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Abstract
This work introduces a direct method based on orthonormal Bernstein polynomials wavelet bases, to present a stable algo-
rithm for numerical inversion of a system of generalized Abel integral equations. The application of all the currently existing 
numerical inversion methods was strictly limited to only one portion of the generalized Abel integral equations. The proposed 
method is quite accurate, and several numerical illustrations demonstrate the convergence and utilization of the proposed 
method compared to some of the preexisting numerical solution techniques. The permanence of the numerical result under 
the effect of small perturbation in input data has been examined, which is depicted with the use of numerical illustrations.
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Introduction

In this paper, we propose the method of an approximate 
numerical inversion for the system of generalized Abel inte-
gral equations given by

where the coefficients �1(s), �2(s),�1(s),�2(s) must not van-
ish simultaneously and I1(s), I2(s) are the intensity functions.

The system of generalized Abel integral equations in 
Eq. (1) holds substantial significance in various spheres. It 
is considered as a mathematical model in the various fields 
such as water wave scattering [1], plasma spectroscopy [2], 

elasticity [3], mathematical physics, astrophysics, seismol-
ogy, solid mechanics [4, 5].

There are various numerical methods to find the solu-
tion of different kinds of integral equations, such as Male-
knejad et al. proposed Legendre wavelets and rationalized 

Haar wavelet methods [6, 7], Derili et al. proposed two-
dimensional wavelets method [8] and Mandal et al. used the 
Daubechies scale function [9] method. Several other meth-
ods [10–14] have been previously used for the numerical 
inversion of the system of generalized Abel integral equa-
tions. In 1976, Lowengrub [10] showed that certain mixed 
boundary value problems arising in the classical theory of 
elasticity converted to the new problem in the form of func-
tions ɛ1(u) and ɛ2(u), these functions satisfy the system in 
Eq. (1). Lowengrub and Waltson [11] provided a method 
based on converting the system of generalized Abel inte-
gral equations into an equivalent boundary value problem 
of coupled Riemann–Hilbert type. Some particular general-
ized system of Abel integral equations solved by creating 
an equivalent system of singular integral equation in [12]. 

(1)
𝜌
1(s) ∫ s

a

u𝛽−1𝜀1(u) du

(s𝛽−u𝛽 )𝛼
+ 𝜌

2(s) ∫ b

s

u𝛽−1𝜀2(u) du

(u𝛽−s𝛽 )𝛼
= I1(s)

𝜔1(s) ∫ b

s

u𝛽−1𝜀1(u) du

(u𝛽−s𝛽 )𝛼
+ 𝜔2(s) ∫ s

a

u𝛽−1𝜀2(u) du

(s𝛽−u𝛽 )𝛼
= I2(s)

⎫⎪⎬⎪⎭
;s ∈ (a, b); 0 < 𝛼 < 1, 𝛽 ≥ 1,
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Mandal et al. [13] have solved the system with the imple-
mentation of fractional calculus. In [14], Mandal and Pandey 
gave the numerical solution of the system of generalized 
Abel integral equations through the Bernstein polynomi-
als bases. Jafarian et al. also used the Bernstein polynomial 
method [15] and Bernstein collocation method [16] for 
obtaining the solution of the system of integral equations 
and Abel integral equations, respectively.

This paper aims to give a new and user friendly algo-
rithm for the numerical inversion of the system of general-
ized Abel integral equation, based on Bernstein polynomials 
orthonormal wavelet bases. Numerical examples have been 
provided to illustrate the convergence and stability of the 
method.

Bernstein polynomials orthonormal wavelet 
bases

A class of functions, which is obtained by dilation and trans-
lation of a single function known as mother wavelet [17]. 
The continuous variation of the dilation and translation 
parameters c and d gives the following continuous wavelet 
bases [18]

If the parameters c  and d  are regulated to 
c = 2−k; d = n 2−k , then obtained a family of discrete wave-
lets from the above equation,

The Bernstein polynomials characterized over the interval 
[0, 1] are given as;

Some significant characteristics of Bernstein polynomi-
als are:

•	 The sum of all Bernstein polynomials of degree n is 
always one

	 
•	 Bi,n(y) ≥ 0 for all y ∈ [0, 1].
•	 Bn−i,n(1 − y) = Bi,n(y).

The recurrence formula to obtain Bernstein polynomial 
of degree less than n using Bernstein polynomials of degree 
n is

(2)�c,d(u) = |c|−1∕2�
(
u − d

c

)
, c, d ∈ R, c ≠ 0.

�k,n(u) = 2k∕2� (2ku − n); k, n ∈ Z.

(3)Bi,n(y) =

(
n

i

)
yi(1 − y)n−i; ∀ i = 0, 1, 2,… , n.

n∑
i=0

Bi,n(y) =

n∑
i=0

(
n

i

)
yi(1 − y)n−i = (1 − y + y)n = 1.

The expansion of any polynomial P(y) of degree n can be 
expressed in terms of a linear combination of Bi,n(y)

where βi is called Bernstein polynomials coefficients, 
these polynomials are not orthonormal, so we used the 
Gram–Schmidt process [19] to get orthonormal polynomi-
als, which are denoted by bi(y) given in “Appendix 1”.

We are taking orthonormal Bernstein polynomials for 
N = 7, which are shown graphically in Fig. 1.

The four arguments in the Bernstein polynomials ortho-
normal wavelet bases �m,n(u) = �(k,m, n, u) , where 
m = 0, 1, … , 2k − 1 and k = 0, 1, 2, … are translation and 
dilation parameters, respectively, n = 0, 1, … , N is the order 
of Bernstein polynomial and the independent variable u is 
lying in the closed interval [0, 1]. The orthonormal wavelet 
bases ψm,n(u) are given in [20] on the interval [0, 1), such as

where 2 k/2 is the orthonormality factor, for the dyadic form of 
orthonormal Bernstein polynomials wavelet bases of the order 
n we are setting parameters c = 2−k and d = m2−k in Eq. (2).

Now, for k = 0;N = 7, there are eight, and for 
k = 1;N = 7, sixteen basis elements of orthonormal wavelet 
bases are obtained [21].

Function approximation

Let us consider f ∈ L2[0, 1], then may be written as the fol-
lowing expansion of f(u) on the closed interval [0, 1]

where ⟨., .⟩ is the inner product on the Hilbert space, and 
cmn = ⟨f (.), �mn(.)⟩ be the wavelet coefficients. We trun-
cate the infinite series in Eq. (5) at the levels m = 2 k − 1 and 
n = N, then obtained an approximate version of these series 
such as

where C and Ψ are 2k(N + 1) × 1 order matrices given by

Bi, n−1(y) =
(
n − i

n

)
Bi, n(y) +

(
1 + i

n

)
Bi+1, n(y).

P(y) =

n∑
i=0

�iBi, n(y), n ≥ 1.

(4)𝜓m,n(u) =

{
2k∕2bn(2

ku − m)
m

2k
≤ u <

m+1

2k

0 otherwise
,

(5)f (u) =

∞∑
m=0

∞∑
n=0

cmn �mn(u),

(6)f (u) ≈

2k−1∑
m=0

N∑
n=0

cmn �mn(u) = CT � (u),

(7)
C = [c00,… , c0N ;c10,… , c1N ;… ;c(2k−1)0,… , c(2k−1)N]

T ,
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The solution of the system of generalized 
Abel integral equations

In this section, we are discussing the solution of the system 
of generalized Abel integral equations in Eq. (1) by using 
Bernstein polynomials orthonormal wavelet bases.

Now, let us take the unknown (emissivity) functions 
�1(u), �2(u) and the intensity functions I1(s), I2(s) from 
Eq. (1) and approximates to this by using Eq. (6),

where C1, C2;F1, F2 are coefficient matrices. Substituting 
these approximated values of functions from Eq. (9) and 

taking a = 0, b = 1 in Eq. (1), we get

(8)� (u) =
[
�00(u),… ,�0N(u);�10(u),… ,�1N(u);… ;�(2k−1)0(u),… ,�(2k−1)N(u)

]T
.

(9)
�1(u) = CT

1
� (u), �2(u) = CT

2
� (u);

I1(s) = FT
1
� (s), I2(s) = FT

2
� (s),

The integrals in Eq. (10) involve evaluating integrals of 

the types ∫ s

0

undu

(s�−u� )�
 and 

1∫
s

undu

(u�−s� )�
.

We calculate these integral using given recursive 
formulae,

where Γ(.) represents the gamma function and B(z, a, b) or 
Bz(a, b) stands for the incomplete beta function which is 
defined by

(10)

�1(s)C
T
1 ∫

s

0

u�−1� (u)du

(s� − u�)�
+ �2(s)C

T
2 ∫

1

s

u�−1� (u)du

(u� − s�)�
= FT

1
� (s)

�1(s)C
T
1 ∫

1

s

u�−1� (u)du

(u� − s�)�
+ �2(s)C

T
2 ∫

s

0

u�−1� (u)du

(s� − u�)�
= FT

2
� (s),

(11a)

s

∫
0

undu

(s� − u�)�
=

�sn(�∕ s)�−1(s�−1�)−� csc(��)� (n + 1∕�)

� (�)� (n + � − �� + 1∕�)
,

(11b)
1

∫
s

undu

(u� − s�)�
=

s1+n−��

�

⎡⎢⎢⎢⎣

� [1 − �]�
�
� −

�
1+n

�

��

�

�
−n−1+�

�

� −

�
Bs�

�
� −

�
1 + n

�

�
, 1 − �

��⎤⎥⎥⎥⎦
.

0 0.2 0.4 0.6 0.8 1
4

2

0
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8

)(u0b

)(u1b
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)(u7b

u

b3(u)b2(u)
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b5(u)

b6(u) b7 (u)

Fig. 1   Eight orthonormal Bernstein polynomials, for N = 7
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Here in Eq. (11b), we have Bs� (� − n + 1∕�, 1 − �) , which 
is expressed with the help of above function Bz(a, b) as

Bz(a, b) ≡
z

�
0

ta−1(1 − t)b−1dt,

Bs�

[
� −

(
1 + n

�

)
, 1 − �

]
≡

s�

�
0

t
�−

(
1+n

�

)
−1
(1 − t)(1−�)−1dt.

where W1 and W2 are the almost Bernstein polynomial multi-
wavelets operational matrix of integration [22, 23] of wave-
let bases Ψ(u) of order 2k(N + 1) × 2k(N + 1).

The value of order eight matrices W1 and W2 for N = 7 and 
k = 0 (α = 1/3, β = 1) is:

Similarly, The value of order six matrices W1 and W2 for 
N = 5 and k = 0 (α = 1/2, β = 1) is:

(12)

s

∫
0

u�−1� (u)

(s� − u�)�
du = W1� (s),

1

∫
s

u�−1� (u)

(u� − s�)�
du = W2� (s)

W1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.328623 0.421814 0.249677 0.230090 0.174416 0.151103 0.107665 0.064795

−0.013906 0.307961 0.389789 0.214733 0.204112 0.144319 0.118830 0.062021

0.001558 −0.027292 0.285000 0.353173 0.177834 0.175703 0.108464 0.071225

−0.002993 0.004859 −0.039681 0.259042 0.310580 0.139078 0.141380 0.059758

0.000082 −0.001308 0.009575 −0.050277 0.228978 0.259821 0.098334 0.087474

−0.000029 0.000047 0.175703 0.139078 0.259821 0.192848 −0.058880 0.023523

0.000013 0.000213 −0.003516 −0.007131 0.023177 −0.05888 0.146459 0.109053

−0.000005 0.000094 −0.000685 0.003100 −0.009843 0.023523 −0.044944 0.075750

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.328623 −0.013906 0.001558 −0.002993 0.000082 −0.000029 0.000013 −0.000005

0.421814 0.307961 −0.027292 0.004859 −0.001308 0.000047 −0.000213 0.000094

0.249677 0.389789 0.285000 −0.039681 0.009957 −0.003516 0.001559 −0.000068

0.230090 0.214733 0.353173 0.259042 −0.050277 0.016543 −0.007131 0.003100

0.174416 0.204112 0.177834 0.31058 0.228978 −0.057656 0.023177 −0.009843

0.151103 0.144319 0.175703 0.139078 0.259821 0.192848 −0.058880 0.023523

0.107665 0.118830 0.108464 0.141380 0.098334 0.196797 0.146459 −0.044944

0.064795 0.062021 0.071225 0.059758 0.087474 0.052106 0.109053 0.075750

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.706694 0.669669 0.282085 0.284418 0.159798 0.111071

−0.030444 0.669500 0.607355 0.227492 0.239991 0.092652

0.000236 −0.0611950 0.622263 0.528185 0.168287 0.158927

0.000105 013697 −0.090295 0.558931 0.465426 0.09712

0.000380 −0.004750 0.028231 −0.112400 0.465426 0.25556

−0.000150 0.001866 −0.010731 0.039044 −0.10597 0.287359

⎤⎥⎥⎥⎥⎥⎥⎦

,

W2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.706694 −0.030444 0.000236 0.000105 0.000380 −0.000150

0.669669 0.669500 −0.0611950 013697 −0.004750 0.001866

0.282085 0.607355 0.622263 −0.090295 0.028231 −0.010731

0.284418 0.227492 0.528185 0.558931 −0.112400 0.039044

0.159798 0.239991 0.168287 0.421923 0.465426 −0.10597

0.111071 0.092652 0.158927 0.09712 0.25556 0.287359

⎤⎥⎥⎥⎥⎥⎥⎦

.

Now, by Eqs. (11a) and (11b) we have
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The matrix W2 can be calculated directly from W1, it 
is the transpose of W1, so it is easy to calculate them and 
one matrix can be written in the form of another matrix 
(W2 = WT

1, W1 = WT
2).

Now on substituting Eq. (12) in Eq. (10), we obtain

On simplifying we get

Next, we solve the algebraic system in Eq. (13a), for the 
vectors CT

1 and CT
2

We can also calculate the values of CT
1 and CT

2 for some 
special cases of the system given in Eq. (1),

(i) When the coefficient �1(s) = �2(s) and �2(s) = �1(s) , 
then

On adding and subtracting equations of (13a), we get

Using approximations �1(s) = �2(s) and �2(s) = �1(s) , 
Eq. (13c) becomes

Equation (13d) can be written in the following form

Next, we solve the above algebraic system in Eq. (14) for 
the vectors CT

1 and CT
2

(ii) When the values of all coefficients of the sys-
tem given in Eq. (1) are unity. Then using approximation 
�
1(s) = �

2(s) = �1(s) = �2(s) = 1 , in Eq. (13c), we get

(13)
�
1(s)C

T
1
W1� (s) + �

2(s)C
T
2
W2� (s) = FT

1
� (s)

�1(s)C
T
1
W2� (s) + �2(s)C

T
2
W1� (s) = FT

2
� (s)

}

(13a)
�
1(s)C

T
1
W1 + �

2(s)C
T
2
W2 = FT

1

�1(s)C
T
1
W2 + �2(s)C

T
2
W1 = FT

2

}

(13b)
CT
1
=
[
FT
1
�2(s)W1 − FT

2
�
2(s)W2

] [
�
1(s)W1�2(s)W1 − �

2(s)W2�1(s)W2

]−1
,

CT
2
=
[
FT
2
�
1(s)W1 − FT

1
�1(s)W2

] [
�
1(s)W1�2(s)W1 − �

2(s)W2�1(s)W2

]−1

(13c)

�
1(s)C

T
1
W1 + �

2(s)C
T
2
W2 + �1(s)C

T
1
W2 + �2(s)C

T
2
W1 = FT

1
+ FT

2
,

�
1(s)C

T
1
W1 + �

2(s)C
T
2
W2 −�1(s)C

T
1
W2 − �2(s)C

T
2
W1 = FT

1
− FT

2

(13d)

[
CT
1
+ CT

2

]
�
1
(s)W1 +

[
CT
1
+ CT

2

]
�
2(s)W2 = FT

1
+ FT

2
,[

CT
1
− CT

2

]
�2(s)W1 −

[
CT
1
− CT

2

]
�1(s)W2 = FT

1
− FT

2

(14)
[C1 + C2]

T = [F1 + F2]
T
[
�
1(s)W1 + �

2(s)W2

]−1
[C1 − C2]

T = [F1 − F2]
T
[
�2(s)W1 − �1(s)W2

]−1
}

,

(14a)
CT
1
=

1

2

[
[F1 + F2]

T
[
�
1(s)W1 + �

2(s)W2

]−1
+ [F1 − F2]

T
[
�2(s)W1 − �1(s)W2

]−1]
,

CT
2
=

1

2

[
[F1 + F2]

T
[
�
1(s)W1 + �

2(s)W2

]−1
− [F1 − F2]

T
[
�2(s)W1 − �1(s)W2

]−1]

Next, we solve the above algebraic system (14b) for the 
vectors CT

1 and CT
2

On substituting these values of the vectors CT
1 and CT

2 [for 
the general case from Eq. (13b), for the special case (i) from 
Eq. (14a) and special case (ii) from Eq. (14c)] in Eq. (9), we 
get the following approximate solutions

See “Appendix 2”.

Convergence of the wavelet bases

In this section, we discuss a lemma and theorem that sup-
ports the absolute error of the proposed method and also 
presents an error analysis of the proposed method.

Lemma 1

(See [24]) Let the function �(u) ∈ Cn[0, 1], be a collection 
of all real-valued n times continuously differentiable func-
tions. The mean error bound of approximation in Eq. (6) is

Proof  Let us divide the existing interval [0, 1] into subinter-
vals [m

/
2k,m + 1

/
2k] = Im,k(say), on which the restriction 

of CT� (u) to one such subinterval Im,k is the polynomial of 
order n that interpolates ɛ(u) with the minimum mean error. 
Following which, we employ the maximum error estimation 

(14b)
[C1 + C2]

T = [F1 + F2]
T
[
W1 +W2

]−1
[C1 − C2]

T = [F1 − F2]
T
[
W1 −W2

]−1
}

(14c)

CT
1
=

1

2

[
[F1 + F2]

T
[
W1 +W2

]−1
+ [F1 − F2]

T
[
W1 −W2

]−1]
,

CT
2
=

1

2

[
[F1 + F2]

T
[
W1 +W2

]−1
− [F1 − F2]

T
[
W1 −W2

]−1]

(15)�1(u) = CT
1
� (u); �2(u) = CT

2
� (u).

(16)
‖‖‖C

T� (u) − �(u)
‖‖‖ ≤ 2

4n2nkn!
sup

x∈[0,1]

|||�
(n)(u)

|||.
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for the polynomial which interpolates ɛ(u) at Chebyshev 
nodes, of order n. The interpolation polynomial of CT� (u) 
is that unique polynomial that has a value ɛ(ui) at every point 
ui. The interpolation error at u is given by [24],

for some ξ (depending on u) in [a, b], so it is obvious to 

minimize sup
u∈[0, 1]

�����
n∏
i=1

(u − ui)
�����
 for better convergence as 

n → ∞, here product represents in the form of monic poly-
nomials. It can be demonstrated that the maximum norm of 
such polynomial is bounded below by 21−n. This bound is 
obtained by scaled Bernstein polynomials 21−nBn,  which are 
monic as well. Thus, for an arbitrary interval [a, b] the roots 
of the given polynomial are the interpolation Chebyshev 
nodes ui, and the error satisfies the following equation

□

The left side of Eq. (16);

Using Eq. (17a) and Im,k = [m
/
2k,m + 1

/
2k] we get

The square root of the Eq. (17b) will give the upper bound 
of the given approximation in Eq. (6). The approximation 
error of the function ɛ(u) rapidly decays like 1/2nk. These 
bounds of the error obtained are governed by the term 
1∕(22n+n k−1n!) , which varies inversely with values of k and 
n and minimizes to zero as values of k and n increase signifi-
cantly. On the contrary, in classical orthogonal bases such as 
Chebyshev, Legendre and Fourier, it depends on 1∕n! . Here, 
the two arguments n and k, in the basis are the two degrees 
of freedom for the B-polynomial wavelet bases, which help 

�(u) − CT� (u) =
�(n)(�)

n!

n∏
i=1

(u − ui)

(17a)
|||�(u) − CT� (u)

||| ≤ 21−n

n!

(
b − a

2

)n

sup
�∈[a,b]

|||�
(n)(�)

|||

‖‖‖C
T� (u) − �(u)

‖‖‖
2

=

1

∫
0

[CT� (u) − �(u)]2du

‖‖‖C
T� − �

‖‖‖
2

=
∑
k
∫
Im,k

[CT� (u) − �(u)]2du

‖‖‖C
T� − �

‖‖‖
2 ≤

1

�
0

(
21−nk

4nn!
sup

u∈[0,1]

|||�
(n)(u)

|||
)2

du

(17b)‖‖‖C
T� − �

‖‖‖
2 ≤

(
2

4n2nkn!
sup

u∈[0,1]

|||�
(n)(u)

|||
)2

in the accuracy of the introduced method. This is the advan-
tage of the proposed method.

Theorem 1  (Ref. [25]) Suppose that the known functions 
in the system of generalized Abel integral equations are 
real n + 1 times continuously differentiable functions on 
the bounded interval [0, 1] and 

∑∞

i=0
ci � (u) be the infi-

nite series expansion of exact solution ɛ(u), in the form of 
Bernstein polynomials orthonormal wavelet bases and ɛn(u) 
denotes its truncation such as CT� (u) and similarly, 𝜀̃(u) is 
the infinite expansion of the approximate solution and 𝜀̃n(u) 
is the truncated part of 𝜀̃(u) , taken as C̃T𝛹 (u) , then there 
exist the real numbers λ1 and λ2 such that

where

and

Proof  Let us take the truncated series ɛn(u) and 𝜀̃n(u) are 
in Rn[u] (where Rn[u] is the space of real-valued polyno-
mials of degree less than equal to the space of real-valued 
polynomials of degree less than equal to n), ɛn(u) is the best 
approximation of ɛ(u) in Rn[u], then

Now, the first part of the right-hand side of Eq. (19), yields

using Lemma 1, we get

Also, the second part of the right-hand side of Eq. (19), 
yields

(18)Δ𝜀(u) = ‖‖𝜀(u) − 𝜀̃n(u)
‖‖2 ≤ 𝜆1Sn;k + 𝜆2

‖‖C − C̃‖‖2

C =
[
c00, c01,… , c0N , c10,… , c1N ,… , c(2k−1)0,… , c(2k−1)N

]T
;

C̃ =
[
c̃00, c̃01,… , c̃0N , c̃10,… , c̃1N ,… , c̃(2k−1)0,… , c̃(2k−1)N

]T

Sn;k =
(

1

2n.k+2n−1n!

)
sup

�∈[a,b]

|||�
(n)(�)

|||.

(19)

‖‖𝜀(u) − 𝜀̃
n
(u)‖‖2 =‖‖𝜀(u) − 𝜀

n
(u) + 𝜀

n
(u) − 𝜀̃

n
(u)‖‖2

≤ ‖‖𝜀(u) − 𝜀
n
(u)‖‖2 + ‖‖𝜀n(u) − 𝜀̃

n
(u)‖‖2.

‖‖�(u) − �n(u)
‖‖2 =

1

∫
0

[||�(u) − �n(u)
||2du

]1∕2

≤
⎡⎢⎢⎣

1

�
0

(Sn;k)
2du

⎤⎥⎥⎦

1∕2

(20)‖‖�(u) − �n(u)
‖‖2 ≤ Sn;k; so �1 = 1.
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i.e.,

□

Now, we use the generalized triangular inequality in the 
right-hand side of Eq. (21), such as

using orthonormality of Bernstein polynomial multiwavelets

Next, by substituting Eq. (22) in Eq. (21) we get,

We substituted values from Eq.  (20) and Eq.  (23) in 
Eq. (18) and concluded that it holds valid for

Hence, as illustrated, Δɛ(u) decreases as n → ∞.

Illustrative example

The estimated solution ɛ(u) (emissivity) cannot be calcu-
lated exactly if the data function I(s) is given with very 
small or high-frequency errors. These errors in the data 

��𝜀n(u) − 𝜀̃n(u)
��2 =

⎡
⎢⎢⎣

1

∫
0

�����

n�
i=0

(Ci − C̃i)𝛹i(u)
�����

2

du

⎤
⎥⎥⎦

1∕2

(21)
(‖‖𝜀n(u) − 𝜀̃n(u)

‖‖2
)2

=

1

∫
0

|||||

n∑
i=0

(Ci − C̃i)𝛹i(u)
|||||

2

du.

1

�
0

|||||

n∑
i=0

(Ci − C̃i)𝛹i(u)
|||||

2

du

≤
1

�
0

(
n∑
i=0

||(Ci − C̃i)
||||𝛹i(u)

||
)2

du

=

1

�
0

[
n∑

i=j=0

||Ci − C̃i
||2||𝛹i(u)

||2 +
n∑

i≠j=0
||Ci − C̃i

|||||Cj − C̃j
|||||𝛹i(u)

|||||𝛹j(u)
|||
]
du

=

n∑
i=j=0

||Ci − C̃i
||2

1

�
0

||𝛹i(u)
||2du +

n∑
i≠j=0

||Ci − C̃i
|||||Cj − C̃j

|||
1

�
0

||𝛹i(u)
|||||𝛹j(u)

|||du

(22)=

n∑
i=0

||Ci − C̃i
||2.

(23)‖‖𝜀n(u) − 𝜀̃n(u)
‖‖2 ≤ ‖‖C − C̃‖‖.

�1 = 1; �2 = 1.

function can occur from experimental errors which results 
into large errors in emissivity since differentiation of the 
measured data is required in these formulae, that’s why the 
stable numerical techniques become vital, but in the pro-
posed method there is no need of the differentiation of data 
function. Thus, we have suggested a new stable numerical 
technique for the solution of the system given in Eq. (1). The 
stability of the proposed method is showing for a system by 
adding noise μ in I(s) and presented the convergence of the 
proposed method by calculating the pointwise error. Some 
suitable illustrative examples with figures are given to show 
the stability and accuracy of the introduced method for the 
known system even with particular noise μ.

Next, the exactness of the proposed method is shown by 

calculating the absolute error Δ�(ui) with the help of Theo-
rem 1, such that

where 𝜀̃n (ui) and ɛ(ui) are the estimated solution and exact 
solutions calculated at the corresponding point ui, respec-
tively. Also, I(s) and Iμ(s) represent the exact and noisy pro-
files, respectively, where Iμ(s) is obtained by adding a noise 
μ to I(s), i.e., I�(si) = I�(si) + ��i where �i stands for the 
uniform random variable which takes values in [− 1,1], 
si = i𝜇, i = 1,… , Ñ, Ñ𝜇 = 1 and Max

1≤i≤N

|||I
�

i
(s) − Ii(s)

||| ≤ �.
Now, using Eqs. (14a) and (15) the reconstructed emis-

sivities 𝜇𝜀̃i are obtained with noise term μ in intensity pro-
file under the condition �1(s) = �2(s) and �2(s) = �1(s) , are 
given as

(24)Δ𝜀(ui) =
||𝜀(ui) − 𝜀̃n(ui)

||,
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where �Ii(s) and Ii(s) are known functions (i = 1, 2), and they 
are obtained from the following equations:

and

Hence from Eqs. (15) and (25)

i.e.,

where HT
1
= �FT

1
− FT

1
, HT

2
= �FT

2
− FT

2
 and

Similarly, from Eqs. (15) and (25), we get

Setting,

and

then h1(u) and h2(u) reflect the noise reduction capability 
[23] of the method, which is shown in Figs. 6 and 7, for 
example, 1. The general behavior of noise reduction is the 
same irrespective of the value of μ.

(25)
𝜇𝜀̃1(u) ≈

1

2

[(
𝜇F1 +

𝜇F2

)T(
𝜌
1(s)W1 + 𝜌

2(s)W2

)−1
+
(
𝜇F1 −

𝜇F2

)T(
𝜔2(s)W1 − 𝜔1(s)W2

)−1]
𝛹 (u),

𝜇𝜀̃2(u) ≈
1

2

[(
𝜇F1 +

𝜇F2

)T(
𝜌
1(s)W1 + 𝜌

2(s)W2

)−1
+
(
𝜇F1 −

𝜇F2

)T(
𝜔2(s)W1 − 𝜔1(s)W2

)−1]
𝛹 (u)

�Ii(s) = Ii(s) + ��i ≈
�FT

i
� (u)

Ii(s) ≈ FT
i
� (u).

𝜇𝜀̃1(u) − 𝜀̃1(u) =
[
1

2

{(
𝜇F1 +

𝜇F2

)T(
𝜌
1(s)W1 + 𝜌

2(s)W2

)−1

+
(
𝜇F1 −

𝜇F2

)T(
𝜔2(s)W1 − 𝜔1(s)W2

)−1}
𝛹 (u)

]

−
[
1

2

{(
F1 + F2

)T(
𝜌
1(s)W1 + 𝜌

2(s)W2

)−1

+
(
F1 − F2

)T(
𝜔2(s)W1 − 𝜔1(s)W2

)−1}
𝛹 (u)

]

𝜇𝜀̃1(u) − 𝜀̃1(u) =
1

2

[(
HT

1
+ HT

2

)(
𝜌
1(s)W1 + 𝜌

2(s)W2

)−1

+
(
HT

1
− HT

2

)(
𝜔1(s)W1 − 𝜔2(s)W2

)−1]
𝛹 (u),

��𝜇𝜀̃1(u) − 𝜀̃1(u)
��2 ≤ 1

2

����H
T
1
+ HT

2

���
���
�
𝜌
1(s)W1 + 𝜌

2(s)W2

�−1���
+
���H

T
1
− HT

2

���
���
�
𝜔2(s)W1 − 𝜔1(s)W2

�−1���
�
‖𝛹 (u)‖

��𝜇𝜀̃2(u) − 𝜀̃2(u)
��2 ≤ 1

2

����H
T
1
+ HT

2

���
���
�
𝜌
1(s)W1 + 𝜌

2(s)W2

�−1���
−
���H

T
1
− HT

2

���
���
�
𝜔2(s)W1 − 𝜔1(s)W2

�−1���
�
‖𝛹 (u)‖.

h1(u) =
𝜇𝜀̃1(u) − 𝜀̃1(u)

h2(u) =
𝜇𝜀̃2(u) − 𝜀̃2(u),

Example 1  In the first example, consider Eq.  (1) with 
�
1(s), �2(s) ;�1(s) and ω2(s) are unity and β = 1, α = 1/3 for 

the pairs:

where � (.) represents the gamma functions and

are exact solutions of Eq.  (1) for the above values of 
I1(s), I2(s) and Eqs.  (14c) and (15) provide the desired 
approximate solutions

Here, the Bernstein polynomials orthonormal wavelet 
bases are taking for k = 0, 1; N = 7 and apply the introduced 
method, to get the approximate solutions of Eq. (26), which 
are shown in Table 1. Now, the associated absolute errors 
without noise are depicted by

which are shown in Figs. 2 and 3, respectively, for dilation 
parameter k = 0 and k = 1. The comparison of absolute errors 
E3(u), E4(u) for the noise level μ1 = 0.001 and E5(u), E6(u) at 
the noise level μ2 = 0.002, respectively, for k = 0 and k = 1 are 
shown in Figs. 4 and 5.The stability of the proposed method 
is shown by calculating the noise reducing capability h1(u) 
and h2(u) which are shown in Figs. 6 and 7 for example 1, 
similarly we can calculate noise reducing capability for other 
examples.

(26)

I1(s) = es
[
�

(
2

3

)
− �

(
2

3
, s
)]

+
e2s(1 − s)

2

3

[
�

(
2

3

)
− �

(
2

3
, s − 1

)]

2
2

3 (s − 1)
2

3

I2(s) =
es(1 − s)

2

3

[
�

(
2

3

)
− �

(
2

3
, s − 1

)]

(s − 1)
2

3

+
e2s(1 − s)

2

3

[
�

(
2

3

)
− �

(
2

3
, s − 1

)]

2
2

3

,

�1(u) = eu, �2(u) = e2u,

𝜀̃1(u) = C̃T
1
𝛹 (u), 𝜀̃2(u) = C̃T

2
𝛹 (u).

E1(u) =
||𝜀1(u) − 𝜀̃1(u)

||
E2(u) =

||𝜀2(u) − 𝜀̃2(u)
||,
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Example 2  Let us consider Eq.  (1) with �
1
(s) = (s2 + 1),

�
2
(s) =

(s+1)

4
;�

1
(s) =

s
2

2
, �

2
(s) = 2 − s and � = 1∕2, � = 1 

for the pairs [14]:

there exist an analytical solution of Eq. (1) for the above 
I1(s), I2(s) , like as

(27)

I1(s) =
16

15
s5∕2(1 + s2) +

1

70
(s + 1)

√
1 − s

�
5 + 2s

�
3 + 4s + 8s2

��
,

I2(s) =
16

35
s11∕2 + (2 − s)

�
2

15

√
1 − s

�
3 + 4s + 8s2

��

�1(u) = u2; �2(u) = u3.

Here, we applied the proposed method similar to the exam-
ple 1 for N = 5 and k = 0 to get the desired approximate 
solution

Now, the comparison of the approximated solution for 
the proposed method and the given method in Ref. [14] is 
shown in Table 2, even less number of polynomials taken but 
achieves better results with higher accuracy are obtained in 
the present method.Next, the absolute errors E1(u),E2(u) for 
the proposed method are of order 10−5 as shown in Fig. 8.
Whereas, the comparison of absolute errors E3(u),E4(u) for 
the noise level �1 = 0.001 , and E5(u), E6(u) at the noise level 

𝜀̃1(u) = C̃T
1
𝛹 (u), 𝜀̃2(u) = C̃T

2
𝛹 (u).

Table 1   Approximate and exact 
solution of example 1

ui Exact solutions Approximate solutions (for 
k = 0)

Approximate solutions (for 
k = 1)

ɛ1(u) ɛ2(u) 𝜀̃
1
(u) 𝜀̃

2
(u) 𝜀̃

1
(u) 𝜀̃

2
(u)

0.0 1.000000 1.000000 1.000270 1.000281 0.997975 0.998116
0.2 1.221403 1.491825 1.221409 1.491827 1.22118 1.491657
0.4 1.491825 2.225541 1.49181 2.225527 1.488941 2.222198
0.6 1.822119 3.320117 1.822141 3.320135 1.821359 3.319568
0.8 2.225541 4.953032 2.225528 4.953012 2.225257 4.952939
0.9 2.459603 6.049647 2.459633 6.049662 2.459723 6.049632

Fig. 2   Comparison of the abso-
lute errors with noise μ = 0 in 
example 1, for k = 0

Fig. 3   Comparison of the abso-
lute errors with noise μ = 0 in 
example 1, for k = 1
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Fig. 4   Comparison of 
absolute errors with noises 
�
1
= 0.001, �

2
= 0.002 in 

example 1, for k = 0

Fig. 5   Comparison of absolute 
errors with noises μ1 = 0.001, 
μ2 = 0.002 in example 1, for 
k = 1

Fig. 6   Noise reduction h1(u) for the solution function 𝜀̃
1
(u) in exam-

ple 1
Fig. 7   Noise reduction h2(u) for the solution function 𝜀̃

2
(u) in exam-

ple 1

Table 2   Comparison between 
the proposed method and 
Bernstein polynomial method 
[14]

ui Exact solutions Approximate solutions by the pro-
posed method (for M = 5, k = 0)

Approximate solutions by 
Bernstein polynomials [14] 
(for M = 8)

ɛ1(u) ɛ2(u) 𝜀̃
1
(u) 𝜀̃

2
(u) 𝜀̃

1
(u) 𝜀̃

2
(u)

0.0 0 0 0.000006 0.000047 0.000000 0.00000
0.2 0.04 0.008 0.039986 0.007976 0.040019 0.008019
0.4 0.16 0.064 0.160012 0.064013 0.160049 0.064023
0.6 0.36 0.216 0.359999 0.216002 0.359974 0.215971
0.8 0.64 0.512 0.640002 0.512000 0.639978 0.511841
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μ2 = 0.002, respectively, for k = 0 and k = 1 can be obtained 
to the similar of example 1.

Example 3  In this example, we consider Eq.  (1) with 
�1(s) = �2(s) = 1; �1(s) = �2(s) = 1 and � = 1∕2, � = 2 
for the pairs

with the exact solution

where

and its approximate solutions 𝜀̃1(u), 𝜀̃2(u) are free from 
noise, which is presented in Table 3, for N = 5, k = 0 by 
the same approach used in the above examples.Now, the 
absolute errors E1(u),E2(u) associated with example 3 are 
obtained similar to the first example, and it is shown in 
Fig. 9.

Next, the comparison to the proposed method for this 
example is shown in Table 3 from the exact solution.

Conclusions

The system investigated in this paper holds substantial sig-
nificance in the determination of intensity and emissivity of 
the plasma spectroscopy model. Our technique demonstrates 

(28)

I1(s) =
4s3∕2

3
+ es

√
� erf (

√
s) +

2

15

√
1 − s

�
3 + 4s + 8s2

�
,

I2(s) =
16s5∕2

15
+

2(1 + s − 2s2)

3
√
s − 1

+
es
√
� − �s erf (

√
s − 1)√

s − 1

�1(u) = eu + u, �2(u) = u2,

erf (s) =
2√
�

s

∫
0

e−t
2

dt.

the comparison between solutions for two different dilation 
parameters, i.e., k = 0 and k = 1. The stability with relevancy 
to the data is restored, and a favorable result is obtained, 
even for small sample intervals with high noise in the data. 
The selection of a small number of orthonormal polynomials 
(as shown for n = 5 and n = 7) makes the method easy and 
straightforward. The error bound obtained demonstrates that 
a higher degree of convergence is achieved even in the case 
of an infinite system as compared to the other method in Ref. 
[25]. This method [25] failed for an infinite system as the 
series obtained from the difference of truncated functions 
ɛn(u) and 𝜀̃n(u)

is a diverging series as n → ∞ . Hence, it gives a weaker 
bound. But in the proposed method, it is less than or equal to 
‖‖C − C̃‖‖2 , which holds for every value of n, so it converges 
slowly even in the case of n → ∞.

‖‖𝜀n(u) − 𝜀̃n(u)
‖‖2 ≤ ‖‖C − C̃‖‖2

(
l

n∑
i=0

1

2i + 1

) 1

2

Fig. 8   Comparison of absolute 
errors in example 2, for k = 0

Table 3   Comparison between the exact and proposed solution

ui Exact solution Approximate solutions by 
the proposed method (for 
M = 5, k = 0)

ɛ1(u) ɛ2(u) 𝜀̃
1
(u) 𝜀̃

2
(u)

0.0 1.000000 0.000000 1.000014 − 0.000022
0.1 1.205171 0.010000 1.205163 0.009999
0.2 1.421403 0.040000 1.421396 0.040006
0.3 1.649859 0.900000 1.649858 0.090008
0.4 1.891825 0.160000 1.891826 0.160008
0.5 2.148721 0.250000 2.148720 0.250008
06 2.422119 0.360000 2.422112 0.360008
0.7 2.713753 0.490000 2.713745 0.490007
0.8 3.025541 0.640000 3.025540 0.640007
0.9 3.359603 0.810000 3.359610 0.810010
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Appendix 1: Gram–Schmidt process 
for finding Orthonormal Bernstein 
Polynomials

The Bernstein polynomial of degree N is Bi,N(y)

Step 1 b0(y) ∶=
B0,N(y)

‖B0,N (y)‖
Step 2 For i = 1 to N 

Step 3 bi(y) ∶=
Ci,N (y)

‖Ci,N (y)‖
bi(y) is the required Bernstein polynomial. Here, 
〈p(y), q(y)〉represents the inner product of p(y) and q(y) 
in the Hilbert space L2(R) and ‖ξ(y)‖ is the L2 norm of 
the given function ξ(y).

Appendix 2: Algorithm for the numerical 
method

1.	 Obtain the orthonormalized version bn(u) of Bernstein 
polynomials Bi,n(u).

2.	 Evaluate ψmn(u) on the interval [0, 1) using bn(u).
3.	 Manipulate operational matrices W1and W2.

C
i,N
(y) ∶=B

i,N
(y) −

⟨Bi,N(y),C
i−1,N (y)⟩

��Ci−1,N (y)
��

∗ C
i−1,N (y)

−
⟨B

i,N
(y),C

i−2,N (y)⟩
��Ci−2,N (y)

��
∗ C

i−2,N (y)⋯

−
⟨B

i,N
(y),B

0,N
(y)⟩

��B0,N
(y)��

∗ B
0,N

(y)

4.	 Find determinant 
(
W1 +W2

)
 and determinant 

(
W1 −W2

)
 , 

if it is nonzero then we proceed further and go to step 
5 otherwise the solution ɛ1(u) and ɛ2(u) cannot be com-
puted.

5.	 Manipulate matrices FT
1
 and FT

2
.

6.	 Calculate values of CT
1
 and CT

2
 for different cases accord-

ingly
	   In general case

	   For particular case (i) when �1(s) = �2(s) and 
�
2(s) = �1(s),

	   For particular case (ii) when �
1
(s) = �

2
(s) =

�
1
(s) = �

2
(s) = 1,

7.	 Put values of CT
1
 and CT

2
 from step 6 to get the desired 

solution is �1(u) = CT
1
� (u); �2(u) = CT

2
� (u).

CT
1
=
[
FT
1
�2(s)W1 − FT

2
�
2(s)W2

]

×
[
�
1(s)W1�2(s)W1 − �

2(s)W2�1(s)W2

]−1
,

CT
2
=
[
FT
2
�
1(s)W1 − FT

1
�1(s)W2

]

×
[
�
1(s)W1�2(s)W1 − �

2(s)W2�1(s)W2

]−1

CT
1
=
1

2

[
[F1 + F2]

T
[
�
1(s)W1 + �

2(s)W2

]−1

+[F1 − F2]
T
[
�2(s)W1 − �1(s)W2

]−1]
,

CT
2
=
1

2

[
[F1 + F2]

T
[
�
1(s)W1 + �

2(s)W2

]−1

−[F1 − F2]
T
[
�2(s)W1 − �1(s)W2

]−1]

C
T

1
=

1

2

[
[F

1
+ F

2
]T
[
W

1
+W

2

]−1
+ [F

1
− F

2
]T
[
W

1
−W

2

]−1]
,

C
T

2
=

1

2

[
[F

1
+ F

2
]T
[
W

1
+W

2

]−1
− [F

1
− F

2
]T
[
W

1
−W

2

]−1]
.

Fig. 9   Comparison of absolute 
errors in example 3, for k = 0
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