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Abstract
Finite element methods have been frequently employed in seeking the numerical solutions of PDEs. In this study, a Galerkin 
finite element numerical scheme is constructed to explore numerical solutions of the generalized Kuramoto–Sivashinsky 
(gKS) equation. A quartic trigonometric tension (QTT) B-spline function is adapted as base of the Galerkin technique. The 
incorporation of B-spline Galerkin in space discretization generates the time-dependent system. Then, the use of Crank–
Nicolson time integration algorithm to this system gives the wholly discretized scheme. The efficiency of the method is tested 
over several initial boundary value problems. In addition, the stability of the computational scheme is analyzed by considering 
Von Neumann technique. The computational results obtained by the suggested scheme are simulated and compared with the 
commonly existing numerical findings.

Keywords Kuramoto–Sivashinsky equation · Galerkin method · stability analysis · quartic trigonometric tension B-splines

Introduction

Many phenomena are classified through constructing the 
nonlinear PDEs in many disciplines such as mathematical 
physics. The generalized Kuramoto–Sivashinksy (gKS) 
equation is one of these equations which has been widely 
used in modeling wave mechanism in the context of such 
fields. In this study, numerical simulations of wave patterns 
are investigated for the KS model which is given as the fol-
lowing nonlinear PDE in one dimension [22],

along with the initial condition (IC),

and boundary conditions (BCs),

where � , � and � are presented as real constants. The non-
linear advection term is given by uux , the dissipation term is 
known as uxx and dispersion term is presented as uxxx in the 
model description of the gKS equation. Plasma physics, con-
centration waves, flame propagation and reaction-diffusion 
dynamics, free surface film-flows and two face flows in plain 
or cylindrical geometries [16–18] are simulated computa-
tionally by the gKS equation. Tanh-function [11], Cheby-
shev spectral collocation [15], radial basis function-based 
mesh-free [26], Lattice Boltzmann [19], meshless method 
of lines [13], He’s variational iteration [24], finite difference 
and collocation [20], differential quadrature [23] and gen-
eralization of Gegenbauer Wavelet Collocation [6] methods 
are build up to calculate numerical and analytical solutions 
of the various classes of KS equation.

The gKS equation is classified by proper determination 
of � . For instance, when � is zero, this type of the equation 
is named as Kuramoto–Sivashinsky (KS) equation which 
models wave pattern in various physical and chemical fields. 
When the parameters are chosen as � = � = 1 and � = 0 , the 
model represents the wave patterns in unstabilized flames 
and thin hydrodynamic films [12]. The special case without 
uxxx is handled numerically using collocation method via 

(1)

�u(x, t)

�t
+ u(x, t)

�u(x, t)

�x
+ �

�2u(x, t)

�x2

+ �
�3u(x, t)

�x3
+ �

�4u(x, t)

�x4
= 0, x ∈ [a, b], t ∈ (0, T]

(2)u(x, 0) = u0,

(3)
u(a, t) = f0, u(b, t) = f1,

ux(a, t) = 0, ux(b, t) = 0
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exponential cubic B-spline, trigonometric cubic B-spline 
and septic B-spline [9, 10, 29]. Local discontinuous Galer-
kin method and differential quadrature method are applied 
in [27, 28]. In this study, since gKS equation has derivatives 
of up to fourth order, it can be integrated using quartic trigo-
nometric B-splines.

Splines are extensively used tools in many fields of 
applied mathematics. These functions are used not only to 
represent geometric design, but also to model scientific data. 
Thus, many splines have been proposed by researches to 
interpolate complex function, to fit curves at some given 
points and to solve differential equations [1–3]. Trigonomet-
ric tension B-splines are nonpolynomial splines consisting 
of two or more trigonometric functions having the form of 
bell-shaped curve. A quartic trigonometric tension (QTT) 
B-splines are introduced in the paper [4] to get numerical 
results of the Burgers–Huxley equation. Also, in that work, 
a QTT B-spline collocation method with Crank–Nicolson 
combination is build up for integrating the Burgers–Huxley 
equation. In another study, current splines are employed to 
the base of a collocation method to obtain computational 
solutions of regularized long wave equation [14]. Recent 
applications of present spline function to the nonlinear mod-
els are presented in [7, 8].

More recently, the KS model has been investigated by 
scholars in numerical and analytical sense. A study is con-
ducted to find the numerical solutions of KS model via 
fourth-order Runge–Kutta method [5]. Analytical findings 
have been contributed in [25] by adopting Laplace trans-
form and variational iteration methods for integer and frac-
tional types of KS model. Another study has been devoted 
to explore the well-posedness of the KS equation in two 
dimensions [21].

The rest of the work is constructed as follows: In Sect. 2, 
the B–spline function is explored by considering the nec-
essary higher-order derivative definitions. The employ-
ment of the methodology is also presented which gives 

the space-time discretized scheme in Sect. 3. Then, Sect. 4 
serves the stability investigation of the scheme based on 
Von-Neumann stability method. Section 5 presents numeri-
cal experiments showing the capability of the current pro-
cedure. Depictions of the solutions are presented in one- or 
two-dimensional views. Physical pattern of the experimental 
cases is simulated. Section 6, therefore, reveals the advan-
tages of the current scheme with conclusive notes and pos-
sible extensions of the study.

Description of QTT B‑splines

In this section, the description of the newly proposed 
B-spline function is explored based on trigonometric and 
polynomial functions. First, consider the uniformly par-
titioned interval [a,  b] as in a = x0 < x1 < … < xN = b 
into finite elements [xm, xm+1] assuming mesh length as 
h = xm+1 − xm, m = 0, 1,… ,N − 1. The current QTT 
B-spline function of order k = 2 is given as [4],

where � =
√
�, � =

�

h
(� ∈ �) shows the tension parameter. 

When the order is given as k ≥ 3, the following recursive for-
mula is presented to derive the higher-order QTT B-spline 
Tm,k(x),

where �m,k =
( ∞∫
−∞

Tm,k(s)ds

)−1

, for m = 0,±1,….

Now, considering equations (4) and (5), QTT B-splines 
for k = 5 are represented as,

(4)Tm,k(x) =

⎧⎪⎨⎪⎩

sin �(x−xm−2)

sin(�h)
, x ∈

�
xm−2, xm−1

�
,

sin �(xm−x)

sin(�h)
, x ∈

�
xm−1, xm

�
,

0, otherwise.

(5)Tm,k(x) =

x

∫
−∞

(�m,k−1Tm,k−1(s) − �m+1,k−1Tm+1,k−1(s))ds

(6)Tm,5(x) = �

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�2(−Dm−2)
2 + 2Cm−2 − 2, [xm−2, xm−1]

−�2(3h2 + 6hDm−2 + 2(−Dm−2)
2) + 2M(�2(Dm−1)

2 − 2) − (6Cm−1 + 2Cm − 4), [xm−1, xm],

�2(13h2 + 10hDm−2 + 2(−Dm−2)
2) +M(2�2(11h2 + 10hD(m − 2))

+4M�2(−Dm−2)
2 − 8M + 6Cm + 6Cm+1 − 4), [xm, xm+1],

−�2(23h2 + 14h(Dm−2) + 2(−Dm−2)
2) + 2M(�2(Dm+2)

2 − 2) − (2Cm+1 + 6Cm+2 − 4), [xm+1, xm+2],

�2(Dm+3)
2 + 2Cm+3 − 2, [xm+2, xm+3],

0, otherwise.

Table 1  The B-spline function 
T
m,5(x) and its accompanying 

derivative forms

xm−2 xm−1 xm xm+1 xm+2 xm+3

T
m,5 0 �1 �2 �2 �1 0

T
′
m,5

0 �3 �4 −�4 −�3 0
T
′′
m,5

0 �5 −�5 −�5 �5 0
T
′′′
m,5

0 �6 �7 −�7 −�6 0
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where � =
r

2�2
 ,  r =

1

2h2(1−M)
, Cm+j = cos(�(xm+j − x)) , 

Dm+j = (xm+j − x), M = cos(�h) . The detailed values of the 
QTT B-Spline function at the connected values are explored 
in Table 1.

where

�1 = r(h2�2 + 2 cos(�h) − 2)∕2�2,
�2 = r(h2�2 − 2 cos(�h)(h2�2 + 1) + 2)∕2�2,
�3 = r(h� − sin(�h))∕� ,
�4 = r(−h� + 3 sin(�h) − 2 cos(�h)h�)∕� ,
�5 = r(1 − cos(�h)),
�6 = r� sin(�h),
�7 = −3r� sin(�h).

The general form of the B-Spline functions depends on the 
distinct-free parameter � . The QTT B-splines over the domain 
[−1, 1] are depicted in Fig. 1 considering � = 9.

Application of the method using QTT 
B‑splines

The set of QTT B-splines given by Tm,5(x), m = −2,… ,N + 1 
is known to be a basis on the problem domain [a, b]. Therefore, 
the solutions given by U(x, t) are approximated by assembling 
the QTT B-splines Tm,5(x) for the analytical solutions u(x, t) as,

(7)u(x, t) ≈ U(x, t) =

N+1∑
m=−2

�m(t)Tm,5(x).

The values given by �m(t) are presented as unknown vari-
ables which will be evaluated with the treatment of Galerkin 
method. Over the sample finite element [xm, xm+1], approxi-
mated solution which is represented by Eq. (7) is given in 
terms of five QTT B-spline shape functions as the following,

The unknown function U and its related derivatives given 
by Ux,Uxx,Uxxx on [xm, xm+1] are carried out in terms of �m 
by using (8) and the QTT B-spline curve suggested in (6) 
as the following,

Regarding the Galerkin methodology, the following integral 
from a to b is presented as,

where w(x) is named as weight function. Over the typical 
element [xm, xm+1] , the distribution of integral Eq. (10) is

Now, the transformation � = x − xm , 0 < 𝜉 < h is applied to 
Eq. (11) which corresponds to

Then, the QTT B-spline shape functions Tj(x), 
j = m − 2,… ,m + 2 on [0, h] can be obtained in terms of 
the local coordinate � as,

(8)U(x, t) =

m+2∑
j=m−2

�j(t)Tj,5(x).

(9)

U(xm, tn) ≈ Un
m
= �1�m−2 + �2�m−1 + �2�m + �1�m+1,

Ux(xm, tn) ≈ U�
m
= �3�m−2 + �4�m−1 − �4�m − �3�m+1,

Uxx(xm, tn) ≈ U��
m
= �5�m−2 − �5�m−1 − �5�m + �5�m+1,

Uxxx(xm, tn) ≈ U���
m

= �6�m−2 + �7�m−1 − �7�m − �6�m+1.

(10)

b

∫
a

w(x)

(
�u(x, t)

�t
+ u(x, t)

�u(x, t)

�x

+�
�2u(x, t)

�x2
+ �

�3u(x, t)

�x3
+ �

�4u(x, t)

�x4

)
dx = 0

(11)

xm+1

∫
xm

w(x)

(
�u(x, t)

�t
+ u(x, t)

�u(x, t)

�x

+�
�2u(x, t)

�x2
+ �

�3u(x, t)

�x3
+ �

�4u(x, t)

�x4

)
dx = 0

(12)

h

∫
0

w(�)
�u(�, t)

�t
d� +

h

∫
0

w(�)u(�, t)
�u(�, t)

��
d�

+ �

h

∫
0

w(�)
�2u(�, t)

��2
d� + �

h

∫
0

w(�)
�3u(�, t)

��3
d�

+ �

h

∫
0

w(�)
�4u(�, t)

��4
d�.

Fig. 1  QTT B-splines over the interval for [0, 1] and � = 9
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Therefore, using Eqs. (13) into Eq. (8) and employing Eq. 
(8) into Eq. (12) entail to the following,

in which ′ and ⋅ express space and time derivatives, respec-
tively. Now, consider the following matrix forms for each 
i, j, k = m − 2(1)m + 2 as,

(13)

Tm−2(�) =�(�
2(h − �)2 + 2cos(�(h − �)) − 2),

Tm−1(�) =�(−(�
2(23h2 + 14h(−3h − �) + 2(3h + �)2)

+ 2M(�2(h − �)2 − 2))

− (2cos(�(−�)) + 6cos(�(h − �)) − 4)),

Tm(�) =�(�
2(13h2 + 10h(−2h − �) + 2(2h + �)2)

+M(2�2(11h2 + 10h(−2h − �)))

+ 4M�2(2h + �)2 − 8M + 6cos(�(−�))

+ 6cos(�(h − �)) − 4),

Tm+1(�) =�(−(�
2(3h2 + 6h(−h − �) + 2(h + �)2)

+ 2M(�2(−�)2 − 2))

− (6cos(−��) + 2cos(�(h − �)) − 4)),

Tm+2(�) =�(�
2�2 + 2cos(��) − 2).

(14)

m+2�
j=m−2

⎧
⎪⎪⎨⎪⎪⎩

�
h∫
0

TiTjd�

�
�n+1
j

+

�
h∫
0

Ti

�
m+2∑

k=m−2

�n+1
k

Tk

�
T �
j
d�

�
�n+1
j

+

�

�
h∫
0

TiT
��
j
d�

�
�n+1
j

+ �

�
h∫
0

TiT
���
j
d�

�
�n+1
j

+ �

�
h∫
0

TiT
����
j

d�

�
�n+1
j

⎫⎪⎪⎬⎪⎪⎭

−

m+2�
j=m−2

⎧⎪⎪⎨⎪⎪⎩

�
h∫
0

TiTjd�

�
�n
j
+

�
h∫
0

Ti

�
m+2∑

k=m−2

�n
k
Tk

�
T �
j
d�

�
�n
j
+

�

�
h∫
0

TiT
��
j
d�

�
�n
j
+ �

�
h∫
0

TiT
���
j
d�

�
�n
j
+ �

�
h∫
0

TiT
����
j

d�

�
�n
j

⎫⎪⎪⎬⎪⎪⎭

(15)

�
e
ij
=

h

∫
0

TiTjd�,

�
e
ij
(�e)n+1 =

h

∫
0

Ti

(
m+2∑

k=m−2

Tk�
n+1
k

)
T �
j
d�,

�
e
ij
=

h

∫
0

TiT
��
j
d�,

�
e
ij
=

h

∫
0

TiT
���
j
d�,

�
e
ij
=

h

∫
0

TiT
����
j

d�,

wherethe matrices �e, �e,�e, �e are presented in 5 × 5 
dimension and the matrix �e is the element matrix with the 
dimension 5 × 5 × 5, then with the representations of these 
element matrices Eq. (14) is reorganized as,

where � = (�m−2,… , �m+2)
T . Now, the local element matrices 

given in Eq. (16) are assembled which yields the following 
global matrix equation,

Then, the unknown parameters � and its related derivative 
form �̇� are accomplished by the Crank–Nicolson formulation 
including the time stages n + 1 with n as,

Therefore, iterative formula is obtained for the time param-

eters �n as the following,

The last expression consists of N + 4 linear equations and 
N + 4 unknowns as (�n+1

−2
, �n+1

−1
,… , �n+1

N+1
) . Then, with the 

use of BCs and initial value of the problem, the vector 
(�0

−2
, �0

−1
,… , �0

N+1
) is achieved. In addition, nonlinearity is 

handled by replacing the term �(�n) with �(�n+1) so that 
the system is obtained by the Gauss elimination method. In 
addition to increase the accuracy, and to tackle the nonlin-
earity, it is essential to apply the following iteration at each 
time steps as,

Finally, the solutions of the resultant system of the linear 
equations give the desired computational solutions.

(16)�
e�̇�e + (�e(𝛾e) + 𝛼�e + 𝛽�e + 𝜗�e)𝛾e

(17)��̇� + (�(𝛾) + 𝛼� + 𝛽� + 𝜗�)𝛾 = 0.

(18)𝛾 =
𝛾n+1 + 𝛾n

2
, �̇� =

𝛾n+1 − 𝛾n

𝛥t
.

(19)

[
A +

�t

2

(
B(�n+1) + �C + �D + �E

)]
�n+1

=
[
A −

�t

2
(B(�n) + �C + �D + �E)

]
�n.

(�∗)
n+1 = �n.
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Stability analysis

The Von Neumann stability analysis is implemented to dis-
cuss the stable computational difference scheme. Firstly, the 
term U is assumed as local constant which is given as a part 
of the nonlinear term UUx , so that Fourier stability method 
for Eq. (19) can be performed. In order to do so, a typical 
member of the (19) is considered as,

where the parameters �i, i = 1,… , 9 are assembled from 
the system (19) in which these values are not explained 
since they include long and complicated expressions. 
Then, adressing the Fourier mode �n

m
= sneim� for the lin-

earized difference equation, following relation is written 
as,

Thus, the growth factor quantity is obtained as the following 
equation,

where

Obviously, the quantity in the last expression |q| is less than 
or equal to 1 which, therefore, proves to preserve the uncon-
ditionally stable difference scheme. However, each param-
eter is preferred to give efficient numerical solutions.

�1�
n+1
m−4

+ �2�
n+1
m−3

+ �3�
n+1
m−2

+ �4�
n+1
m−1

+ �5�
n+1
m

+ �6�
n+1
m+1

+ �7�
n+1
m+2

+ �8�
n+1
m+3

+ �9�
n+1
m+4

= �9�
n
m−4

+ �8�
n
m−3

+ �7�
n
m−2

+ �6�
n
m−1

+ �5�
n
m

+ �4�
n
m+1

+ �3�
n
m+2

+ �2�
n
m+3

+ �1�
n
m+4

�n+1 = q�n.

q =
c − id

c + id

c =(�1 + �9) cos(4�) + (�2 + �8) cos(3�)

+ (�3 + �7) cos(2�) + (�4 + �6) cos(�) + �5

d =(�1 − �9) sin(4�) + (�2 − �8) sin(3�)

+ (�3 − �7) sin(2�) + (�4 − �6) sin(�).

Application of the suggested method 
to experimental cases

In this section, some experimental cases are considered to vali-
date the results produced by suggested method. To measure 
the accuracy of the proposed method for a fair comparison, 
calculations are carried out with the global relative error (Gre) 
given by,

where u shows the exact and U represents the numerical 
solutions, respectively.

Solitary wave propagation

As a first case, numerical solution of Eq. (1) is given under the 
selection of parameters as � = � = 1 and � = 4 . Analytical 
solution is given by [19],

The IC is determined by setting t = 0 in the analytical solu-
tion and homogen Neumann BCs are used. The solution of 
this problem preserves the solitary wave profile with ini-
tial position xs and speed s. The parameters of s = 6, k = 1

2
, 

xs = −10 in Eq. (21) are preferred in calculations. The pro-
gram is carried out considering the interval [−30, 30] for 
�t = 0.0001 and space step h = 0.1 as in the study [19] . 
In Table 2, values of Gre at some times are documented to 
make comparison results of suggested method with ones for 
[19] and CPU time of the suggested Galerkin technique is 
calculated by considering time steps as 0.01 and 0.0001 to 
show the cost in Table 2. Suggested method gives far better 
results than the method given in the work [19]. In addition, 

(20)Gre =

N+1∑
m=1

��Un
m
− un

m
��

N+1∑
m=1

��unm��
,

(21)

u(x, t) =s + 9 − 15
[
tanh

(
k
(
x − st − xs

))

+ tanh2
(
k
(
x − st − xs

))

− tanh3
(
k
(
x − st − xs

))]
.

Table 2  Gres for solitary wave 
propagation at different times

t Suggested 
( Δt = 0.0001)

[19] ( Δt = 0.0001) CPU(Δt = 0.0001

)
Suggested(Δt = 0.01) CPU(Δt = 0.01)

1 9.2410 × 10−8 2.5945 × 10−2 858 9.4961 × 10−4 16.0
2 1.5171 × 10−7 2.7959 × 10−2 1732 1.7398 × 10−3 26.5
3 1.9659 × 10−7 2.6701 × 10−2 2643 2.4591 × 10−3 34.4
4 2.3056 × 10−7 3.5172 × 10−2 3699 3.1885 × 10−3 40.2
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solutions are much more efficient even the larger time step 
is preferred. For instance, with �t = 0.01 , suggested algo-
rithm gives error 3.1885 × 10−3 , whereas cubic spline Lat-
tice Boltzmann method produces 3.5172 × 10−2 at time stage 
t = 4 using the time step �t = 0.0001.

The solitary wave propagation is depicted in 3D at 
time t = 4 in Fig. 2. And also, in Fig. 3, the solutions at 
t = 1, 2, 3, 4 are illustrated for �t = 0.001 and h = 0.1.

Shock wave profile of KS equation

The computational calculations are carried out for the 
numerical solution of Eq. (1) considering the following 
analytical solution:

The IC is determined by the closed-form solution given by 
Eq. (22), and homogen Neumann BCs are used. The numeri-
cal results are obtained on the finite interval [−30, 30] with 
�t = 0.01 and h = 0.4 and compared with the well-known 
existing methods such as quintic B-spline collocation 
method [22], exponential cubic B-spline collocation method 
[9] and the differential quadrature method [23]. Table 3 
serves these numerical findings according to the parameters 
as s = 5, k =

√
11

76
, xs = −12.

Shock wave simulations of the KS equation are presented 
by Fig. 4 in 3D view over 0 ≤ t ≤ 4 . In addition, generation 
of the shock waves is visualized in Fig. 5 considering at 
time levels t = 1, 2, 3, 4 with �t = 0.001 and h = 0.1 . Depic-
tions of the shock profile of KS equation exhibit the physical 
nature of the wave propagation.

The chaotic nature of KS equation

Numerical solution of Eq. (1) is get for � = � = 1 and � = 0 . 
This example is a special a case of gKS which is known to 
exhibit chaotic behavior when spatial domain is finite. Such 
model is given under the Gaussian IC as,

BCs are determined by considering conditions given by (3). 
The computational domain is considered as [−30, 30] with 
N = 120, �t = 0.001 space and time partitions. In Fig. 6, 
wave pattern is simulated over 0 ≤ t ≤ 5 and Fig. 8 shows the 
depiction of turbulent flow on 0 ≤ t ≤ 20 temporal domain 
in 3D views. In addition, in Figs. 7 and 9, depictions of the 
numerical solutions of the gKS equation are presented at 
time stages t = 5 and t = 20 , respectively. It can be observed 
that the numerical results well exhibit chaotic behavior of 
the model as expected.

(22)
u(x, t) =s +

15

19

√
11

19

[
−9 tanh

(
k
(
x − st − xs

))

+11 tanh3
(
k
(
x − st − xs

))]
.

u(x, 0) = − exp(−x2)

Fig. 2  Solitary wave propagation in 3D

Fig. 3  Solitary wave propagation in 2D

Table 3  Gres for shock profile 
wave propagation at different 
times

t Suggested [22] [9](p = 1) [9](various p) [23] CPU

1 2.2135 × 10−5 3.8172 × 10−4 8.7463 × 10−4 3.3290 × 10−4 2.3986 × 10−4 5.7
2 4.1690 × 10−5 5.5114 × 10−4 1.3014 × 10−3 5.5636 × 10−4 2.9855 × 10−4 9.0
3 6.0879 × 10−5 7.0398 × 10−4 1.7397 × 10−3 8.7489 × 10−4 3.6254 × 10−4 12.5
4 7.7538 × 10−5 3.6366 × 10−4 2.2365 × 10−3 1.2516 × 10−3 4.3300 × 10−4 14.8
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Fig. 4  Shock profile wave propagation in 3D

Fig. 5  Shock profile wave propagation in 2D

Fig. 6  Chaotic behavior in 3D
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Fig. 7  Behavior at t = 5

Fig. 8  Chaotic behavior in 3D
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Fig. 9  Chaotic behavior at t = 20
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Conclusion

In this work, using QTT B-splines, Galerkin technique is 
constructed for the numerical solution of the gKS equation. 
The present method to simulate solitary wave propagation 
numerically provides less error than in comprasion with the 
Lattice Boltzmann method as given in Table 2. Shock pro-
file wave propagation is presented to show accuracy of the 
method compared with the quintic collocation method and 
quintic B-spline-base differential quadrature. Table 3 also 
shows that the current scheme gives efficient results than 
those existing works. In the last experimental case, cha-
otic solution of the KS equation is simulated and proved to 
preserve turbulent wave nature of the current model. Thus, 
the proposed method is shown to be capable for generating 
numerical solution of high accuracy for the solution of the 
gKS equation. The experimental results are quite satisfactory 
when compared with the other results of the literature. So 
it can be concluded that the QTT B-spline Galerkin method 
is both efficient and reliable for getting the numerical find-
ings of the PDEs. The proposed algorithm can be further 
considered as preferable for the numerical solution of the 
PDEs with derivatives of up to fourth order since it can be 
integrated using QTT B-splines quite efficiently.
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