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Abstract
This paper provides a new three-parameter lifetime distribution with increasing and decreasing hazard function. The various 
statistical properties of the proposed distribution are also discussed. The maximum likelihood method is used for estimat-
ing the unknown parameters, and its performance is assessed using Monte-Carlo simulation. Finally, three real data sets are 
applied to illustrate the application of the proposed distribution.
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Introduction

Finding the new distributions for modeling the lifetime of 
the systems such as devices and organisms is an attractive 
topic in statistics, which is useful in some applied sciences 
such as biology and engineering. For this purpose, many 
researches have been published in the statistical literature. 
Some written books in this topic are Lawless [21], Desh-
pande and Purohit [12].

The simplest model in the lifetime data analysis is the 
exponential distribution. Also, the exponential distribu-
tion is the basis of many distributions in this topic. In the 
recent years, the modifications of the exponential distribu-
tion have been considered; e.g., the generalized exponential 
distribution by Gupta and Kundu [15–18], the exponentiated 
Weibull distribution by Mudholkar and Srivastava [27], the 
exponentiated gamma distribution by Nadarajah and Kotz 
[28], the exponential-geometric distribution by Adamidis 
and Loukas [3], the modified exponential-Poisson distribu-
tion by Preda et al. [29], the modified exponential distribu-
tion by Rasekhi et al. [32], the extended exponential geo-
metric distribution by Louzada et al. [24], an extended-G 

geometric family by Cordeiro et al. [9], the complementary 
exponentiated exponential geometric distribution by Lou-
zada et al. [23] and an extension of the exponential-geomet-
ric distribution by Adamidis et al. [2].

Recently, Bordbar and Nematollahi [7] proposed the 
modified exponential-geometric distribution via the oper-
ation of compounding based on Marshall and Olkin [26] 
scheme. Motivated to introduce a simple and flexible model 
to describe phenomenon with monotone hazard rates which 
are common in reliability and biological studies, the target 
of this paper is introducing a new model as a competitor for 
some existing distributions to fit on some data sets. In this 
purpose, we establish a new modified exponential-geometric 
(NMEG) distribution similar to the Bordbar and Nematol-
lahi’s [7] idea, which perform better than some of the well-
known distributions, especially that introduced by Bordbar 
and Nematollahi [7], in fitting on some real data sets in terms 
of some statistical criteria.

This paper is organized as follows: Section 2 introduces 
the new lifetime model. In Section 3, the various proper-
ties of the proposed distribution are investigated. Section 4 
discusses finding the maximum likelihood estimators of the 
parameters. In Section 5, a Monte Carlo simulation study is 
conducted to investigate the performance of the maximum 
likelihood estimators. Finally, in Section 6, the proposed 
distribution is applied on three real data sets.
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The NMEG distribution

Given a random variable Y with the distribution function 
FY (.) , Marshall and Olkin [26] introduced a useful method 
to construct a new distribution function FW (.;�) corre-
sponding to a random variable W, by adding a parameter 
� as follows:

where the distribution function FY (.) is called the baseline 
distribution.

Let us consider the exponential distribution with mean 
1∕� , as the baseline distribution. So, we have

Also, the corresponding density function, denoted by 
fW (.;�, �) , is obtained as:

Let W1,… ,WZ , be a random sample from the density func-
tion fW (.;�, �) and Z be a random independent variable of 
W, from the geometric distribution with the density function 
fZ(x;p) = p(1 − p)x−1 , for a natural value of x. By consid-
ering the smallest order statistic in the sample W1,… ,WZ , 
Bordbar and Nematollahi [7] introduced a new modified 
distribution; but we continue the topic by a minor change in 
this approach. Suppose that X = max(W1,… ,WZ) . Thus, the 
conditional density function of the random variable X given 
Z = z , fX|Z=z(.;�, �) , is obtained as following:

and consequently, the marginal density function of X is given 
by

The latter density function is called the NMEG distribution 
which is denoted by X ∼ NMEG(�, �, p) for the random vari-
able X. In this paper, we intend to consider and investigate 
the NMEG distribution as previously mentioned. It can be 
easily seen that the survival function, F̄X(x;𝛼, 𝛽) , and the 
hazard function, hX(x;�, �) , corresponding to the random 
variable X are given by

FW (x;𝛼) =
FY (x)

FY (x) + 𝛼(1 − FY (x))
, x ∈ ℝ, 𝛼 > 0,

FW (x;𝛼, 𝛽) =
1 − e−𝛽x

1 − (1 − 𝛼)e−𝛽x
, x > 0, 𝛼, 𝛽 > 0.

fW (x;𝛼, 𝛽) =
𝛼𝛽e−𝛽x

(1 − (1 − 𝛼)e−𝛽x)2
, x > 0, 𝛼, 𝛽 > 0.

fX|Z=z(x;𝛼, 𝛽) =
𝛼𝛽ze−𝛽x(1 − e−𝛽x)z−1

(1 − 𝛼̄e−𝛽x)z+1
,

x > 0, z ∈ ℕ, 𝛼, 𝛽 > 0,

(1)
fX(x;𝛼, 𝛽, p) =

𝛼𝛽pe−𝛽x

(p − (p − 𝛼)e−𝛽x)2
,

x > 0, 𝛼, 𝛽 > 0, 0 < p < 1.

and

respectively. It is necessary to mention that NMEG(�, �, p) 
reduces to exponential distribution, when � = p . So, 
throughout paper we consider the case that � ≠ p.

Statistical properties

In this section, various properties of the NMEG distribution 
including the shapes of the density and hazard functions, 
quantile function, characteristic function and moments, 
mean residual life and Shannon and Rényi entropies are 
discussed.

Shape of the density and hazard functions

It is easily seen that the derivative density function in (1) is 
obtained as :

Obviously, 𝛼 < p implies the negativity of the derivative and 
consequently the reduction of fX(x;�, �, p) . If 𝛼 > p , the 
value x0 = −

1

�
ln

p

�−p
 is the unique root of the equation 

f �
X
(x;�, �, p) = 0 , such that x0 maximizes fX(x;�, �, p) . There-

fore, x0 < 0 ( p < 𝛼 < 2p ) implies the reduction of 
fX(x;�, �, p) in x ≥ 0 , and x0 > 0 ( 𝛼 > 2p ) implies the 
increase of fX(x;�, �, p) in 0 ≤ x ≤ x0 and reduction of 
fX(x;�, �, p) in x ≥ x0 . Thus, the mode of X, denoted by MX , 
can be simplified as:

Left panel of Fig. 1 that represents the plots of density 
functions for different values of parameters, agrees with the 
obtained results for the shape of density function.

Clearly, derivative of the hazard function is

Thus, the hazard function is decreasing if 𝛼 < p , and it is 
increasing if 𝛼 > p . Furthermore, we have

F̄X(x;𝛼, 𝛽, p) =
𝛼e−𝛽x

p − (p − 𝛼)e−𝛽x
,

hX(x;�, �, p) =
�p

p − (p − �)e−�x
,

f �
X
(x;�, �, p)

=
2��2p(� − p)e−2�x − ��2pe−�x(p − (p − �)e−�x)

(p − (p − �)e−�x)3
.

MX =

{
0, 𝛼 < 2p,

−
1

𝛽
ln(

p

𝛼−p
), 𝛼 ≥ 2p.

h�
X
(x, ;�, �, p) = −

�2p(p − �)e−�x

(p − (p − �)e−�x)2
.
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i.e., for large values of x, the hazard function does not 
depend on � and p. Right panel of Figure 1 that represents 
the plots of the hazard functions for different values of 
parameters, agrees with the all results of this subsection.

Quantile function

The quantile function of X ∼ NMEG(�, �, p) , denoted by 
Q(u;�, �, p) , for 0 < u < 1 is obtained by solving the equation 
FX(Q(u);�, �, p) = u ; which is:

So, the median of the random variable X, denoted by mX , is 
obtained in the following form:

In order to do a Monte Carlo simulation, assume that U be 
a random variable uniformly distributed on (0,1). Based on 
inverse transform method, the random variable

is distributed as NMEG(�, �, p).

lim
x→∞

h(x;�, �, p) = lim
x→∞

�p

p − (p − �)e−�x
= �,

Q(u;�, �, p) = −
1

�
ln

(
p(1 − u)

�u + p(1 − u)

)
.

mX = Q(0.5;�, �, p) = −
1

�
ln

(
p

� + p

)
.

(2)X = −
1

�
ln

(
p(1 − U)

�U + p(1 − U)

)
,

Characteristic function

In order to obtain Characteristic function, a necessary 
function which is called hypergeometric function (Bailey 
[5]) can be applied:

such that c > b > 0.
Let X be a random variable with X ∼ NMEG(�, �, p) . 

Thus, to obtain the characteristic function of X, denoted 
by �X(t) , we have

where i =
√
−1 , and the third quality arises from the change 

of variable u = e−�x.

Moments

In order to present a closed form for the moments, we need 
an important function called the polylogarithm function 

(3)F2,1(a, b, c, z) =
� (c)

� (b)� (c − b) ∫
1

0

ub−1(1 − u)c−b−1

(1 − zu)a
du,

�X(t) =∫
∞

0

eitx
��pe−�x

(p − (p − �)e−�x)2
dx

=�p∫
1

0

u−it∕�

(p − (p − �)u)2
du

=
�p

p2 ∫
1

0

u−it∕�

(1 −
p−�

p
u)2

du

=
��

p(� − it)
F2,1(2, 1 −

it

�
, 2 −

it

�
, 1 −

�

p
),

Fig. 1   The plots of the density and hazard functions for � = 1 , p = 0.5 and the values � = 0.1, 0.3, 0.8, 5
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L(z, r), which is a generalization of Euler’s and Landen’s 
functions. This function has some integral representations; 
but we state the represented form in Lewin [22] p. 236 and 
Prudnikov et al. [31], p. 762, as follows:

For a nonnegative integer value r, and for any z < 1 , Jodrá 
[19] represented another form for L(z, r), which is given by

Here, we use the latter representation of the polylogarithm 
function.

Let X be a random variable with X ∼ NMEG(�, �, p) . To 
obtain the non-central moments of X, for r ∈ ℕ , we have

where the third inequality comes from changing the variable 
of integration to u = e−�x . In the special case r = 1,

where the second equality follows from the fact that 
L(−z, 1) = − ln(1 + z) ; see Adamidis and Loukas [3]. Also, 
the variance of X is obtained as:

Mean residual life

Given that a unit is of age x, the remaining life after time x 
is random. The expected value of this random residual life 
is called the mean residual life (MRL) at time x. According 
to Cox [10], for a distribution with a finite mean, the MRL 
completely determines the distribution. Let X be a random 
variable with X ∼ NMEG(�, �, p) . The mean residual life 
of X, denoted by �(.;�, �, p) , is obtained as follows:

L(z, r) =
z

� (r) ∫
∞

0

ur−1

eu − z
du.

L(z, r) =
z

� (r + 1) ∫
1

0

(− ln u)r

(1 − zu)2
du.

E[Xr] =∫
∞

0

xr
��pe−�x

(p − (p − �)e−�x)2
dx

=
�p

�r ∫
1

0

(− ln u)r

(p − (p − �)u)2
du

=
�r!

�r(p − �)
L(1 −

�

p
, r).

E[X] =
�

�(p − �)
L(1 −

�

p
, 1) = −

�

�(p − �)
ln(

�

p
)

=
ln p − ln �

�(p − �)
�.

Var[X] =
2�

�2(p − �)
L(1 −

�

p
, 2) −

(
ln p − ln �

�(p − �)
�

)2

=
�

�2(p − �)

(
2L(1 −

�

p
, 2) −

(ln p − ln �)2

p − �
�)

)
.

where the last equality follows changing variable u = e−�t . It 
is clear that E[X] is also obtained by �(0;�, �, p).

Entropies

Entropy is a measure of variation or uncertainty of a ran-
dom variable X. Two popular entropy measures are Rényi 
and Shannon entropies that introduced by Shannon [34] and 
Rényi [33], respectively. This subsection provides the closed 
forms for Shannon and Rényi entropies. The following theo-
rem investigates the Shannon entropy of X.

Theorem  1  Let X be a random variable with 
X ∼ NMEG(�, �, p) . The Shannon entropy of X, denoted by 
�X , is given by

Proof  According to definition of the Shannon entropy, we 
have

where the third equality follows the changing variable 
t = p + (� − p)e−�x , and the last equality is implied using 
the integral parts.

	�  ◻

𝜇(x;𝛼, 𝛽, p) =
1

F̄X(x;𝛼, 𝛽, p) ∫
∞

x

𝛼e−𝛽t

p − (p − 𝛼)e−𝛽t
dt

=
1

F̄X(x;𝛼, 𝛽, p)

𝛼

𝛽 ∫
e−𝛽x

0

du

p − (p − 𝛼)u

= −
p − (p − 𝛼)e−𝛽x

𝛽(p − 𝛼)e−𝛽x(
ln(p − (p − 𝛼)e−𝛽x) − ln p

)
,

�X = − ln � − ln � − ln p + �
ln p − ln �

p − �

+
2�p

� − p

(
1 + ln p

p
−

1 + ln �

�

)
.

�X =E[− ln fX(X;�, �, p)]

= − ln � − ln � − ln p + �
ln p − ln �

p − �

+ 2∫
∞

0

ln
(
p − (p − �)e−�x

) ��pe−�x

(
p − (p − �)e−�x

)2 dx

= − ln � − ln � − ln p + �
ln p − ln �

p − �

+
2�p

� − p ∫
�

p

ln t

t2
dt

= − ln � − ln � − ln p + �
ln p − ln �

p − �

+
2�p

� − p

(
1 + ln p

p
−

1 + ln �

�

)
,
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Theorem  2  Let X be a random variable with 
X ∼ NMEG(�, �, p) . The Rényi entropy of X, denoted by 
RX(�) for 𝜌 > 0 and � ≠ 0 , is given by

Proof  By the definition of the Rényi entropy,

where the third equality follows from change variable 
u = e−�x and the fourth equality follows the equation (3) by 
the values a = 2� , b = � , c = � + 1 and z = 1 −

�

p
 . 	�  ◻

Maximum likelihood estimation (MLE)

The MLEs of the parameters of the NMEG distribution are 
investigated. Let x = (x1,… , xn) be a realization of a random 
sample from a NMEG(�, �, p) distributed population. The log-
likelihood function of the parameters is given by

Then, the partial derivatives of the log-likelihood function 
with respect to � , � and p are given by

RX(�) =
1

1 − �

(
�(ln � − ln p) + (� − 1) ln � − ln � + lnF2,1

(2�, �, 1 + �, 1 −
�

p
)

)
.

RX(�) =
1

1 − �
ln

(

∫
∞

0

(f (x))�dx

)

=
1

1 − �
ln

(
(��p)� ∫

∞

0

e−��x

(
(p − (p − �)e−�x

)2� dx
)

=
� ln(��p)

1 − �
+

1

1 − �
ln

(
1

� ∫
1

0

u�−1

(p − (p − �)u)2�
du

)

=
� ln(��p)

1 − �
+

1

1 − �
ln

(
1

�p2�

� (�)� (1)

� (1 + �)
F2,1(2�, �, 1 + �, 1 −

�

p
)

)

=
1

1 − �
(�(ln � − ln p) + (� − 1) ln �

− ln � + lnF2,1(2�, �, 1 + �, 1 −
�

p
)

)
,

�n(�, �, p;x) = n ln(��p) − �

n∑

i=1

xi − 2

n∑

i=1

ln

(
p − (p − �)e−�xi

)
.

(4)
��n(�, �, p;x)

��
=
n

�
− 2

n∑

i=1

e−�xi

p − (p − �)e−�xi
,

It is clear that the MLEs cannot be obtained as a closed form. 
To solve the problem the numerical methods are needed. 
But, fortunately, the statistical and mathematical software 
can solve such systems, in particular, applying R software. 
The results of the estimators by applying R software in Sec-
tion 5 are reported. We apply the EM algorithm proposed 
by Dempster et. al [11] to estimate parameters. The whole 
data distributions are often defined in terms of their density 
function as follows:

Therefore, the expectation step of an EM-algorithm 
cycle involves computing the conditional expectation of 
(Z|x;�(h), �(h), p(h)) . Here, (�(h), �(h), p(h)) represents the pre-
sent estimate of (�, �, p) . It should be noted that:

Then, we have

Thus,

The maximization step involves completing the maximum 
likelihood estimation of the vector (�, �, p) , where Z′s that 
are missing are replaced by their conditional expectations 
E(Z|x;�, �, p) . Using the expectation–maximization (EM) 
algorithm (�(h+1), �(h+1), p(h+1)) is chosen as the (�, �, p) value 
whose maximum is ln(�(h), �(h), p(h), xobs) . Thus, we have

(5)
��n(�, �, p;x)

��
=
n

�
−

n∑

i=1

xi − 2

n∑

i=1

(p − �)xie
−�xi

p − (p − �)e−�xi
,

(6)
��n(�, �, p;x)

�p
=
n

p
− 2

n∑

i=1

1 − e−�xi

p − (p − �)e−�xi
.

f (x, z;𝛼, 𝛽, p) =fx|Z=z(x;𝛼, 𝛽)fz(z;p)

=
𝛼𝛽ze−𝛽x(1 − e−𝛽x)2−1

(1 − 𝛼e−𝛽x)z+1

(1 − p)pz−1 x > 0,

z = 1, 2,… , 𝛼, 𝛽 > 0, p ∈ (0, 1).

P(Z|x;�, �, p) = f (x, z;�, �, p)∕f (x;�, �, p).

P(Z|x;�, �, p)

=
(p − (p − �)e−�x)2Z[(1 − p)(1 − e−�x)]z−1

(1 − �e−�x)z+1
, z = 1, 2,… .

E(Z|x;�, �, p) = p − (p + �)e−�x

p − (p − �)e−�x
.
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Asymptotic variance and covariance of the MLEs estimator 
Jn(�) = E(In;�)(In = I(�;xobs)) is the observed fisher informa-
tion matrix with the following elements:

and expectation should be defined in relation to X distribu-
tion. By differentiation of (4), (5), (6), we can define the ele-
ments of the symmetric, second-order observed information 
matrix as follows:

Hence, Jn(�) = E(In;�) can be expressed as follows:

P(h+1) =
1

n∑
i=1

�
p(h)−(p(h)+�(h))−e−�

(h)xi

p(h)−(p(h)−�(h))−e−�
(h)xi

�

�(h+1) =n
�� n�

i=1

xi

�p(h) − (p(h) + �(h)) − e−�
(h)xi

p(h) − (p(h) − �(h)) − e−�
(h)xi

��

+(�(h+1) + p(h)
n�

i=1

�(h+1)e−�
(h+1)xi

1 − �(h+1)e−�
(h+1)xi

�−1

�(h+1) =

n
n∑
i=1

p(h)−)p(h)+�
(h)
)e−�

(h)xi

p(h)−(p(h)−�(h))e−�
(h)xi

n∑
i=1

ln(1 − �(h+1) − e−�
(h+1)xi) + �(h+1)

n∑
i=1

1−e−�
(h+1)xi

1−�(h+1)e−�(h+1)xi

.

(In)ij = −
�2ln

��i��j
, i, j = 1, 2, 3.

(In)11 =
n

�2
− 2

n∑

i=1

e−�xi

(p − (p − �)e−�xi )2

(In)12 =2p

n∑

i=1

xie
−�xi

(p − (p − �)e−�xi )2

(In)13 =2p

n∑

i=1

e−�xi(1 − e−�xi

(p − (p − �)e−�xi )2

(In)22 =
n

�2
− 2p(p − a)

n∑

i=1

x2
i
e−�xi

(p − (p − a)e−�xi)2

(In)23 =2(p − a)

n∑

i=1

xie
−�xi

(p − (p − a)e−�xi)2

(In)33 =
n

p2
− 2

n∑

i=1

(1 − e−�xi)2

(p − (p − �)e−�xi )2
.

Simulation study

In this section, the performance of the MLEs is assessed via 
simulation in terms of the sample size n, and the empirical 
bias and empirical mean square error (MSE), for different 
values of parameters. Let � = (�1, �2, �3) = (�, �, p) be the 
parameters vector. Given n and � , the following algorithm 
to calculate the biases and MSEs, for i = 1, 2, 3 , is applied.

Algorithm 1 

	 (i)	 Generate the values x1,… , xn from the NMEG(�, �, p) 
using (2).

	 (ii)	 Compute �̂ = (𝜃̂1, 𝜃̂2, 𝜃̂3) for x1,… , xn.
	 (iii)	 Repeat the steps (i) and (ii) for 10,000 times.
	 (iv)	 Obtain the bias and the MSE using the for-

m u l a s  bias(𝜃̂i) =
1

10000

∑10000

j=1
𝜃̂ij − 𝜃i  a n d 

MSE(𝜃̂i) =
1

10000

∑10000

j=1
(𝜃̂ij − 𝜃i)

2 , where 𝜃̂ij denotes 
the MLE of �i in the jth replication, for i = 1, 2, 3 and 
j = 1,… , 10000.

We applied Algorithm 1 in R software (version 4.0.2) and 
calculated the empirical biases and MSEs in some cases. 
Table 1 represents the calculated values. In Table 1, we 
observed that the biases and the MSEs are small for differ-
ent values � , � and p. Also we observed that the absolute 
values of biases and the MSE decrease whenever the sample 
size n increases.

(Jn)11 =
n

�2
− 2nE

(
e−2�X

(p − (p − �)e−�X)2

)

(Jn)12 =2npE
(

Xe−�X

(p − (p − �)e−�X)2

)

(Jn)13 =2nE
(

e−�X(1 − e−�X)

(p − (p − �)e�X)2

)

(Jn)22 =
n

�2
2np(p − �)E

(
X2e−�X

(p − (p − �)e−�X)2

)

(Jn)23 =2n(p − a)E
(

Xe−�X

(p − (p − a)e−�X)2

)

(Jn)33 =
n

p2
− 2nE

( (1 − e−�X)2

(p − (p − �)e−�X)2

)
.
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Applications

In this section, the comparison of the NMEG with some exist-
ing distributions is considered. For this purpose, we consider 
three real data sets to analyze. In the first set, we show that 
the NMEG is a good competitor for two important distribu-
tions gamma and Weibull as the two-parameter distributions. 
In the second set, it is observed that the NMEG distribution 
performs well comparing to a three-parameter distribution. 
Since the NMEG and the distribution introduced by Bordbar 
and Nematollahi [7] have approximately the same structures, 
for the third data set we compare these models and we see that 
the NMEG is very better. Two sets of real data have decreasing 
hazard function, and one has increasing hazard function. To 
identify the shape of the hazard function, the empirical scaled 
total time on test (TTT) plot is applied. Let F(.) be a distribu-
tion function. The TTT concept was introduced by Brunk et al. 
[8], defined as H−1

F
(t) = ∫ F−1(t)

0
(1 − F(u))du . Also the scaled 

TTT transform is defined as �F(t) = H−1
F
(t)∕H−1

F
(1) . Accord-

ing to Aarest [1], the hazard function is increasing (decreasing) 
if �F(t) is concave (convex) in t ∈ [0, 1] . To determine the 
behavior of hazard function based on data, the empirical form 
of �F(t) is helpful. Let x = (x1,… , xn) be an observed vector 
of a random sample. The empirical scaled TTT transform is 
given by

where xk∶n represents the observed value of kth-order sta-
tistics. For 0 ≤ t ≤ 1 , T(t) is defined by linear interpolation. 
The plot of (i/n, T(i/n)) (i = 0,… , n) , where consecutive 
points are connected by straight lines, is called the empiri-
cal scaled TTT plot.

The first data set, D1 , consists of the number of succes-
sive failure for the air conditioning system of each member 
in feet of 13 Boeing 720 jet airplanes. The pooled data 
with 213 observations are considered here. This data set 
was analyzed by Adamidis and Loukas for exponential-
geometric distribution [3], Proschan for exponential dis-
tribution [30], Dahiya and Gurland for Gamma and expo-
nential distribution [13], Gleser for Gamma distribution 
[14] and Kus for exponential-Poisson distribution [20]. D1 
is given by as follows: 

194, 15, 41, 29, 33, 181, 413, 14, 58, 37, 100, 65, 9, 180, 
447, 184, 36, 201, 118, 34, 31, 18, 18, 67, 57, 62, 7, 22, 34, 
90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 
156, 118, 25, 310, 76, 26, 44, 23, 62, 130, 208, 70 , 101, 208, 
74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326, 
55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33, 15, 104, 
35, 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 
5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95, 97, 
51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82, 54, 
31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24, 50, 44, 102, 
72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 
97, 30, 23, 13, 14, 359, 9, 12, 270, 603, 3, 104, 2, 438, 50, 
254, 5, 283, 35, 12, 130, 493, 487, 18, 100, 7, 98, 5, 85, 91, 
43, 230, 3, 130, 102, , 209, 14, 57, 54, 32, 67, 59, 134, 152, 
27, 14, 230, 66, 61, 34.

T(i∕n) =

∑i

k=1
xk∶n − (n − i)xi∶n
∑i

k=1
xk∶n

, i = 0,… , n,

Table 1   The biases and MSEs (in parentheses) of MLEs for different 
values of sample sizes n and different values of the parameters

(�, �, p) n 𝛼̂ 𝛽 p̂

(0.5,1,0.2) 50 0.0410(0.0119) 0.0514(0.0540) 0.0221(0.0115)
100 0.0406(0.0061) 0.0238(0.0250) 0.0213(0.0060)
200 0.0403(0.0043) 0.0125(0.0119) 0.0180(0.0029)
500 0.0378(0.0028) 0.0049(0.0047) 0.0159(0.0014)

1000 0.0342(0.0020) 0.0026(0.0023) 0.0138(0.0007)
(0.5,1,0.6) 50 0.0101(0.0103) 0.0958(0.1150) -0.0048(0.0470)

100 0.0192(0.0050) 0.0468(0.0514) -0.0164(0.0296)
200 0.0224(0.0024) 0.0224(0.0242) 0.0264(0.0181)
500 0.0250(0.0014) 0.0092(0.0093) 0.0300(0.0026)

1000 0.0242(0.0010) 0.0059(0.0045) 0.0282(0.0047)
(2,2,0.2) 50 0.0962(0.0452) 0.0682(0.1191) 0.0195(0.0135)

100 0.0961(0.0289) 0.0299(0.0542) 0.0149(0.0063)
200 0.0936(0.0210) 0.0152(0.0266) 0.0114(0.0030)
500 0.0904(0.0152) 0.0061(0.0104) 0.0099(0.0011)

1000 0.0847(0.0125) 0.0033(0.0053) 0.0089(0.0005)
(2,2,0.6) 50 0.0196(0.0638) 0.1018(0.1801) 0.0026(0.0535)

100 0.0162(0.0274) 0.0493(0.0869) 0.0028(0.0354)
200 0.0157(0.0217) 0.0416(0.0294) 0.0025(0.0208)
500 0.0093(0.0111) 0.0392(0.0261) 0.0017(0.0199)

1000 0.0080(0.0105) 0.0099(0.0082) 0.0013(0.0123)

Fig. 2   Empirical scaled TTT plot of D1
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Figure 2 represents the empirical scaled TTT plot of D1 . 
This shows that a distribution with decreasing hazard func-
tion can be used for D1.

Based on a comparison made by Adamidis and Loukas 
[3], we consider gamma and Weibull distributions to 
compare as the competing distributions with the follow-
ing density functions: We fitted the gamma, Weibull and 
NMEG distributions on D1 and computed the MLEs, the 
corresponding Akaike information criterion (AIC) and 
AIC with correction (AICc) values for three distributions 
(see Table 2).

Table 3 considers goodness-of-fit tests for the three 
distributions in terms of the Kolmogorov–Smirnov (KS) 
statistics. In Tables 2 and 3, it is observed that the NMEG 
distribution is better than the gamma and Weibull distribu-
tions. Figure 3 represents the fitted density and distribu-
tion functions of gamma, Weibull and NMEG distributions 

for D1 . Also, the probability–probability (p-p) plot for the 
NMEG distribution is presented in Fig. 4.

The second data set, D2 , consists of the survival times 
of guinea pigs injected with the different amount of tuber-
cle bacilli studied by Bjerkedal [6]. D2 is given by as 
follows: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93
, 0.96, 1, 1, 1.02, 1.05, 1.07, 

1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 
1.22, 1.22, 1.24, 1.3,

1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 
1.71, 1.72, 1.76, 1.83,

1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 
2.45, 2.51, 2.53, 2.54,

Table 2   MLEs of the parameters of the gamma, Weibull and NMEG 
distributions and the corresponding AICs and AICcs for fitting to D1

Distribution 𝛼̂ 𝛽 p̂ AIC AICc

Gamma 0.9134 0.0098 – 2360.8210 2360.8780
Weibull 0.9244 0.0112 – 2359.3950 2359.4520
NMEG 0.5202 0.0080 0.9100 2358.0670 2358.1820

Table 3   Goodness-of-fit tests of 
the gamma, Weibull and NMEG 
distributions for fitting to D1

Distribution KS p-value

Gamma 0.0625 0.3763
Weibull 0.0524 0.6027
NMEG 0.0493 0.6779

Fig. 3   Fitted density and distribution functions of the gamma, Weibull and NMEG distributions for D1

Fig. 4   p-p plot of the NMEG distribution for D1
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2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 
5.55. Figure 5 represents the empirical scaled TTT plot of 

D2 . This shows that a distribution with increasing hazard 
function can be used for D2.

Ahmad et al. [4] introduced a new extended alpha power 
transformed Weibull (NEAPTW) and showed that it better 
fits to D2 than some other well-known existing distributions. 
So, we consider the NEAPTW distribution as the competing 
distribution with the following density function:

We fitted the NMEG distribution to D2 and computed the 
MLEs and the corresponding AIC and AICc criteria val-
ues. Table 4 represents the MLEs of the parameters of both 
distributions and the corresponding AICs and AICcs. The 
corresponding values to NEAPTW are available in Ahmad 
et al. [4]. Table 5 considers goodness-of-fit test for both dis-
tributions. In Tables 4 and 5, it is observed that the NMEG 
distribution better fits to D2 than the NEAPTW distribution. 
Figure 6 represents the fitted density and distribution func-
tions of NEAPTW and NMEG distributions for D2 . Also, the 
p-p plot for the NMEG distribution is presented in Figure 7.

The third data set, D3 (studied by Maguire et al. [25]), 
represents the time intervals between two deadly accidents 
in the mines of the Division no. 5 of Great Britain National 
Cole Board in 1950. D3 is given by as follows: 21, 2, 15, 1, 
5, 1, 9, 1, 0, 17, 0, 1, 24, 14, 4, 9, 20, 14, 1, 1, 44, 4, 5, 1, 
13, 6, 9, 3.

Figure 8 represents the empirical scaled TTT plot of D3 . 
This shows that a distribution with decreasing hazard func-
tion is useful for D3.

Bordbar and Nematollahi [7] proposed the modified 
exponential-geometric (MEG) distribution and used it for 

g(x;𝛼, 𝛽, p) =
𝛽pxp−1e−𝛽x

p

𝛼 − e𝛼

(
(ln 𝛼)𝛼1−e−𝛽x

p

− 𝛼e𝛼(1−e
−𝛽xp )

)
,

x > 0, 𝛼, 𝛽, p > 0, 𝛼 ≠ e.

Fig. 5   Empirical scaled TTT plot of D2

Table 4   MLEs of the parameters of the NEAPTW and NMEG distri-
butions and the corresponding AICs and AICcs for fitting to D2

Distribution 𝛼̂ 𝛽 p̂ AIC AICc

NEAPTW 0.0170 0.0740 1.9890 209.5300 209.8829
NMEG 1.8114 1.5717 0.1554 199.1163 199.4692

Table 5   Goodness-of-fit tests 
of the NEAPTW and NMEG 
distributions for fitting to D2

Distribution KS p-value

NEAPTW 0.1092 0.3569
NMEG 0.1067 0.3853

Fig. 6   Fitted density and distribution functions of NEAPTW and NMEG distributions for D2
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fitting to D3 . So, we consider the MEG distribution as the 
competing distribution with the following density function:

We fitted the NMEG distribution to D3 and computed the 
MLEs and the corresponding AIC and AICc values. Table 6 
represents the MLEs of the parameters of both distributions 
and the corresponding AICs and AICcs. The corresponding 
values to MEG are available in Bordbar and Nematollahi [7]. 
Table 7 considers goodness-of-fit test for both distributions. 
In Tables 6 and 7, it is observed that the NMEG distribution 
is more practical than the MEG distribution for D3 . Figure 9 
represents the fitted density and distribution functions of 
MEG and NMEG distributions for D3 . Also, the p-p plot for 
the NMEG distribution is presented in Figure 10.

g(x;𝛼, 𝛽, p)

=
𝛼𝛽(1 − p)e−𝛽x

(
1 − (1 − 𝛼)e−𝛽x − 𝛼pe−𝛽x

) , x > 0, 𝛼, 𝛽 > 0, 0 < p < 1.

Fig. 7   p-p plot of the NMEG distribution for D2

Fig. 8   Empirical scaled TTT plot of D3

Table 6   MLEs of the parameters of the MEG and NMEG distribu-
tions and the corresponding AICs and AICcs for fitting to D3

Distribution 𝛼̂ 𝛽 p̂ AIC AICc

MEG 0.1001 0.0130 0.0005 1147.3328 1148.3330
NMEG 0.4113 0.0758 0.9252 182.0400 183.0400

Table 7   Goodness-of-fit tests of the MEG and NMEG distributions 
for fitting to D3

Distribution KS        p-value

MEG 0.2057        0.1867
NMEG 0.1710        0.3860

Fig. 9   Fitted density and distribution functions of MEG and NMEG distributions for D3
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Conclusion

Due to importance of the monotone hazard rate models in 
some areas such as reliability and biology, we introduced the 
NMEG distribution with the monotone hazard function via 
operation of compounding based on Marshall and Olkin [26] 
scheme with the baseline exponential distribution. Then, 
we obtained the quantile function, characteristic function, 
moments and the Shannon and Rényi entropies in the closed 
forms in terms of some well-known mathematical functions. 
Therefore, the log-likelihood equations were obtained and 
the EM algorithm was presented to calculate the MLEs of 
parameters. Then, performance of the MLEs was investi-
gated for different values of sample sizes and different values 
of the parameters using simulation. The simulation results 
show that the MLEs perform well in terms of bias and MSE 
criteria.

For application, three real data sets were analyzed using 
the NMEG distribution and some competitors. To analyze 
the first data set, which consists of the number of succes-
sive failure for the air conditioning system of each member 
in feet of 13 Boeing 720 jet airplanes, we considered the 
gamma, Weibull and NMEG distributions. In the second 
data set which consists of the survival times of guinea pigs 
injected with the different amount of tubercle bacilli, we 
considered the NEAPTW and NMEG distributions for ana-
lyzing. Finally, to analyze the third data set which represents 
the time intervals between two deadly accidents in the mines 
of the Division no. 5 of Great Britain National Cole Board 
in 1950, the MEG and NMEG distributions were utilized. 
To compare the NMEG distribution with the competitors in 
fitting to three real data sets, the AIC and AICc criteria were 
used and the KS statistic was also applied. Our results show 

that fit of the NMEG distribution is clearly more suitable 
than fit of the other competitors.
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