 
shown in Fig. 6.

Example 4 We consider eight-order Fredholm IDE with ini-
tial conditions as follows

The exact solution is y(x) = (1 − x)ex.

Let M = 4 , � = 0.01 and � = 0.9 . Table 7 announces the 
RMS error results, L∞ error and condition number of present 
method for different values of N. Figure 7 portrays the abso-
lute error as a function of x ∈ [0, 1] for N = {6, 10, 12, 13} , 
which decreases by increasing the number of data points. 
The RMS error as a function of � ∈ [0.001, 1.5] for 
N = {6, 10, 12, 13} is shown in Fig. 8.

Example 5 [31] Consider linear Fredholm–Volterra IDE

with the initial condition y(0) = 1. The exact solution of this 
equation is y(x) = (x + 1)3.

Put M = 5 , � = 0.01 and � = 1.9 . Table 8 gives the RMS 
error results, L∞ error and condition number of present 
method for different values of N. Figure 9 displays the abso-
lute error as a function of x ∈ [−1, 1] for N = {5, 7, 9, 10} , 
which decreases by increasing the number of data 
points. The RMS error as a function of � ∈ [0.01, 1.5] for 
N = {5, 7, 9, 10} is shown in Fig. 10.

Example 6 Consider fifth-order linear Fredholm–Volterra 
IDE with initial conditions given by

The exact solution of the above equation is y(x) = e−x.

y(8)(x) = − 8ex + x2 + y(x) + ∫
1

0

x2y�(t)dt, 0 ⩽ x ⩽ 1,

y(0) =1, y�(0) = 0, y��(0) = −1, y���(0) = −2,

y(4)(0) = − 3, y(5)(0) = −4, y(6)(0) = −5, y(7)(0) = −6.

y�(x) =
27

5
−

1

5
x6 −

3

4
x5 − x4 −

1

2
x3 + 3x2 +

41

20
x

+ ∫
1

−1

(x − t)y(t)dt + ∫
x

−1

xty(t)dt, −1 ⩽ x ⩽ 1,

y(5)(x) − xy(2)(x) + xy(x) = −e−x −
1

2
e2x − x2

+
1

2 ∫
1

0

e2x+ty(t)dt + ∫
x

0

xety(t)dt, 0 ⩽ x ⩽ 1,

y(0) = y(2)(0) = y(4)(0) = 1, y(1)(0) = y(3)(0) = −1.
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Fig. 4  RMS error of present method as a function of � for different 
values of N for Example 2

Table 5  Comparison of the absolute errors between the present 
method and the method of [21] with M = 4 , � = 0.01 and � = 1.9 for 
Example 3

x Present method MQ-RBF of [20]
N = 13 N = 1000

-1 1.4744e-10 8.89585e-08
-0.8 6.8639e-10 4.64598e-08
-0.6 1.6234e-10 1.21271e-08
-0.4 4.4214e-11 7.59065e-09
-0.2 1.3468e-11 4.60614e-09
0 0 0
0.2 1.3466e-11 1.85311e-09
0.4 44190e-11 2.70376e-09
0.6 1.6226e-10 5.7854e-09
0.8 68395e-10 2.50214e-08
1 9.5750e-12 8.16448e-08

Table 6  Numerical results with 
M = 4 , � = 0.01 and � = 1.9 for 
Example 3

Method N = 6 N = 8 N = 11 N = 13

Present method RMS error 2.6653e-03 2.6575e-05 1.1307e-08 4.1029e-11
L∞ error 6.5134e-03 7.4971e-05 3.7386e-08 1.4744e-10
condition number 484.6061 4.1017e+03 1.8281e+05 2.4998e+06
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Suppose M = 4 , � = 0.01 and � = 1.9 . Table 9 declares 
the RMS error results, L∞ error and condition number 
of present method for different values of N. Figure  11 
displays the absolute error as a function of x ∈ [0, 1] for 
N = {10, 11, 12, 13} , which decreases when the number 

of data points increases. The RMS error as a function of 
� ∈ [0.01, 2] for N = {10, 11, 12, 13} is demonstrated in 
Fig. 12.
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Fig. 5  Absolute error of present method as a function of x for differ-
ent values of N for Example 3
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Fig. 6  RMS error of present method as a function of � for different 
values of N for Example 3

Table 7  Numerical results with 
M = 4 , � = 0.01 and � = 0.9 for 
Example 4

Method N = 6 N = 10 N = 12 N = 13

Present method RMS error 3.8878e-03 5.7652e-05 2.7817e-06 3.7550e-07
L∞ error 9.1944e-03 1.6777e-04 8.4842e-06 1.1661e-06
condition number 1.5696e+05 1.9955e+11 1.9873e+13 1.3529e+14
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Fig. 7  Absolute error of present method as a function of x for differ-
ent values of N for Example 4
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Fig. 8  RMS error of present method as a function of � for different 
values of N for Example 4

Table 8  Numerical results with 
M = 5 , � = 0.01 and � = 1.9 for 
Example 5

Method N = 5 N = 7 N = 9 N = 10

Present method RMS error 5.1164e-05 1.2978e-09 2.0725e-14 3.8220e-15
L∞ error 1.1302e-04 3.3992e-09 6.1728e-14 1.1990e-14
condition number 47.6453 190.9572 1.1873e+03 3.6906e+03
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Conclusion

We described an improved approach of Gaussian RBFs to 
solve high-order linear Volterra–Fredholm integro-differen-
tial equations. The small values of � were well known to 
make highly accurate results, but the coefficient matrix of 
interpolation became ill-conditioned. We used very small 
values for � and employed the eigenfunction expansion for 
GA-RBFs. The standard RBF did not work for illustrative 

examples except for the first one. We did not mention the 
numerical results of standard RBF for those examples. In 
those cases, the impression of present version of RBF was 
seen. Generally, in Figures attributed to RMS error as a func-
tion of � for fixed N, the RMS error increased by increasing 
� . Also, according to Figures corresponding to the absolute 
error as a function of x, by increasing N the absolute error 
rate decreased. Besides, the condition number in the present 
method was small and acceptable compared to the standard 
GA-RBF one. These were reasons for the efficiency of pre-
sent method.
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Fig. 9  Absolute error of the presented method as a function of x for 
different values of N for Example 5
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Fig. 10  RMS error of present method as a function of � for different 
values of N for Example 5

Table 9  Numerical results with 
M = 4 , � = 0.01 and � = 1.9 for 
Example 6

Method N = 10 N = 11 N = 12 N = 13

Present method RMS error 1.5196e-06 1.2825e-07 9.0800e-09 5.0552e-10
L∞ error 3.9221e-06 3.3565e-07 2.4039e-08 1.3511e-09
condition number 7.5229e+08 7.6671e+09 8.2520e+10 8.0290e+11
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Fig. 11  Absolute error of present method as a function of x for differ-
ent values of N for Example 6
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Fig. 12  RMS error of present method as a function of � for different 
values of N for Example 6



457Mathematical Sciences (2022) 16:445–458 

1 3

References

 1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical func-
tions: with formulas, graphs, and mathematical tables. Courier 
Corporation, vol. 55. SIAM (1964)

 2. Avazzadeh, Z., Heydari, M.H., Cattani, C.: Legendre wavelets for 
fractional partial integro-differential viscoelastic equations with 
weakly singular kernels. Eur. Phys. J. Plus 134(7), 368 (2019)

 3. Azarboni, H.R., Keyanpour, M., Yaghouti, M.: Leave-Two-Out 
Cross Validation to optimal shape parameter in radial basis func-
tions. Eng. Anal. Bound. Elements 100, 204–210 (2019)

 4. Biazar, J., Asadi, M.A.: Galerkin RBF for integro-differential 
equations. British J. Math. Comput. Sci. 11(2), 1–9 (2015)

 5. Carlson, R.E., Foley, T.A.: The parameter R2 in multiquadric inter-
polation. Comput. Math. Appl. 21(9), 29–42 (1991)

 6. Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to 
the Hilbert-Schmidt SVD using iterated Brownian bridge kernels. 
Numer. Algorithms 68(2), 393–422 (2015)

 7. Chen, J., He, M., Zeng, T.: A multiscale Galerkin method for 
second-order boundary value problems of Fredholm integro-
differential equation II: Efficient algorithm for the discrete linear 
system. J. Visual Commun. Image Represent. 58, 112–118 (2019)

 8. Dehghan, M., Shokri, A.: A meshless method for numerical solu-
tion of the one-dimensional wave equation with an integral condi-
tion using radial basis functions. Numer. Algorithms 52(3), 461 
(2009)

 9. Elnagar, G.N., Kazemi, M.A.: Pseudospectral Legendre-based 
optimal computation of nonlinear constrained variational prob-
lems. J. Comput. Appl. Math. 88(2), 363–375 (1998)

 10. Elnagar, G.N., Razzaghi, M.: A collocation-type method for linear 
quadratic optimal control problems. Opt. Control Appl. Methods 
18(3), 227–235 (1997)

 11. Erfanian, M., Mansoori, A.: Solving the nonlinear integro-differ-
ential equation in complex plane with rationalized Haar wavelet. 
Math. Comput. Simul. 165, 223–237 (2019)

 12. Fakhr Kazemi, B., Jafari, H.: Error estimate of the MQ-RBF col-
location method for fractional differential equations with Caputo-
Fabrizio derivative. Math. Sci. 11(4), 297–305 (2017)

 13. Fasshauer, G.E.: Meshfree Approximation Methods with MAT-
LAB, vol. 6. World Scientific, Singapore (2007)

 14. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian 
radial basis function interpolants. SIAM J. Sci. Comput. 34(2), 
A737–A762 (2012)

 15. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with 
Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 
869–892 (2011)

 16. Fornberg, B., Piret, C.: A stable algorithm for flat radial basis 
functions on a sphere. SIAM J. Sci. Comput. 30(1), 60–80 (2008)

 17. Fornberg, B., Wright, G.: Stable computation of multiquadric 
interpolants for all values of the shape parameter. Comput. Math. 
Appl. 48(5–6), 853–867 (2004)

 18. Franke, R.: A critical comparison of some methods for interpola-
tion of scattered data. Tech. rep, Naval Postgraduate School Mon-
terey (1979)

 19. Franke, R.: Scattered data interpolation: tests of some methods. 
Math. Comput. 38(157), 181–200 (1982)

 20. Gallas, B., Barrett, H.H.: Modeling all orders of scatter in 
nuclear medicine. In: 1998 IEEE Nuclear Science Symposium 
Conference Record. 1998 IEEE Nuclear Science Symposium 
and Medical Imaging Conference (Cat. No. 98CH36255), vol. 3, 
pp. 1964–1968. IEEE (1998)

 21. Golbabai, A., Seifollahi, S.: Radial basis function networks in 
the numerical solution of linear integro-differential equations. 
Appl. Math. Comput. 188(1), 427–432 (2007)

 22. Griebel, M., Rieger, C., Zwicknagl, B.: Multiscale approxima-
tion and reproducing kernel Hilbert space methods. SIAM J. 
Numer. Anal. 53(2), 852–873 (2015)

 23. Grigoriev, Y.N., Kovalev, V.F., Meleshko, S.V., Ibragimov, 
N.H.: Symmetries of Integro-Differential Equations: With 
Applications in Mechanics and Plasma Physics. Springer, Ber-
lin (2010)

 24. Hamoud, A., Ghadle, K.: Homotopy analysis method for the first 
order fuzzy Volterra-Fredholm integro-differential equations. Ind. 
J. Electr. Eng. Comput. Sci. 11(3), 857–867 (2018)

 25. Hamoud, A.A., Ghadle, K.P.: The combined Modified Laplace 
with Adomian decomposition method for Solving the nonlinear 
Volterra-Fredholm Integro Differential Equations. J. Korean Soc. 
Ind. Appl. Math. 21(1), 17–28 (2017)

 26. Hardy, R.L.: Multiquadric equations of topography and other 
irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

 27. Heydari, M.H., Laeli Dastjerdi, H., Nili Ahmadabadi, M.: An 
efficient method for the numerical solution of a class of nonlinear 
fractional fredholm integro-differential equations. Int. J. Nonlinear 
Sci. Numer. Simul. 19(2), 165–173 (2018)

 28. Heydari, M.H., Hosseininia, M.: A new variable-order fractional 
derivative with non-singular Mittag-Leffler kernel: application to 
variable-order fractional version of the 2D Richard equation. Eng. 
Comput. 1–12 (2020)

 29. Hendi, F., Al-Qarni, M.: The variational Adomian decomposition 
method for solving nonlinear two-dimensional Volterra-Fredholm 
integro-differential equation. J. King Saud Univ. Sci. 31(1), 110–
113 (2019)

 30. Hosseininia, M., Heydari, M.H., Avazzadeh, Z., Maalek Ghaini, 
F.M.: A hybrid method based on the orthogonal Bernoulli poly-
nomials and radial basis functions for variable order fractional 
reaction-advection-diffusion equation. Eng. Anal. Bound. Ele-
ments 127, 18–28 (2021)

 31. İşler Acar, N., Daşcıoğlu, A.: A projection method for linear 
Fredholm-Volterra integro-differential equations. J. Taibah Univ. 
Sci. 13(1), 644–650 (2019)

 32. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme 
with applications to computational fluid-dynamics-i surface 
approximations and partial derivative estimates. Comput. Math. 
Appl. 19(8–9), 127–145 (1990)

 33. Khattak, A.J., Tirmizi, S., et al.: Application of meshfree colloca-
tion method to a class of nonlinear partial differential equations. 
Eng. Anal. Bound. Elements 33(5), 661–667 (2009)

 34. Larsson, E., Lehto, E., Heryudono, A., Fornberg, B.: Stable com-
putation of differentiation matrices and scattered node stencils 
based on Gaussian radial basis functions. SIAM J. Sci. Comput. 
35(4), A2096–A2119 (2013)

 35. Merad, A., Martín-Vaquero, J.: A Galerkin method for two-dimen-
sional hyperbolic integro-differential equation with purely integral 
conditions. Appl. Math. Comput. 291, 386–394 (2016)

 36. Mercer, J.: Functions of positive and negative type, and their 
connection with the theory of integral equations. Philosophical 
Transactions of the Royal Society of London. Ser. A, Containing 
Pap. Math. Phys. Charact. 209(441–458), 415–446 (1909)

 37. Mirrahimi, S.: Integro-differential models from ecology and evo-
lutionary biology. Ph.D. thesis, Université Paul Sabatier (Toulouse 
3) (2019)

 38. Mirzaee, F., Samadyar, N.: Using radial basis functions to solve 
two dimensional linear stochastic integral equations on non-
rectangular domains. Eng. Anal. Bound. Elements 92, 180–195 
(2018)

 39. Mohamed, M.S., Gepreel, K.A., Alharthi, M.R., Alotabi, R.A.: 
Homotopy analysis transform method for integro-differential 
equations. General Math. Notes 32(1), 32 (2016)

 40. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Com-
put. Appl. Math. 236(4), 575–588 (2011)



458 Mathematical Sciences (2022) 16:445–458

1 3

 41. Rashidinia, J., Fasshauer, G.E., Khasi, M.: A stable method for 
the evaluation of Gaussian radial basis function solutions of inter-
polation and collocation problems. Comput. Math. Appl. 72(1), 
178–193 (2016)

 42. Ray, S.S., Behera, S.: Two-dimensional wavelets operational 
method for solving Volterra weakly singular partial integro-dif-
ferential equations. J. Comput. Appl. Math. 366, 112411 (2020)

 43. Rippa, S.: An algorithm for selecting a good value for the param-
eter c in radial basis function interpolation. Adv. Comput. Math. 
11(2–3), 193–210 (1999)

 44. Shen, J., Tang, T.: High order numerical methods and algorithms. 
Chinese Science Press, Abstract and Applied Analysis (2005)

 45. Uddin, M., Ullah, N., Shah, S.I.A.: Rbf Based Localized Method 
for Solving Nonlinear Partial Integro-Differential Equations. 
Comput. Model. Eng. Sci. 123(3), 955–970 (2020)

 46. Wang, W., Chen, Y., Fang, H.: On the variable two-step IMEX 
BDF method for parabolic integro-differential equations with 
nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 
57(3), 1289–1317 (2019)

 47. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge 
University Press, Cambridge (2004)

 48. Wendland, H.: Scattered data approximation (2005)
 49. Wu, Z.M., Schaback, R.: Local error estimates for radial basis 

function interpolation of scattered data. IMA J. Numer. Anal. 
13(1), 13–27 (1993)

 50. Yüzbaşı, Ş, Şahın, N., Sezer, M.: Bessel polynomial solutions of 
high-order linear Volterra integro-differential equations. Comput. 
Math. Appl. 62(4), 1940–1956 (2011)

 51. Zhao, J., Corless, R.M.: Compact finite difference method for inte-
gro-differential equations. Appl. Math. Comput. 177(1), 271–288 
(2006)

 52. Zheng, X., Qiu, W., Chen, H.: Three semi-implicit compact finite 
difference schemes for the nonlinear partial integro-differential 
equation arising from viscoelasticity. Int. J. Model. Simul. 41(3), 
234–242 (2020)

 53. Zong-Min, W.: Radial basis function scattered data interpolation 
and the meshless method of numerical solution of PDEs. Chin. J. 
Eng. Math. 2 (2002)


	An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations
	Abstract
	Introduction
	The preliminaries and basic definitions
	Standard RBFs interpolation method
	An eigenfunction expansion for Gaussian RBFs
	The stable method for Gaussian RBF interpolation in one dimension space

	Legendre–Gauss–Lobatto nodes and weights
	Method of solution
	Error analysis
	Numerical examples
	Conclusion
	References




