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Abstract
In this study, numerical solution of generalized Rosenau–Kawahara equation with quintic B-spline collocation finite ele-
ment method has been obtained. First, the generalized Rosenau–Kawahara equation is converted into a coupled differential 
equation system by the change of variable for the derivative with respect to space variable. Then, the numerical integrations 
of the resulting system according to time and space were obtained using the Crank–Nicolson-type formulation and quintic 
B-spline functions, respectively. The obtained numerical scheme has been applied to four model problems. It is seen that 
the results obtained from the presented scheme are compatible with the analytical solution, the error norms are smaller than 
those given in the literature, and conservation constants remain virtually unchanged.
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Introduction

Some nonlinear physical properties such as diffusion, disper-
sion, dissipation, reaction and convection, especially fluid 
dynamics, nonlinear optics, plasma physics and many other 
areas, are represented by nonlinear evolution equations. 
Nonlinear waves, one of the nonlinear evolution equations, 
is one of the important scientific research topics. Some of 
the partial differential equations that define the motion of 
nonlinear waves are KdV (Korteweg-de Vries) [1–4], RLW 
(regularized long wave) [5–7] and Rosenau-type equations 
[8–22].

Waves moving in one direction on the water surface are 
defined by the KdV equation, but since the KdV equation is 
insufficient to represent wave-wave and wave-wall interac-
tions, the following equation

was developed for p = 2 by Rosenau [19]. Equation (1) is 
called as Rosenau equation. Then, the following Rosenau 
type of equations

appeared in the literature. The Kawahara equation represent-
ing plasma waves is given in the following form:

[23, 24]. Korkmaz and Dağ [25] presented the differential 
quadrature method for the numerical solution of the Kawa-
hara equation. Dereli and Dağ [26] obtained the numerical 
solution of some Kawahara-type equations by collocation 
method using radial base functions. Bagherzadeh [27] pre-
sented the numerical solution of Kawahara and modified 
Kawahara equations using the sextic B-spline collocation 
finite element method. Ak and Karakoç [28] gave the numer-
ical solution of the modified Kawahara equation with the 
septic B-spline collocation method. The Rosenau–Kawahara 
equation is of the following form:

with the initial condition

(1)Ut + Uxxxxt + Ux + �(Up)x = 0,

(2)Ut + Uxxxxt = F(U,Ux,Uxx,Uxxx,Uxxt,Uxxxxx)

(3)Ut + Ux + �Uxxx − �Uxxxxx + �(Up)x = 0,

(4)
Ut + Uxxxxt + Ux + �Uxxx − �Uxxxxx + �UpUx

= 0, (x, t) ∈
[
xL, xR

]
× (0, T]
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 and boundary conditions

Here, U(x, t) shows the profile of the wave, and the x and 
t are position and time variables. p is known as the non-
linearity parameter and is an integer such that p ≥ 1 . 
Equation (4) is called Rosenau–Kawahara for p = 1 , 
modified Rosenau–Kawahara for p = 2 and generalized 
Rosenau–Kawahara for p > 2 . U0(x) is a predefined smooth 
function, �, � and � are real numbers taking different val-
ues depending on the physical conditions of the problem. 
Rosenau–Kawahara equation is obtained by coupling the 
Rosenau equation (1) and Kawahara equation (3). The 
Rosenau–Kawahara equation often arises in fluid dynam-
ics whose solutions are solitons known as solitary waves. 
It is pointed out that this a result of a fine balances between 
nonlinearity and dispersion.

The exact solution of the Rosenau–Kawahara equa-
tion was obtained by Zuo [22] using the sine-cosine and 
tanh methods. The exact solution of the generalized 
Rosenau–Kawahara equation was given by Biswas et al. 
[10] using the solitary wave ansatz method. Labidi and Bis-
was [15] used variational iteration and homotopy perturba-
tion methods to find the exact solution of the generalized 
Rosenau–Kawahara equation. Hu and his colleagues [14] 
obtained the numerical solution of the Rosenau–Kawahara 
equation using two-level nonlinear and three-level linear 
finite difference approaches. He [13] presented the numeri-
cal solution of the Rosenau–Kawahara equation with the 
three level linear implicit finite difference method. Chen and 
his colleagues [11] gave the numerical solution of the gen-
eralized Rosenau–Kawahara equation by applying the semi-
implicit linearized finite difference approach. Manorot et al. 
[16] obtained the numerical solution of the Rosenau–Kawa-
hara equation using two linear schemes based on the finite 
difference method. Wongsaijai et  al. [29] presented the 
numerical solution of the Rosenau–Kawahara equation with 
the compact finite difference schemes.

As far as we know, there are very few articles about the 
numerical solutions of the generalized Rosenau–Kawahara 
equation in the literature. One of the main aims of the pre-
sent article is to make a contribution to the limited number of 
approximate solutions of the problem. In this study, in order 
to obtain the numerical solution of the initial and boundary 
value problem given by Eqs. (4)–(6) using quintic B-spline 
collocation finite element method, in Rosenau–Kawahara 
equation (4), V = Uxxx was taken and converted into a coupled 

(5)U(x, 0) = U0(x), x ∈
[
xL, xR

]
,

(6)
U
�
xL, t

�
= U

�
xR, t

�
= 0

Ux

�
xL, t

�
= Ux

�
xR, t

�
= 0

Uxx

�
xL, t

�
= Uxx

�
xR, t

�
= 0

⎫
⎪⎬⎪⎭
t ∈ [0, T].

differential equation system. Then, for the numerical integra-
tions of the obtained differential equation system according to 
time and location, the numerical scheme was obtained using 
the Crank–Nicolson formulation and quintic B-spline func-
tions, respectively. Mass and energy conservation constants 
with error norms L2 , L∞ were calculated by applying the 
obtained numerical scheme to four model problems. Fourier 
stability analysis of the presented method was performed, and 
the method was found to be unconditionally stable.

Quintic B‑spline collocation finite element 
method

By using V = Uxxx , the generalized Rosenau–Kawahara equa-
tion (4 ) is converted into coupled system of differential equa-
tions as follows:

The initial and boundary conditions for U are as given in 
Eqs. (5) and (6), respectively. For V; the initial and boundary 
conditions are, respectively, taken as

and

Let the uniform partition of space domain 
[
xL, xR

]
 and 

time domain [0,  T] be P1 =
{
x0, x1,… , xM−1, xM

}
 and 

P2 =
{
t0, t1,… , tN−1, tN

}
 , respectively, where P1 and 

P2 are given as ‖‖P1
‖‖ = h = xm+1 − xm , m = 0(1)M − 1 , 

‖‖P2
‖‖ = k = tn+1 − tn , n = 0(1)N − 1 . The quintic B-spline 

base functions �i(x) , i = −2(1)M + 2 over the domain 
[
xL, xR

]
 

are given as [30]

 Since under these conditions a function defined 
on the interval, 

[
xL, xR

]
 can be expressed as a 

(7)Ut + Vxt + (1 + �Up)Ux + �V − �Vxx = 0,

(8)V − Uxxx = 0.

(9)V(x, 0) = U
���

0
(x), x ∈

[
xL, xR

]

(10)
V
�
xL, t

�
= V

�
xR, t

�
= 0

Vx

�
xL, t

�
= Vx

�
xR, t

�
= 0

Vxx

�
xL, t

�
= Vxx

�
xR, t

�
= 0

⎫⎪⎬⎪⎭
t ∈ [0, T].

�i(x) =
1

h5

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q0 =
�
x − xi−3

�5
,

�
xi−3, xi−2

�
q1 = q0 − 6

�
x − xi−2

�5
,

�
xi−2, xi−1

�
q2 = q1 + 15

�
x − xi−1

�5
,
�
xi−1, xi

�
q3 = q2 − 20

�
x − xi

�5
,

�
xi, xi+1

�
q4 = q3 + 15

�
x − xi+1

�5
,
�
xi+1, xi+2

�
q5 = q4 − 6

�
x − xi+2

�5
,

�
xi+2, xi+3

�
0, otherwise.
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linear combination of quintic B-spline bases functions {
�−2(x),�−1(x),… ,�M+2(x)

}
 , the approximate solutions 

UA(x, t) and VA(x, t) corresponding to the exact solutions 
U(x, t) and V(x, t) given by Eqs. (7) and (8) are of the fol-
lowing form:

Here, �i(t) and �i(t) for i = −2(1)M + 2 are time-dependent 
parameters to be sought for. Since on a typical element 
given on 

[
xm, xm+1

]
 all of the quintic B-spline bases func-

tions except for �m−2, �m−1, �m , �m+1, �m+2 and �m+3 are 
identically zero, the solutions UA(x, t) and VA(x, t) given by 
Eq. (11) can be written as:

respectively. Thus, when the local transformation 
h� = x − xm, 0 ≤ � ≤ 1 is applied on the interval 

[
xm, xm+1

]
 , 

quintic B-spline basis functions in terms of local variable � 
on the interval [0, 1] are given in the following form:

Under these conditions, the values of functions UA(x, t) and 
VA(x, t) and their derivatives with respect to the variable x 
up to the third order at the nodal points 

(
xm, t

)
 (m = 0(1)M) 

in terms of parameters �m and �m are obtained as:

and

(11)UA(x, t) =

M+2∑
i=−2

�i(t)�i(x) and VA(x, t) =

M+2∑
i=−2

�i(t)�i(x).

(12)

UA(x, t) =

m+3∑
i=m−2

�i(t)�i(x) and VA(x, t) =

m+3∑
i=m−2

�i(t)�i(x),

�m−2 = 1 − 5� + 10�2 − 10�3 + 5�4 − �5,

�m−1 = 26 − 50� + 20�2 + 20�3 − 20�4 + 5�5,

�m = 66 − 60�2 + 30�4 − 10�5,

�m+1 = 26 + 50� + 20�2 − 20�3 − 20�4 + 10�5,

�m+2 = 1 + 5� + 10�2 + 10�3 + 5�4 − 5�5,

�m+3 = �5.

(13)

UA

(
xm, t

)
= �m−2 + 26�m−1 + 66�m + 26�m+1 + �m+2,

U
�

A

(
xm, t

)
=

5

h

[
−�m−2 − 10�m−1 + 10�m+1 + �m+2

]
,

U
��

A

(
xm, t

)
=

20

h2

[
�m−2 + 2�m−1 − 6�m + 2�m+1 + �m+2

]
,

U
���

A

(
xm, t

)
=

60

h3

[
−�m−2 + 2�m−1 − 2�m+1 + �m+2

]

Now, by taking Z = 1 + �Up and writing forward difference 
approximation in place of derivatives with respect to time 
t and Crank–Nicolson-type finite difference approximation 
in Eqs. (7) and (8), the following system of equations is 
obtained

When these newly obtained equations are reorganized such 
that (n + 1)th time level variables are on the left side and nth 
time level variables for are on the right side for U and V, then 
the following system of equations results in

When the pointwise values given by Eqs. (13) and (14) are 
written in their places in Eqs. (17) and (18), the following 
system of algebraic equations is obtained

(14)

VA

(
xm, t

)
= �m−2 + 26�m−1 + 66�m + 26�m+1 + �m+2,

V
�

A

(
xm, t

)
=

5

h

[
−�m−2 − 10�m−1 + 10�m+1 + �m+2

]
,

V
��

A

(
xm, t

)
=

20

h2

[
�m−2 + 2�m−1 − 6�m + 2�m+1 + �m+2

]
,

V
���

A

(
xm, t

)
=

60

h3

[
−�m−2 + 2�m−1 − 2�m+1 + �m+2

]
.

(15)

Un+1 − Un

k
+

Vn+1
x

− Vn
x

k
+ Z

Un+1
x

+ Un
x

2
+ �

Vn+1 + Vn

2

− �
Vn+1
xx

+ Vn
xx

2
= 0,

(16)Vn+1 + Vn

2
−

Un+1
xxx

+ Un
xxx

2
= 0.

(17)

Un+1 + Vn+1
x

+
Zk

2
Un+1

x
+

�k

2
Vn+1

−
�k

2
Vn+1
xx

= Un + Vn
x
−

Zk

2
Un

x

−
�k

2
Vn +

�k

2
Vn
xx
,

(18)Vn+1 − Un+1
xxx

= −Vn + Un
xxx
.

(19)

A1�
n+1
m−2

+ A2�
n+1
m−1

+ A3�
n+1
m

+ A4�
n+1
m+1

+ A5�
n+1
m+2

+B1�
n+1
m−2

+ B2�
n+1
m−1

+ B3�
n+1
m

+ B4�
n+1
m+1

+ B5�
n+1
m+2

=

A5�
n
m−2

+ A4�
n
m−1

+ A3�
n
m
+ A2�

n
m+1

+ A1�
n
m+2

− B5�
n
m−2

− B4�
n
m−1

− B3�
n
m
− B2�

n
m+1

− B1�
n
m+2

,

(20)

C1�
n+1
m−2

+ C2�
n+1
m−1

+ C3�
n+1
m

+ C4�
n+1
m+1

+ C5�
n+1
m+2

+ D1�
n+1
m−2

+ D2�
n+1
m−1

+ D3�
n+1
m

+ D4�
n+1
m+1

+ D5�
n+1
m+2

=

C5�
n
m−2

+ C4�
n
m−1

+ C3�
n
m
+ C2�

n
m+1

+ C1�
n
m+2

− D5�
n
m−2

− D4�
n
m−1

− D3�
n
m
− D2�

n
m+1

− D1�
n
m+2

.
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The coefficients Ai , Bi , Ci , Di for (i = 1(1)5) and Zm in these 
algebraic equations system are as follows:

Each of the algebraic equations given by Eqs. (19) and (20) 
consists of 2M + 10 unknowns and M + 1 equations. The 
number of unknowns in each of the algebraic equations 
become 2M + 2 for m = 0, 1,M − 1,M by eliminating the 
unknowns �−2 , �−1 , �M+1 , �M+2 using the boundary condi-
tions U

(
xL, t

)
= 0 , Ux

(
xL, t

)
= 0 , U

(
xR, t

)
= 0 , Ux

(
xR, t

)
= 0 

and the unknowns �−2 , �−1 , �M+1 , �M+2 using the bound-
ary conditions V

(
xL, t

)
= U

���

0

(
xL
)
 , Vx

(
xL, t

)
= U

(4)

0

(
xL
)
 , 

V
(
xR, t

)
= U

���

0

(
xR
)
 , Vx

(
xR, t

)
= U

(4)

0

(
xR
)
 . By rearranging the 

unknowns as � =
[
�0 �0 �1 �1 ⋯ �M �M

]T , and the coeffi-
cient matrices as � and �, the system of algebraic equations 
given by Eqs. (19) and (20) can be written as follows:

(21)

A1 = 1 −
5kZm

2h
, B1 = −

5

h
+

k�

2
−

20k�

2h2
, C1 =

60

h3
, D1 = 1,

A2 = 26 −
50kZm

2h
, B2 = −

50

h
+

26k�

2
−

40k�

2h2
, C2 = −

120

h3
, D2 = 26,

A3 = 66, B3 =
66k�

2
+

120k�

2h2
, C3 = 0, D3 = 66,

A4 = 26 +
50kZm

2h
, B4 =

50

h
+

26k�

2
−

40k�

2h2
, C4 =

120

h3
, D4 = 26,

A5 = 1 +
5kZm

2h
, B5 =

5

h
+

k�

2
−

20k�

2h2
, C5 = −

60

h3
, D5 = 1,

Zm = 1 + �U
p
m.

(22)��
n+1 = ��

n.

Here � and � are 2M + 2 type square matrices and are given 
as follows, respectively:

and

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â3 B̂3 Â4 B̂4 Â5 B̂5

Ĉ3 D̂3 Ĉ4 D̂4 Ĉ5 D̂5 0

A2 B2 A3 B3 A4 B4 A5 B5

C2 D2 C3 D3 C4 D4 C5 D5 0

A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5

C1 D1 C2 D2 C3 D3 C4 D4 C5 D5

0 A1 B1 Ã2 B̃2 Ã3 B̃3 Ã4 B̃4

C1 D1 C̃2 D̃2 C̃3 D̃3 C̃4 D̃4

0 A
1
B
1
A
2
B
2
A
3
B
3

C
1
D

1
C
2
D

2
C
3
D

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
3

− B
3
A
2

− B
2

A
1

− B
1

C
3

− D
3
C
2

− D
2

C
1

− D
1

0

Ã4 − B̃4 Ã3 − B̃3 Ã2 − B̃2 A1 − B1

C̃4 − D̃4 C̃3 − D̃3 C̃2 − D̃2 C1 − D1 0

A5 − B5 A4 − B4 A3 − B3 A2 − B2 A1 − B1

C5 − D5 C4 − D4 C3 − D3 C2 − D2 C1 − D1 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 A5 − B5 A4 − B4 A3 − B3 A2 − B2 A1 − B1

C5 − D5 C4 − D4 C3 − D3 C2 − D2 C1 − D1

0 A5 − B5 A4 − B4 A3 − B3 A2 − B2

C5 − D5 C4 − D4 C3 − D3 C2 − D2

0 Â5 − B̂5 Â4 − B̂4 Â3 − B̂3

Ĉ5 − D̂5 Ĉ4 − D̂4 Ĉ3 − D̂3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where

Thus, using the obtained solutions with Thomas algo-
rithm of algebraic equations system given by Eq. (22) for 

Â3 =
165

4
A1 −

33

8
A2 + A3, Â4 =

130

4
A1 −

18

8
A2 + A4,

Â5 =
9

4
A1 −

1

8
A2 + A5,

B̂3 =
165

4
B1 −

33

8
B2 + B3, B̂4 =

130

4
B1 −

18

8
B2 + B4,

B̂5 =
9

4
B1 −

1

8
B2 + B5,

Ĉ3 =
165

4
C1 −

33

8
C2 + C3, Ĉ4 =

130

4
C1 −

18

8
C2 + C4,

Ĉ5 =
9

4
C1 −

1

8
C2 + C5,

D̂3 =
165

4
D1 −

33

8
D2 + D3, D̂4 =

130

4
D1 −

18

8
D2 + D4,

D̂5 =
9

4
D1 −

1

8
D2 + D5,

A2 = −
33

8
A1 + A2, A3 = −

18

8
A1 + A3, A4 = −

1

8
A1 + A4,

B2 = −
33

8
B1 + B2, B3 = −

18

8
B1 + B3, B4 = −

1

8
B1 + B4,

C2 = −
33

8
C1 + C2, C3 = −

18

8
C1 + C3, C4 = −

1

8
C1 + C4,

D2 = −
33

8
D1 + D2, D3 = −

18

8
D1 + D3, D4 = −

1

8
D1 + D4,

Ã2 = A2 −
1

8
A5, Ã3 = A3 −

18

8
A5, Ã4 = A4 −

33

8
A5,

B̃2 = B2 −
1

8
B5, B̃3 = B3 −

18

8
B5, B̃4 = B4 −

33

8
B5,

C̃2 = C2 −
1

8
C5, C̃3 = C3 −

18

8
C5, C̃4 = C4 −

33

8
C5,

D̃2 = D2 −
1

8
D5, D̃3 = D3 −

18

8
D5, D̃4 = D4 −

33

8
D5,

A
1
= A1 −

1

8
A4 +

9

4
A5, A2

= A2 −
18

8
A4 +

130

4
A5,

A
3
= A3 −

33

8
A4 +

165

4
A5,

B
1
= B1 −

1

8
B4 +

9

4
B5, B2

= B2 −
18

8
B4 +

130

4
B5,

B
3
= B3 −

33

8
B4 +

165

4
B5,

C
1
= C1 −

1

8
C4 +

9

4
C5, C2

= C2 −
18

8
C4 +

130

4
C5,

C
3
= C3 −

33

8
C4 +

165

4
C5,

D
1
= D1 −

1

8
D4 +

9

4
D5, D2

= D2 −
18

8
D4 +

130

4
D5,

D
3
= D3 −

33

8
D4 +

165

4
D5.

n = 0, 1,… ,N − 1 , the values of �n+1 are found for any 
desired time level T and the required parameters for finding 
out the solution of generalized Rosenau–Kawahara equation 
are obtained. In order to obtain the solutions of equations 
given by Eq. (22) recursively, there is a need for finding the 
initial condition �0 . These initial values of �0 are found by 
the solution of the following systems of equations

Besides, due to the nonlinear term (1 + �Up)Ux in order to 
improve the approximate solutions, an inner iteration in the 
following form

has been applied.

Stability analysis

In this section, the stability analysis of the difference 
equations (19) and (20) obtained by applying the quintic 
B-spline finite element method has been carried out by 
von Neumann method [31]. For this purpose, in Eq. (7) 
in place of nonlinear term Up in UpUx a local constant 
Ẑ  is taken and in Eq. (19) the term Zm is taken a local 
constant as 1 + �Ẑ

m
 . Here, i =

√
−1 , � is an arbitrary real 

number, q = q(�) is the amplification factor. When the 
special solutions �n

m
= Pqneim� , �n

m
= Wqneim� are written 

in their places in difference equations given by Eqs. (19) 
and (20) and the Euler formula ei� = cos� + i sin� is used, 
the following system of homogenous algebraic equations 
is obtained

(23)

�0
−2

+ 2�0
−1

− 6�0
0
+ 2�0

1
+ �0

2
= U

��

0

(
xL
)
,

−�0
−2

− 10�0
−1

+ 10�0
1
+ �0

2
= U

�

0

(
xL
)
,

�0
m−2

+ 26�0
m−1

+ 66�0
m
+ 26�0

m+1
+ �0

m+2
= U0

(
xm
)
, m = 0(1)N,

−�0
N−2

− 10�0
N−1

+ 10�0
N+1

+ �0
N+2

= U
�

0

(
xR
)
,

�0
N−2

+ 2�0
N−1

− 6�0
N
+ 2�0

N+1
+ �0

N+2
= U

��

0

(
xR
)
,

(24)

�0

−2
+ 2�0

−1
− 6�0

0
+ 2�0

1
+ �0

2
= U

(5)

0

(
xL
)
,

−�0

−2
− 10�0

−1
+ 10�0

1
+ �0

2
= U

(4)

0

(
xL
)
,

�0

m−2
+ 26�0

m−1
+ 66�0

m
+ 26�0

m+1
+ �0

m+2
= U

���

0

(
xm
)
, m = 0(1)N,

−�0

N−2
− 10�0

N−1
+ 10�0

N+1
+ �0

N+2
= U

(4)

0

(
xR
)
,

�0

N−2
+ 2�0

N−1
− 6�0

N
+ 2�0

N+1
+ �0

N+2
= U

(5)

0

(
xR
)
.

(25)�∗
m
= �n

m
+

1

2

(
�n+1
m

− �n
m

)

(26)

[
(2A + iZB)q − (2A − iZB)

]
P +

[(
E + i

2B

k

)
q

+

(
E − i

2B

k

)]
W = 0,
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where

To have at least one solution different from zero of this 
homogeneous algebraic equation system, the determinant 
of the coefficient matrix must be zero. For this, the equality

should be satisfied. Under these conditions, the amplification 
factor is found as

For stability, the condition |q| ≤ 1 should be satisfied. 
Clearly, since |q| = 1 is obtained, the proposed scheme is 
unconditionally stable.

Numerical calculations and comparisons

In this section, the numerical results obtained by applying 
the above numerical scheme to the examples with known 
exact solutions are given in tables and graphs. In order to 
test the efficiency and accuracy of the proposed scheme, the 
conservation constants known as mass (Q) and energy (E) 
for generalized Rosenau–Kawahara equation

together with the error norms L2 and L∞

(27)(q + 1)(iDP + 2AW) = 0

A = 26 cos� + cos 2� + 33,

B =
5k

h
(10 sin� + sin 2�),

C =
20k�

h2
(2 cos� + cos 2� − 3),

D =
120

h3
(2 sin� − sin 2�),

E = k�A − C, Z = max Zm.

(28)

[
4A2 +

2BD

k
+ i(2ABZ − DE)

]

q −
[
4A2 +

2BD

k
− i(2ABZ − DE)

]
= 0

(29)or q + 1 = 0

(30)q =

4A2 +
2BD

k
− i(2ABZ − DE)

4A2 +
2BD

k
+ i(2ABZ − DE)

or q = −1.

(31)Q(t) = ∫
xR

xL

u(x, t)dx = ∫
xR

xL

u(x, 0)dx = Q(0),

(32)E(t) = ∫
xR

xL

[
u2(x, t) + u2

xx
(x, t)

]
dx = E(0)

are calculated [10, 13, 14, 29].

Example 1 For parameter values of p = 1 , � = 1 , � = 1 and 
� = 1, Eq. (4) becomes

The exact solution of this problem [14, 22] is

L2 =

√√√√
h

N∑
i=1

|||Ui −
(
UA

)
i

|||, L∞ = max
1≤i≤N

|||Ui −
(
UA

)
i

|||

(33)
Ut + Uxxxxt + Ux + Uxxx − Uxxxxx + UUx = 0, (x, t)

∈
[
xL, xR

]
× (0, T].

(34)U(x, t) = k1sech
4
[
k2
(
x − k3t

)]
.

Table 1  Comparison of L2 error norm for various h = k in 
x ∈ [−40, 100]

h = k T Present Scheme I [14] Scheme II [14]

0.1 10 8.506007e − 5 2.159730e − 4 4.302763e − 4

20 1.633489e − 4 4.160331e − 4 8.320777e − 4

30 2.343634e − 4 5.977491e − 4 1.199482e − 3

40 2.994936e − 4 7.633356e − 4 1.535826e − 3

0.05 10 2.195845e − 5 5.401591e − 5 1.076811e − 4

20 4.190504e − 5 1.040460e − 4 2.082744e − 4

30 5.963324e − 5 1.494989e − 4 3.002761e − 4

40 7.602708e − 5 1.909241e − 4 3.845124e − 4

0.025 10 7.658767e − 6 1.354230e − 5 2.693880e − 5

20 1.408806e − 5 2.603381e − 5 5.207086e − 5

30 1.867660e − 5 3.739276e − 5 7.504636e − 5

40 2.276745e − 5 4.774838e − 5 9.606941e − 5

Table 2  Comparison of L∞ error norm for various h = k in 
x ∈ [−40, 100]

h = k T Present Scheme I [14] Scheme II [14]

0.1 10 3.026848e − 5 7.520810e − 5 1.477136e − 4

20 5.666455e − 5 1.421127e − 4 2.820308e − 4

30 7.914654e − 5 1.996835e − 4 3.985869e − 4

40 9.979876e − 5 2.502663e − 4 5.014481e − 4

0.05 10 7.835853e − 6 1.880684e − 5 3.697042e − 5

20 1.467994e − 5 3.554032e − 5 7.060528e − 5

30 2.035474e − 5 4.994370e − 5 9.979291e − 5

40 2.577505e − 5 6.260150e − 5 1.255601e − 4

0.025 10 2.221983e − 6 4.702168e − 6 9.259288e − 6

20 4.179427e − 6 8.886828e − 6 1.767754e − 5

30 5.709628e − 6 1.248752e − 5 2.497799e − 5

40 7.432926e − 6 1.565301e − 5 3.141830e − 5
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Here, k1 = −
35

12
+

35

156

√
205 , k2 =

1

12

�
−13 +

√
205 and 

k3 =
1

13

√
205 . When t = 0 is taken in Eq. (34), the initial 

condition for Rosenau–Kawahara equation (33) is obtained 
as follows:

and the boundary conditions are as given by Eq. (6). 
The error norms L2 and L∞ are calculated on the interval 
[xL, xR] = [−40, 100] for values of h = k = 0.1 , 0.05, 0.025 at 
times T = 10, 20, 30, 40 and these calculated norms are com-
pared with those of Hu et al. [14] and presented in Tables 1 
and 2. It is seen from Tables 1 and 2 that the error norms of 
the presented method are smaller than theirs. In addition, it 

U(x, 0) = k1sech
4
(
k2x

)

is observed that the error norms decrease as the space and 
time steps decrease.

The conservation constants mass and energy are 
calculated by the proposed method on the interval 
[xL, xR] = [−40, 100] for values of h = k = 0.1 , 0.05, 0.025 
at times T = 10, 20, 30, 40 and compared with those of Hu 
et al. [14] and compared in Tables 3 and 4. At time T = 0 
the conservation constants mass and energy in Tables 3 and 
4 are calculated by the equations given by (31) and (32), 
respectively. It is observed from Tables 3 and 4 that the pro-
posed method preserves the conservation constants mass and 
energy as time goes on.

The graphs of analytical and numerical solutions on the 
interval [−40, 100] for h = 0.5, k = 0.05 are given in Fig-
ure 1, respectively. From Figure 1, it is seen that the numerical 
solutions are in agreement with analytical ones. In addition, 
the height of each wave remains almost constant as time goes 
on. For example, for the analytical solution given in Figure 1 
while the wave heights are u(0, 0) = 0.2956650 , u(11, 10) =
0.2956640 , u(22, 20) = 0.2956609 , u(33, 30) = 0.2956558 , 
u(44, 40) = 0.2956487 those of the numerical solution 
a re  uA(11, 10) = 0.2956621 ,  uA(22, 20) = 0.2956573 , 
uA(33, 30) = 0.2956504 , uA(44, 40) = 0.2956430 . Thus, it is 
evident that the wave exhibits its physical behavior that it must act 
accordingly and preserves its conservation properties.

Example 2 When p = 2 , � = 1 , � = 1 and � = 1 are taken in 
Eq. (4), the following

modified Rosenau–Kawahara equation is obtained. The exact 
solution of this equation is [10, 13]

where  k1 =
3
√
2

�√
29 − 5

4
 ,  k2 =

�√
29 − 5

4
 and 

k3 =
4

5

�√
29 − 5

� − 1 . In Eq. (36) when t = 0 is taken, the 

initial condition for modified Rosenau–Kawahara equation 
(35) is obtained as follows:

and the boundary conditions are as given in Eq. (6). The 
error norms L2 and L∞ are calculated using the proposed 
method on the interval [xL, xR] = [−40, 200] for values of 
k = 0.1, 0.01 , h = 0.8, 0.4, 0.2 at time T = 10 and presented 
in Table 5. Moreover, it is seen that it is less for k = 0.01 . 

(35)
Ut + Uxxxxt + Ux + Uxxx − Uxxxxx + U2Ux = 0, (x, t)

∈
[
xL, xR

]
× (0, T]

(36)U(x, t) = k1sech
2
[
k2
(
x − k3t

)]

U(x, 0) = k1sech
2
(
k2x

)

Table 3  Comparison of the mass (Q) conservation for various h = k 
in x ∈ [−40, 100]

h = k T Present Scheme I [14] Scheme II [14]

0.1 0 4.120893
10 4.120903 4.120892 4.120918
20 4.120912 4.120893 4.120921
30 4.120919 4.120893 4.120925
40 4.120929 4.120892 4.120924

0.05 10 4.120903 4.120892 4.120898
20 4.120913 4.120892 4.120899
30 4.120921 4.120892 4.120900
40 4.120930 4.120892 4.120900

0.025 10 4.120903 4.120892 4.120894
20 4.120913 4.120892 4.120894
30 4.120922 4.120892 4.120895
40 4.120931 4.120892 4.120895

Table 4  Comparison of the energy (E) conservation for various h = k 
in x ∈ [−40, 100]

h = k T Present Scheme I [14] Scheme II [14]

0.1 0 0.836201
10 0.836205 0.836201 0.836201
20 0.836210 0.836201 0.836201
30 0.836212 0.836201 0.836201
40 0.836238 0.836201 0.836201

0.05 10 0.836251 0.836201 0.836201
20 0.836363 0.836201 0.836201
30 0.836418 0.836201 0.836201
40 0.836531 0.836201 0.836201

0.025 10 0.836929 0.836201 0.836201
20 0.838830 0.836201 0.836201
30 0.839841 0.836201 0.836201
40 0.840586 0.836201 0.836201
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The results are compared with those in the study of He 
[13]. From Table 5, it is seen that both of the error norms 
of the proposed method for values of k = 0.1, 0.01 are less 
than theirs. The error norms L2 and L∞ of the proposed 
method on the interval [xL, xR] = [−40, 200] for values of 

h = 0.1 , k = 0.8, 0.4, 0.2 at time T = 10 are calculated and 
given in Table 6. Moreover, in the same table they are 
compared with the study of He [13]. From Table 6, it is 
seen that although the space step size is larger, the error 
norms are smaller. The error norms L2 and L∞ at time 
T = 10 on the interval [xL, xR] = [−40, 200] for values of 
h = k = 0.5, 0.25, 0.125, 0.0625 are calculated and given in 
Table 7. From Table 7, it is seen that as the value of h = k 
decreases, the error norms L2 and L∞ also decrease. The 
conservation constants mass and energy are calculated using 
the proposed method on the interval [xL, xR] = [−50, 200] 
for values of h = k = 0.125 at times T = 10, 20, 30, 40 and 
given in Table 8. The conservation constants mass and 
energy at time T = 0 given in Table 8 are calculated by Eqs. 

Fig. 1  Graphs of the exact and the numerical solutions ( h = 0.5, k = 0.05 ) of Example 1

Table 5  Comparison of L2 
and L∞ errors norms for 
k = 0.1, 0.01 , h = 0.8, 0.4, 0.2 , 
in x ∈ [−40, 200] at T = 10.

h Present  [13]

k = 0.1 k = 0.01 k = 0.01

L2 L∞ L2 L∞ L2 L∞

0.8 2.553741e − 4 8.322277e − 5 1.340970e − 4 2.046554e − 5 2.292e − 2 8.331e − 3

0.4 2.578152e − 4 9.434383e − 5 1.336066e − 4 1.808957e − 5 5.753e − 3 2.085e − 3

0.2 2.779915e − 4 9.780929e − 5 1.916155e − 4 2.793317e − 5 1.445e − 3 5.241e − 4

Table 6  Comparison of L2 and L∞ errors norms for h = 0.1 , 
k = 0.8, 0.4, 0.2 in x ∈ [−40, 200] at T = 10.

k Present  [13]

h = 0.1 h = 0.01

L2 L∞ L2 L∞

0.8 1.470405e − 2 5.425594e − 3 4.610e − 2 1.620e − 2

0.4 3.883424e − 3 1.446681e − 3 1.173e − 2 4.116e − 3

0.2 9.712010e − 4 3.586292e − 4 3.022e − 3 1.058e − 3

Table 7  L2 and L∞ error norms for various h = k at T = 10

h = k L2 L∞

0.5 6.031292e − 3 2.230289e − 3

0.25 1.523273e − 3 5.638624e − 4

0.125 3.929182e − 4 1.448293e − 4

0.0625 1.252982e − 4 3.938525e − 5

Table 8  The mass (Q) and the energy (E) conservative constants for 
h = k = 0.125 in [−50, 200] at T = 10, 20, 30, 40

T Q E

0 8.48524685523 3.72863114331
10 8.48528405068 3.72863026594
20 8.48528833635 3.72863341183
30 8.48528744002 3.72863997724
40 8.48531969576 3.72896680184
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(31) and (32), respectively. From Table 8, it is seen that 
the conservation constants mass and energy remain almost 
constant as time goes on. The graphs of analytical solution 
on the region [−40, 200] × [0, 40] and those of numerical 
solution for values of h = 0.5 , k = 0.05 are illustrated in 
Figure 2. From Figure 2, it is seen that the numerical solu-
tions are in agreement with analytical ones. In addition, the 
height of each wave remains almost constant as time goes 
on. For example, for the analytical solution given in Fig-
ure 2 while the wave heights are u(0, 0) = 0.6582631754, 
u(11, 10) = 0.6574280174  ,  u(21.5, 20) = 0.6582369795 , 
u(32.5, 30) = 0.6576973895 , u(43, 40) = 0.6581584002 those 
of the numerical solution areuA(11, 10) = 0.6574154826 , 
uA(21.5, 20) = 0.6582360818 , uA(32.5, 30) = 0.6576886499 , 
uA(43, 40) = 0.6581362681 . Thus, it is evident that the wave 
exhibits its physical behavior properly and preserves its con-
servation properties.

Example 3 When p = 4 , � = 1 , � = 1 and � = 1 are taken 
in Eq. (4)

(37)
Ut + Uxxxxt + Ux + Uxxx − Uxxxxx + U4Ux = 0, (x, t)

∈
[
xL, xR

]
× (0, T]

the generalized Rosenau–Kawahara equation is obtained. 
The exact solution for this problem is [10, 13]

Here  k1 =
4

�
4
√
109 − 10

3
 ,  k2 =

�√
109 − 10

3
 and 

k3 =
9

10

�√
109 − 10

� − 1 . By taking t = 0 in Eq. (38), the 

initial condition for Rosenau–Kawahara (37) is obtained as 
follows:

and the boundary conditions are as given by Eq. (6). The 
error norms L2 and L∞ on the interval [xL, xR] = [−70, 130] 
for values of h = k = 0.5, 0.25, 0.125, 0.0625 at time T = 10 
using the proposed method are calculated and given in 
Table 9. From the table, it is seen that the error norms 
L2 and L∞ of the proposed method decrease as the values 
of h = k decreases. The conservation constants mass and 
energy are calculated by the proposed method on the inter-
val [xL, xR] = [−60, 200] for values of h = 0.5 , k = 0.01 at 

(38)U(x, t) = k1sech
[
k2
(
x − k3t

)]
.

U(x, 0) = k1sech
(
k2x

)

Fig. 2  Graphs of the exact and the numerical solution ( h = 0.5 , k = 0.05 ) of Example 2

Table 9  L2 and L∞ error norms for various h = k at T = 10

h = k L2 L∞

0.5 7.953829e − 3 2.959730e − 3

0.25 2.000993e − 3 7.459349e − 4

0.125 5.009078e − 4 1.873034e − 4

0.0625 1.252756e − 4 4.696748e − 5

Table 10  The mass (Q) and the energy (E) conservative constants for 
h = 0.5 , k = 0.01 in [−60, 200] at T = 10, 20, 30, 40

T Q E

0 12.432731615019 6.935941655505
10 12.432759656767 6.935892590540
20 12.432787466138 6.935892580993
30 12.432819000820 6.935892816879
40 12.432849527686 6.935892824830
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times T = 10, 20, 30, 40 and presented in Table  10. The 
conservation constants mass and energy at time T = 0 
given in Table 10 have been calculated by using Eqs. (31) 
and (32), respectively. From Table 10, it is seen that the 
conservation constants mass and energy of the proposed 
method remain almost constant as time goes on. The 
graphs of the analytical and numerical solutions on the 
interval [xL, xR] = [−60, 200] at times T = 0, 10, 20, 30, 40 
for values of h = 0.5 , k = 0.01 are illustrated in Figure 3. 
From Figure 3 it is seen that the analytical and numerical 
solutions are in agreement with each other. In addition, 
the height of each wave remains almost constant as time 
goes on. For example, from Figure  3 while the ampli-
tudes of analytical solution are u(0, 0) = 0.8753333202, 
u(10.5, 10) = 0.8752570283 ,  u(21, 20) = 0.8750282191 , 
u(31.5, 30) = 0.8746470918  ,  u(42, 40) = 0.8741139782 
those of numerical solution areuA(10.5, 10) = 0.8752619732 , 
uA(21, 20) = 0.8750280477 ,  uA(31, 30) = 0.8746531157 , 
uA(42, 40) = 0.8741136720 . Thus, it is evident that the wave 
exhibits physical behavior accordingly and preserves its con-
servation properties.

Example 4 When p = 7 , � = 1 , � = 1 and � = 8 are 
taken in Eq. (4), the following form of the generalized 
Rosenau–Kawahara

is obtained. The exact solution of this equation is [10, 11]

(39)
Ut + Uxxxxt + Ux + Uxxx − Uxxxxx + 8U 7Ux = 0, (x, t)

∈
[
xL, xR

]
× (0, T]

(40)U(x, t) = k1sech
4

7

[
k2
(
x − k3t

)]
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Fig. 3  The analytical and numerical solutions ( h = 0.5 , k = 0.01 ) of Example 3 at various times

Table 11  L2 and L∞ error norms for various h = k at T = 10

h = k L2 L∞

0.5 5.233286e − 3 1.948321e − 3

0.25 1.318799e − 3 4.985984e − 4

0.125 3.336922e − 4 1.272069e − 4

0.0625 9.393319e − 5 3.388532e − 5

Table 12  Comparison of L∞ error norm

T h = k = 0.1 h = k = 0.05 h = k = 0.025

Present 10 8.24e − 5 2.27e − 5 9.63e − 6

20 1.52e − 4 4.12e − 5 1.35e − 5

30 2.19e − 4 5.83e − 5 1.81e − 5

40 2.82e − 4 7.33e − 5 2.26e − 5

[11] 40 3.97e − 4 9.77e − 5 2.84e − 5

Table 13  The mass (Q) and the energy (E) conservative constants for 
h = k = 0.125 in [−80, 120] at T = 10, 20, 30, 40

T Q E

0 12.445884572068 5.308184302099
10 12.445935027280 5.308345247603
20 12.445985515279 5.308508389683
30 12.446027211579 5.308587914661
40 12.446019740504 5.308210501266
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where  k1 =
7

�
55

�
−85+

√
7549

�

1224
 ,  k2 =

7

√
−85+

√
7549

36
 and 

k3 =

√
7549

85
 . When t = 0 is taken in Eq. (40), the initial condi-

tion of the generalized Rosenau–Kawahara equation given 
by Eq. (39) is obtained as:

and the boundary conditions are as in Eq. (6). The 
error norms L2 and L∞ of the proposed method 
on the interval [xL, xR] = [−80, 120] for values of 
h = k = 0.5, 0.25, 0.125, 0.0625 at time T = 10 are cal-
culated and presented in Table 11. From Table 11, it is 
seen that the error norms decrease as the values of h = k 
decrease. The error norm L∞ of the proposed method on 
the interval [−80, 120] for h = k = 0.1, 0.05, 0.025 at times 
T = 10, 20, 30, 40 is calculated and compared with those 
of Chen et al. [11] and compared in Table 12. It is seen 
from Table 12 the error norm of proposed method is smaller 
than theirs. The conservation constants mass and energy 
have been calculated on the interval [xL, xR] = [−80, 120] 
for values of h = k = 0.125 at times T = 10, 20, 30, 40 and 
given in Table 13. From Table 13 it is seen that the conser-
vation constants mass and energy are conserved as times 
goes on. The conservation constants mass and energy in 
Table 13 at time T = 0 have been calculated by Eqs. (31) 
and (32), respectively, using rectangle rule. The graphs 
of numerical solution on interval [xL, xR] = [−80, 120] for 
values of h = k = 0.125 at times T = 10, 20, 30, 40 and 
those of analytical solutions at times T = 0, 10, 20, 30, 40 
are given in Figure 4. From Figure 4 it is seen that ana-
lytical and numerical solutions are in agreement with each 
other. In addition, the height of each wave remains almost 
constant as time goes on. For example, while the heights 
of the wave for analytical solution given in Figure 4 are 

U(x, 0) = k1sech
4

7

(
k2x

)

u(0, 0) = 0.7028152766  ,  u(10.25, 10) = 0.7028038659  , 
u(20.5, 20) = 0.7027696359 , u(30.625, 30) = 0.7027920494 , 
u(40.875, 40) = 0.7028131986  t h o s e  o f  n u m e r i -
c a l  s o l u t i o n s  a r euA(10.25, 10) = 0.7027708948  , 
uA(20.5, 20) = 0.7026977472 , u

A
(30.625, 30) = 0.7027079356 , 

uA(40.875, 40) = 0.7026906363 . Thus, it is evident that the 
wave exhibits its physical behavior in a proper way and pre-
serves its conservation properties.

Conclusion

In this study, an efficient numerical scheme is proposed 
to obtain the numerical solution of the Rosenau–Kawa-
hara equation by quintic B-spline collocation finite ele-
ment method. The error norms L2 and L∞ are calculated 
by applying the proposed numerical scheme to four model 
of problems with an analytical solution. The error norms 
obtained were compared with the studies available in the 
literature, and it was concluded that the error norms of the 
proposed numerical scheme were smaller. The numerical 
solutions obtained for each problem were plotted, and ana-
lytical solutions were compatible with the graphics. In addi-
tion, it was observed that the main conservation properties 
of the Rosenau–Kawahara equation, mass and energy, were 
preserved by the proposed numerical scheme. Although it is 
found out that the method is easy to use and well suited for 
computer programming, and also produces better results for 
sufficiently large values of space and time step sizes, in this 
study, since a coupled form of Rosenau–Kawahara equation 
is solved, the storage capacity and computational cost have 
increased naturally. As a result, the numerical solution of 
high-order nonlinear partial differential equations frequently 
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Fig. 4  Graphs of the analytical and the numerical solutions ( h = k = 0.125 ) of Example 4 at various times
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arising in science and mathematical physics for a wide range 
of phenomena encountered in the nature can be obtained 
easily and effectively with the proposed method.
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