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Abstract
In this paper, the discontinuous Legendre wavelet Galerkin method is proposed for the numerical solution of the Burgers–
Fisher and generalized Burgers–Fisher equations. This method combines both the discontinuous Galerkin and the Legendre 
wavelet Galerkin methods. Various properties of Legendre wavelets have been used to find the variational form of the gov-
erning equation. This variational form transforms it into a system of ordinary differential equations which will be solved 
numerically. Some illustrative examples are presented to emphasize the efficiency and reliability of the proposed method.
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Introduction

The study of nonlinear partial differential equation (NPDEs) 
has attracted many researchers due to its pertinent features in 
many fields of applied science and engineering. The general-
ized Burgers–Fisher equation (gBFE) appears in a variety of 

applications in the fields of fluid dynamics, financial math-
ematics, heat conduction, turbulence, gas dynamics, and 
many other fields of applied science and engineering. In this 
article, the discontinuous Legendre wavelet Galerkin method 
(DLWGM) has been exerted for solving gBFE numerically. 
This method is fundamentally based on utilization of Leg-
endre wavelets as wavelet basis [1–4].

The gBFE is defined as [5]

(1)
ut + �u�ux − uxx = �u(1 − u�), x ∈ (0, 1), t ≥ 0,

with the initial condition

The exact solution of (1) is given by [5]

As stated earlier, the discontinuous Legendre wavelet Galer-
kin  (DLWG) scheme combines the discontinuous Galer-
kin (DG) and Legendre wavelet Galerkin (LWG) method to 
systematically find numerical solutions of NPDEs. The DG 
method is a finite element method which forms the weak for-
mulation of the given problem in the piecewise continuous 
space of functions. However, the Legendre wavelets (LWs) 
are element-wise discontinuous at the boundary points of 
the interval. As a result, this will efficiently enable in the 
construction of weak formulation for the solution of Eq. (1). 
We construct the variational form of Eq. (1) by following the 
technique of DG method where numerical fluxes are used to 
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balance with complicated geometries. We will further con-
struct variational form for the initial condition (2). The vari-
ous properties of LWs are used to transform the variational 
form of Eq. (1) along with variational form of initial condi-
tion (2) into the system of ordinary differential equations 
(ODEs) that can be solved numerically [3]. In this paper, 
DLWG method has been successfully used first time ever 
to obtain the solution of modified Burgers–Fisher equation.

Brief description on LWs

The Rodrigue’s form of Legendre polynomial of degree k 
is given by

From Eq. (4), we have

The Legendre scale function �k(x) is defined by [6–8]

For n = 0, 1, 2, ... , and l = 0, 1, 2, ..., 2n − 1 , we define the 
interval Inl by

Now for p = 1, 2, ... , we define a subspace of piecewise poly-
nomial functions as follows:

Vp,n = {f ∶ f |Inl is a polynomial of degree strictly less than 
p; and f vanishes elsewhere }.

The orthonormal basis for the subspace Vp,0  is given by 
the whole set {�k}

p−1

k=0
 which forms an orthonormal basis for 

the subspace of Vp,n . Generally, the subspace Vp,n is spanned 
by 2np functions which are obtained from {�k}

p−1

k=0
 by dila-

tions and translations [3], given as

and

The approximation of a function f ∈ L2([0, 1]) in Vp,n is 
expressed by only scale functions as

(4)Pk(x) =
1

2kk!

dk

dxk
[(x2 − 1)k].

(5)
P0(x) = 1, P1(x) = x,

Pk(x) =
2k − 1

k
x Pk−1(x) −

k − 1

k
Pk−2(x), k ≥ 2.

(6)�k(x) =

�√
2k + 1 Pk(2x − 1), x ∈ [0, 1)

0, x ∉ [0, 1)
.

(7)Inl =

[
l

2n
,
(l + 1)

2n

)
.

(8)

Vp,n ∶= Vp,nl = span
{
�k,nl(x) = 2n∕2�k(2

nx − l),

0 ≤ k ≤ p − 1, 0 ≤ l ≤ 2n − 1},

Vp,0 ⊂ Vp,1 ⊂ Vp,2 ⊂ ⋯Vp,n ⊂ ⋯ .

where Pn is the finest scale projection of the function f and 
sk,nl are scale coefficients.

Variational form by DLWG method

We construct the weak formulation of Eq. (1) by the DLWG 
method. The computational domain is [0,1], which is divided 
into N = 2n subintervals given by Inl = [2−nl, 2−n(l + 1)] . Let 
x ∈ Inl , now for a specific value of l the numerical solution 
in space Vp,n can be approximated by

where Cl(t) = [c0,nl, c1,nl, ..., cp−1,nl]
T . The function Cl(t) is 

evaluated from the initial conditions and the weak solution 
form of Eq. (1), and Φl(x) = [�0,nl(x),�1,nl(x),… ,�p−1,nl(x)]

T 
is the vector of the LWs basis.

Let u+
l

 and u−
l
 be the values of u at xl = 2−nl , 

l = 0, 1, 2,… , 2n − 1 from right and left, respectively [3]

where at each boundary point of Inl, {u} = (u+ + u−)∕2 and 
[[u]] = u+ − u− represent the mean and jump of function u 
respectively.

Now for the approximate solution uh ∈ Vp,n , weak formu-
lation of Eqs. (1) and (2) is designed by multiplying Eqs. (1) 
and (2) by all test functions vh of subspace Vp,n and integrated 
over each element In,l and thus we obtain the following

where l = 0, 1, 2,… , 2n − 1 . Now simplifying the above 
equations by formal integration by parts, we obtain
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for each subinterval In,l . The functions f̂  and q̂ in Eq. (14) 
are convection and diffusion numerical fluxes, respectively, 
which are single-valued functions defined at the boundary 
points of the subinterval. Since the function uh is discontinu-
ous at the boundary points of the subinterval; therefore, the 
nonlinear convection and diffusion fluxes are replaced by 
the numerical fluxes f̂  and q̂ , which arise from integration 
by parts. Proper estimation of numerical fluxes is essential 
for the stability of the DLWG method. In this paper, the 
convection flux f̂  is decided to be the local Lax–Friedrichs 
flux which is given by [3]

Also, the diffusion flux q̂ [4] is determined as

The selection of numerical fluxes in DLWG method serves 
the similar idea as those for the LDG method [3].

The variational form computation

In the present analysis, we separately assess each term of 
Eq. (14) obtained in section "Variational form by DLWG 
method” by using the characteristics of the LW basis.

The LWs operational matrix of derivative

Let us define the derivative operator Dp,n ∶ Vp,n → Vp,n 
for some fixed resolution level n. Let us consider 
Pp,nu,Dp,nu ∈ Vp,n with expansions by the Legendre scale 
functions. Denoting Dp,nΦl(x) = Φ̇l(x) , our aim is to find 
the p × p derivative operational matrix R which satisfies [3]

where Φl(x) = [�0,nl,�1,nl...�p−1,nl].
The matrix R is calculated as [3]:

(15)f̂ =
1

2
𝛼

(
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h
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h
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.

(16)q̂ = 2n𝛽0𝜇[[uh]] +

{
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𝜕x

}
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.

(17)Φ̇l(x) = R.Φl(x),

(18)

(R)i+1,j+1 = ∫In,l
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d�j,nl

dx
dx
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dx

= 2n ∫
1

0

�i,nl

d�j,nl

dx
dx
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where matrix r0 is given by

Now matrix r0 is calculated by using the Legendre polyno-
mial relation which is given by

By using above equation we get

Substituting Eq. (21) in Eq. (18) we get r0 matrix which is 
represented by

Now substituting Eq. (22) in Eq. (21), we get derivative 
operational matrix which is expressed as:

Transformation into ODE

In the present analysis, we use the derivative operational 
matrix, various properties of Legendre polynomial and the 
fluxes to transform Eq. (1) into a system of first-order ODEs.

L e t  u s  t a k e  a n y  t e s t  f u n c t i o n 
vh = �k,nl ∈ Vp,n, k = 0, 1, 2..., p − 1 . Now from first term of 
Eq. (14) and using Eq. (10), we have

Taking the advantage of Eq. (23), we obtain the following 
calculation for second term of Eq. (14)
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where CT
l
(t) are the coefficients of the numerical solution 

uh on a certain subinterval In,l and r0(∶, k + 1) denotes the 
(k + 1) th column of the derivative operational matrix r0.

Now we need to calculate the convection and diffusion 
fluxes, i.e., third and fourth term of Eq. (14). For the com-
putation of fluxes, we must first calculate u+ and u− at nodes 
xl using the properties of Legendre polynomials

and the Legendre basis functions

Thus for l = 1, 2, 3,… , 2n − 2 , we have

where Φ−k = [1,−
√
3, ..., (−1)k

√
2k + 1..., (−1)p−1

√
2p − 1] . 

Similarly we obtain

Additionally, for l = 0 and l = 2n − 1 , the boundary condi-
tions are substituted into these computations.

Using Eqs. (28) and (29), we have [3]
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0
r0(∶, k + 1),

(26)Pk(1) = 1, Pk(−1) = (−1)k,

(27)�k(0) = (−1)k
√
2k + 1, �k(1) =

√
2k + 1.

(28)

u+(xl) = u+(xl+1) = CT
l
(t)Φl(xl+1 = (l + 1)∕2n)

= 2
n∕2CT

l
(t)[1,−

√
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√
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√
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Now using Eqs. (28), (29), (30), (31), (32) and (33), we can 
compute the value of fluxes given in third and fourth term 
of Eq. (14).

The third term of Eq. (14) becomes

Next, the fourth term of Eq. (14) is calculated as:

Finally, the fifth term of Eq. (14) is calculated as:
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2
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+ 𝛽1(r
T
0
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�
((−1)k − 1)
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� ∫In,l
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h
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(CT
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Now, we use Eqs. (24), (25), (34), (35) and (36) and obtain 
ODE system from the DLWG space discretization. For each 
k and l, where k = 0, 1, 2,… , p − 1, l = 0, 1,… , 2n − 1 , we 
have

In addition, initial condition for the above system is given by

Equation (37) gives the first-order ODE system in the present 
DLWG method for k = 0, 1,… , p − 1 and l = 0, 1,… , 2n − 1 ; 
where ck,nl(0) are the coefficients of the initial numerical 
solution given by Eq. (38).

Numerical experiment

The gBFE (1) with initial condition (2) is transformed to 
the system of ODE (37), along with initial condition Eq. 
(38). Now we solve Eqs. (37) and (38) by using MATLAB 

(37)

dck,nl

dt
=� ∫In,l

u�+1
h

� + 1

�k,nl(x)

dx
dx − 4nCT

l
(t)rT

0
r0(∶, k + 1) − A(t)

− B(t) + �ck,nl − � ∫In,l

u�+1
h

�k,nldx.

(38)

∫In,l

u(x, 0)�k,nl(x) = ∫In,l

uh(x, 0)�k,nl(x)

= ∫In,l

CT
l
(0)Φl(x)�k,nl(x)

= CT
l
(0)∫In,l

Φl(x)�k,nl(x)

= ck,nl(0).

for different values of �, � and � to exhibit the efficiency and 
appropriateness of the DLWG method.

Tables 1 and 2 show the results of numerical solutions 
along with exact solutions and the corresponding absolute 
errors. Table 3 shows L∞ error for 0 ≤ t ≤ 20 and 0 ≤ x ≤ 
1 and Table 4 shows L∞ error for 0 ≤ t ≤ 10 and 0 ≤ x ≤ 1 . 
Accuracy of DLWG method is directly proportional to the 
value of n and p which is clearly illustrated through Tables 3 
and 4. Figures 1 and 2 depict the comparisons between exact 
solution with DLWG solution and also corresponding error 
distributions have been presented respectively. Also 3-D 
surface solutions of modified Burgers–Fisher equation have 
been displayed in Figs. 3 and 4 respectively.

Conclusion

The prominent advantage of the proposed method is that 
the differential operator, boundary conditions and numerical 
fluxes involved in the elementwise computation can be done 
with less computational overhead. The operational matrix 
representation of the differential operator is simpler because 
of the advantages of the Legendre wavelets.

In the present article, the DLWG method is used to 
find the numerical solution of gBFE (1) and initial con-
dition (2). The DLWG method transforms (1) into the 
system of first-order ODE given in Eq. (37) and the ini-
tial condition converted into Eq. (38). It is quite plausi-
ble that the numerical results rendered by the proposed 
method are quite satisfactorily agree with the exact 
solutions. The numerical experiments presented in this 
paper well establish the efficiency and applicability 

Table 1  Comparison by 
absolute errors between exact 
and numerical solutions of Eq. 
(1) for � = 0.1, � = 0.1, � = 1 
and t = 0.1 with n = 4 and 
p = 4

n = 4, p = 4

x u (exact solution) u (numerical solution) Absolute error

0 0.502562477565014 0.502199371949117 0.000363105615897474
0.1 0.501312496985360 0.501069265586807 0.000243231398552646
0.2 0.500062499999674 0.499940006261988 0.000122493737686469
0.3 0.498812502232742 0.498810047166066 0.000002455066676288
0.4 0.497562519309387 0.497679404011903 0.000116884702515918
0.5 0.496312566853689 0.495952085329248 0.000360481524440459
0.6 0.495062660488206 0.494821017759040 0.000241642729165714
0.7 0.493812815833192 0.493690859854303 0.000121955978888866
0.8 0.492563048505816 0.492560077971703 0.000002970534113134
0.9 0.491313374119380 0.491428687554499 0.000115313435119724
1 0.490063808282541 0.490298242874817 0.000234434592275679
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of the proposed technique. In brief summary, the pro-
posed DLWG scheme maintains the advantages of both 
the wavelet Galerkin method and the DG method, such 
as the sparse representations of operators, consistency, 
higher-order accuracy and thus significantly improves the 
traditional DG method. In future, the proposed method 

may be implemented to solve the space-time fractional 
advection–diffusion equation, the space-time fractional 
advection–diffusion equation, the space fractional-order 
diffusion equation, time-fractional fourth-order reaction 
diffusion model, time fractional Tricomi-type model and 
time fractional cable model [9–14].

Fig. 1  a 2-D plot of exact and 
numerical solution of Eq. (1) 
for � = 0.1, � = 0.1, � = 1 and 
t = 0.1 with n = 4 and p = 4 , b 
absolute error distribution for 
DLWG solution

Table 2  Comparison by 
absolute errors between exact 
and numerical solutions of Eq. 
(1) for � = 0.01, � = 0.01, � = 1 
and t = 0.1 with n = 4 and 
p = 4

n = 4, p = 4

x u (exact solution) u (numerical solution) Absolute error

0 0.500250624979010 0.500221940401380 0.0000286845776303890
0.1 0.500125624997357 0.500106304374456 0.0000193206229005538
0.2 0.500000625000000 0.499994242564891 0.0000167220571147264
0.3 0.499875625002565 0.499881256503027 0.0000063824351093089
0.4 0.499750625020677 0.499767347077792 0.0000056315004620666
0.5 0.499625625069962 0.499600097726443 0.0000255273435186276
0.6 0.499500625166042 0.499480257469900 0.0000203676961426091
0.7 0.499375625324545 0.499369644882245 0.0000059804423004350
0.8 0.499250625561094 0.499256648378716 0.0000060228176220201
0.9 0.499125625891315 0.499141270635082 0.0000156447437667517
1 0.499000626330833 0.499035128187991 0.0000345018571586975
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Fig. 2  a 2-D plot of exact and 
numerical solution of Eq. (1) for 
� = 0.01, � = 0.01, � = 1 and 
t = 0.1 with n = 4 and p = 4 , b 
absolute error distribution for 
DLWG solution

Table 3  L∞ error for 
� = � = 0.1 and � = 2  at  t = 20

p n L∞ error

2 3 0.89064893 × 10−2

3 3 0.9734468 × 10−2

3 4 0.50128079 × 10−2

4 4 0.47411297 × 10−3

4 5 0.18512906 × 10−3

5 5 0.89367901 × 10−5

Fig. 3  3-D surface solution for � = 0.1, � = 0.1, � = 2 and 0 ≤ t ≤ 20 
with p = 5 and n = 5

Table 4  L∞ error for 
� = � = 0.5 and � = 2 at t = 10

p n L∞ error

2 3 0.89064893 × 10−2

3 3 0.86729231 × 10−3

3 4 0.43017694 × 10−3

4 4 0.79540023 × 10−4

4 5 0.46313378 × 10−4

5 5 0.83479027 × 10−6

Fig. 4  3-D surface solution for � = � = 0.5 , � = 2 and 0 ≤ t ≤ 10 
with p = 5 and n = 5
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