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Abstract
In this article, the authors proposed Chebyshev pseudospectral method for numerical solutions of two-dimensional nonlinear 
Schrodinger equation with fractional-order derivative in both time and space. Fractional-order partial differential equations 
are considered as generalizations of classical integer-order partial differential equations. The proposed method is established 
in both time and space to approximate the solutions. The Caputo fractional derivatives are used to define the new fractional 
derivatives matrix at CGL points. Using the Chebyshev fractional derivatives matrices, the given problem is reduced to 
diagonally block system of nonlinear algebraic equations, which will be solved using Newton–Raphson iterative method. 
Some model examples of the equations, defined on a rectangular domain, have tested with various values of fractional order 
� and � . Moreover, numerical solutions are demonstrated to justify the theoretical results and confirm the expected conver-
gence rate. For the proposed method, highly accurate numerical results are obtained which are compared with the analytical 
solution to confirm the accuracy and efficiency of the proposed method.

Keywords Nonlinear fractional Schrodinger equation (NFSE) · Pseudospectral method · Caputo fractional derivatives · 
Chebyshev–Gauss–Lobbato point

Introduction

Fractional-order partial differential equation which is con-
sidered as the generalization of the integer-order partial 
differential equation attracts much attention recently. They 
provide an excellent instrument for the description of mem-
ory and hereditary properties of various materials and pro-
cesses. The fractional-order partial differential equation was 
first developed as a pure mathematical theory in the middle 
of the nineteenth century [25]. Time- and space-nonlinear 
fractional Schrodinger equation (NFSE) is the fundamen-
tal equation of physics for describing nonrelativistic quan-
tum mechanical behavior. This equation was formulated in 
late 1925, and published in 1926, by the Austrian physicist 
Erwin Schrodinger. In past years, the time- and space-NFSE 
has attracted application of various fields such as electro-
magnetic waves, quantitative finance, quantum evolution of 

complex systems and dielectric polarization [6, 8, 14, 18, 
19, 24, 26].

Let us consider two-dimensional NFSE with fractional 
derivation in time and space

with initial condition:

and boundary conditions:

Here, � and � represent the fractional order of derivatives 
in time and space, respectively, with values 0 < 𝛼 ≤ 1 
and 1∕2 < 𝛽 ≤ 1 . The convex domain � is defined as, 
� = (x, y) ∈ [xL, xR] × [yL, yR] , � and � are constants, 
G(x, y, t) is a time-dependent potential function, F(x, y, t) is 

(1)
i��

t
U + �

(
�2�
x
U + �2�

y
U
)
+ G(x, y, t)U + �|U|2U

= F(x, y, t), (x, y) ∈ �, t ∈ [0, T],

U(x, y, 0) = k1(x, y), (x, y) ∈ �,

U(xL, y, t) = p11(y, t), U(xR, y, t) = p21(y, t),

t ∈ [0, 1], (x, y) ∈ ��,

U(x, yL, t) = p31(x, t), U(x, yR, t) = p41(x, t).
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complex source term. The function U(x, y, t) is assumed to 
be a complex wave function of time and space.

Define U(x, y, t) and F(x, y, t) into their real and imagi-
nary parts

where V(x, y, t), W(x, y, t), F1(x, y, t) and F2(x, y, t) are real 
functions. Using Eq. (2) in Eq. (1), we obtain the following 
coupled system of equations

In recent years, many authors who have presented numerical 
solutions for time- and space-NFSE. These numerical meth-
ods are very important for understanding physical behavior 
of the equations. Mohebbi et al. [22] have proposed mesh-
less method based on collocation method for the numerical 
solutions of NFSE. In this method, the authors have used 
radial basis function as basis function. Fan and Qi [12] have 
proposed efficient Galerkin finite element method for the 
numerical and stability analysis of two-dimensional NFSE 
on an irregular convex domain. Zhang et al. [33] have pro-
posed Galerkin–Legendre spectral schemes for the numeri-
cal solution of space-NFSE. Li et al. [16] have discussed 
the numerical and stability analysis of multi-dimensional 
time-NFSE using L1-Galerkin finite element method. Zhao 
et al. [34] have proposed fourth-order compact ADI method 
for the numerical solutions and convergence analysis of two-
dimensional space-NFSE. In this method, the authors have 
found fourth order of accuracy. Chang et al. [5] have pro-
posed different numerical method such as Crank–Nicolson 
method, hopscotch method, split-step Fourier method, pseu-
dospectral method for the numerical solution of generalized 
NFSE. Chen et al. [7] have introduced symplectic and multi-
symplectic methods for the numerical solution of NFSE. 
Further Eq. (1) was solved by several other numerical meth-
ods, such as Riccati expansion method [1], Galerkin finite 
element method [30], momentum representation method 
[10], compact boundary value method [23], fractional map-
ping method [31] and finite difference method [3, 32]. Fan 
and Liu [11] have proposed finite element method for the 
numerical and stability analysis of two-dimensional distrib-
uted-order time and space-fractional diffusion equation on 
an irregular convex domain. In this method, the authors have 
used unstructured mesh adapted to the irregular domain.

Spectral and pseudospectral methods have been developed 
for numerical simulation of related differential equations in 

(2)
U(x, y, t) = V(x, y, t) + iW(x, y, t) and

F(x, y, t) = F1(x, y, t) + iF2(x, y, t),

− ��
t
W + �

(
�2�
x
V + �2�

y
V
)
+ G(x, y, t)V + �

(
W1 +W2

)
V

= F1(x, y, t), (x, y) ∈ �, t ∈ [0, T],

��
t
V + �

(
�2�
x
W + �2�

y
W
)
+ G(x, y, t)W + �

(
W1 +W2

)
W

= F2(x, y, t), (x, y) ∈ �, t ∈ [0, T].

many fields because of its high accuracy, especially suf-
ficiently smooth problems. Lanczos showed the power of 
Fourier series and Chebyshev polynomials in a number of 
problems where they had not been used before. Later in the 
1970s, Orszag introduced spectral methods again, alongside 
Kreiss, Oliger and others, for the purpose of solving partial 
differential equations in fluid mechanics [29]. Many authors 
have used spectral method to approximate the solution of 
such equations [2, 17, 20, 21]. In this paper, authors propose 
a highly accurate pseudospectral method in both space and 
time to approximate the two-dimensional time- and space- 
NFSE. For the proposed method, we derive the solution of 
a nonlinear partial differential equation as a sum of basis 
functions in both space and time directions. The spectral 
coefficients of the sum are chosen to satisfy the solution 
of the nonlinear partial differential equation. The fractional 
derivatives matrix is considered in the Caputo fractional 
derivative formula.

The structure of the paper is organized as follows. In 
“Preliminary” section, we describe some basic definitions 
and notations. Discretizing and description of the methods 
are presented in “Pseudospectral method-based discretiza-
tion” section. In “Numerical results” section, we present 
numerical solutions and errors by the proposed scheme. In 
the last section, the conclusion of our work is presented.

Preliminary

In this section, the definition of the Caputo fractional deriva-
tive is introduced systematically.

Definition 1 The partial fractional derivatives of order 
n − 1 < 𝜈 < n of a function ̌M(t) , with respect to variable 
t, in the Caputo fractional derivative formula, are defined 
[9, 15]

where � ≥ 0 is the order of derivative, �  is the gamma func-
tion and n = ⌈�⌉ + 1 with ⌈�⌉ denoting the integral part of 
� . Caputo fractional derivatives have some basic properties 
which are needed in this paper as follows:

(3)
̌
�

M
(t) = ��

t
̌M(t)

=
1

� (n − �) ∫
t

0

(t − s)n−�−1
�ňM(s)

�sn
ds,

𝜕𝜈
t
C = 0, C is constant,

𝜕𝜈
t
t𝜐 =

�
0, for 𝜐 ∈ N and 𝜐 < ⌈𝜈⌉,
𝛤 (𝜐+1)

𝛤 (𝜐+1−𝜈)
t𝜐−𝜈 , for 𝜐 ∈ N and 𝜐 ≥ ⌈𝜈⌉.

𝜕𝛼
z
𝜕𝛽
z
z𝜐 = 𝜕𝛽

z
𝜕𝛼
z
z𝜐 = 𝜕𝛼+𝛽

z
z𝜐.
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Construction of Chebyshev fractional differential matrix is 
given as

Pseudospectral method‑based discretization

We seek a pseudospectral approximation, which can be 
expressed as a product of Lagrange basis functions in both 
space and time variable with pseudospectral coefficients.

where

here, �i(z) is a Chebyshev polynomial, zj is a CGL points,

normalization constant

and Chebyshev–Gauss–Lobbato weight quadrature

The spectral approximation given in (4) can be expressed in 
the vector product form using the direct product as

where

Here � is the (M + 1) × (M + 1) × (M + 1)-vectors, 
�[0∶M](z) is the (M + 1)-vectors, and ⊗ denotes Kro-
necker product of two vectors, which is defined as 
[a, b]⊗ [c, d] = [ac, ad, bc, bd].

Q(�) =

⎡
⎢⎢⎢⎣

�
�

0
(z0) … … �

�

0
(zM)

⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ ⋱

�
�

M
(z0) … … �

�

M
(zM)

⎤
⎥⎥⎥⎦
.

(4)IMU =

M∑
i=0

M∑
j=0

M∑
k=0

̌i(x) ̌j(y) ̌k(t)U(xi, yj, tk),

̌j(z) =

M∑
i=0

wj

1

ĥi

𝜙i(zj)𝜙i(z) =
SM(z)

(z − zj)
[
𝜕SM(z)∕𝜕z|z=zj

]

SM(z) =

M∏
i=0

(z − zi),

ĥi =

{
𝜋, i = 0 and M,
𝜋

2
, 0 < i < M.

wj =

{ 𝜋

2M
, j = 0 and M,

𝜋

M
, 0 < j < M.

(5)IMU(x, y, t) =
(
𝛹[0∶M](x)⊗𝛹[0∶M](y)⊗𝛹[0∶M](t)

)T
�,

� =
[
U000,… ,U00M ∣ … ∣ U0M0,… ,U0MM ∣

… ∣ UMM0,… ,UMMM

]T
,

�[0∶M](z) = [̌0(z),…… , ̌M(z)]
T.

Now, we can define fractional spatial derivative of Eq. (5) 
with respect to x given by

Similarly, we can define fractional derivative of Eq. (5) with 
respect to t given by

where  IM+1 denotes  ident i ty  matr ix  of  s ize 
((M + 1) × (M + 1)).

Next, we consider the following transformations which are 
used to transform the two-dimensional space [xL, xR] , [yL, yR] 
and time [0, T] in to [− 1, 1].

We obtain the two-dimensional time- and space-NFSE in 
new space (x, y) ∈ [− 1, 1]2 and time interval t ∈ [− 1, 1]

with initial condition:

and boundary conditions:

(6)

𝜕𝛽IMU(x, y, t)

𝜕x𝛽
=
(
𝛹[0∶M](x)⊗𝛹[0∶M](y)⊗𝛹[0∶M](t)

)T
(
Q

(𝛽)

[0∶M,0∶M]
⊗ IM+1 ⊗ IM+1

)
�.

(7)

𝜕𝛼IMU(x, y, t)

𝜕t𝛼
=
(
𝛹[0∶M](x)⊗𝛹[0∶M](y)⊗𝛹[0∶M](t)

)T
(
IM+1 ⊗ IM+1 ⊗ Q

(𝛼)

[0∶M,0∶M]

)
�.

x ⟶
xR − xL

2
x +

xR + xL

2
, y ⟶

yR − yL

2
y

+
yR + yL

2
and t ⟶

T

2
t +

T

2
.

(8)

− ��
t
W + �

(
2(2�−�)T�

(xR − xL)
2�
�2�
x
V +

2(2�−�)T�

(yR − yL)
2�
�2�
y
V

)

+
T�

2�

[
G(x, y, t)V + �

(
W2 +W2

)
V
]

=
T�

2�
F1(x, y, t),

(9)

��
t
V + �

(
2(2�−�)T�

(xR − xL)
2�
�2�
x
W +

2(2�−�)T�

(yR − yL)
2�
�2�
y
W

)

+
T�

2�

[
G(x, y, t)W + �

(
V2 +W2

)
U2

]

=
T�

2�
F2(x, y, t),

(10)
V(x, y,−1) = h1(x, y), W(x, y,−1) = h2(x, y),

x ∈ [− 1, 1], y ∈ [− 1, 1]
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Further, we consider a mapping for converting the nonhomo-
geneous initial and boundary values to homogeneous initial 
and boundary values [4].

here corner initial and boundary values satisfy,

Define new variable Vk(x, y, t).

The above equations can be modified with new variable and 
obtained the new equations residuals,

V(−1, y, t) = g11(y, t), V(1, y, t) = g21(y, t),

t ∈ [− 1, 1], y ∈ [− 1, 1],

W(−1, y, t) = g12(y, t), W(1, y, t) = g22(y, t),

t ∈ [− 1, 1], y ∈ [− 1, 1],

V(x,−1, t) = g31(x, t), V(x, 1, t) = g41(x, t),

t ∈ [− 1, 1], x ∈ [− 1, 1],

W(x,−1, t) = g32(x, t), W(x, 1, t) = g42(x, t),

t ∈ [− 1, 1], x ∈ [− 1, 1].

(11)

�k(x, y, t) =
1 − t

2
hk(x, y) +

1 − x

4
g1k(y, t)

+
1 + x

4
g2k(y, t) +

1 − y

4
g3k(x, t)

+
1 + y

4
g4k(x, t) −

(1 − t)(1 − x)

8

g1k(y,−1) −
(1 − t)(1 + x)

8
g2k(y,−1)

−
(1 − t)(1 − y)

8
g3k(x,−1)

−
(1 − t)(1 + y)

8
g4k(x,−1),

g1k(−1,−1) = g3k(−1,−1) = hk(−1,−1),

g1k(−1, 1) = g3k(−1, 1),

g1k(1,−1) = g4k(−1,−1) = hk(−1, 1),

g1k(1, 1) = g4k(−1, 1),

g2k(−1,−1) = g3k(1,−1) = hk(1,−1),

g2k(−1, 1) = g3k(1, 1),

g2k(1,−1) = g4k(1,−1) = hk(1, 1),

g2k(1, 1) = g4k(1, 1).

(12)
V(x, y, t) = V1(x, y, t) +�1(x, y, t),

W(x, y, t) = V2(x, y, t) +�2(x, y, t),

We apply time and space Chebyshev pseudospectral method 
at CGL points and obtain the system of nonlinear algebraic 
equation

The system of nonlinear equation (13) can be solved by 
using Newton–Raphson method.

Numerical results

In this section, we present numerical results for two-dimen-
sional time- and space-NFSE using the Chebyshev pseu-
dospectral method. We give three examples in this section. To 
demonstrate the errors in pseudospectral approximation, we 
consider the errors in the L2 norms, defined by

where |U|k and |U| are the modulus of pseudospec-
tral approximation and modulus of analytical solution, 
respectively.

Example 1

In this example, let us consider the time- and space- NFSE 
on a rectangular region � = [0, 1] × [0, 1]

with � = � = 1 , G(x, y, t) = txy(1 − x)(1 − y).
The source term is

− ��
t
(V2 +�2) + �

(
2(2�−�)T�

(xR − xL)
2�
�2�
x
(V1 +�1)

+
2(2�−�)T�

(yR − yL)
2�
�2�
y
(V1 +�1)

)

+
T�

2�

[
G(x, y, t)(V1 +�1)

+ �
(
(V1 +�1)

2 + (V2 +�2)
2
)
(V1 +�1)

]

=
T�

2�
F1(x, y, t),

��
t
(V1 +�1) + �

(
2(2�−�)T�

(xR − xL)
2�
�2�
x
(V2 +�2)

+
2(2�−�)T�

(yR − yL)
2�
�2�
y
(V2 +�2)

)

+
T�

2�

[
G(x, y, t)(V2 +�2)

+ �
(
(V1 +�1)

2 + (V2 +�2)
2
)

(V2 +�2)
]
=

T�

2�
F2(x, y, t).

(13)H(V1|V2) = 0.

L2 = ‖�U�k − �U�‖2

i
��U

�t�
+ �

{
�2�U

�x2�
+

�2�U

�y2�

}
+ G(x, y, t)U + �|U|2U

= F(x, y, t), (x, y) ∈ �, t ∈ [0, T],
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where

Initial condition is

boundary condition is

and the exact solution is

For computation purpose we have chosen space inter-
val � = [0, 1]2 with time T = 1 . Numerical solutions of 
the proposed method have been computed with different 

F(x, y, t) =

[
i
15t1−�

� (2 − �)
−

30t1−�

� (2 − �)
−

30t2−�

� (3 − �)

]

x2(1 − x)2y2(1 − y)2 + 3375[t2 + (1 + t)4]

[t + i(1 + t)2]x6(1 − x)6y6(1 − y)6 + 15[t + i(1 + t)2]

tx3(1 − x)3y3(1 − y)3

−
15[t + i(1 + t)2]y2(1 − y)2

cos(��)
[h1(x, �) + h2(x, �)]

−
15[t + i(1 + t)2]x2(1 − x)2

cos(��)

[h1(y, �) + h2(y, �)].

h1(x, �) =
x2−2�

� (3 − 2�)

[
1 −

6x

3 − 2�
+

12x2

(3 − 2�)(3 − 4�)

]
,

h2(x, �) =
(1 − x)2−2�

� (3 − 2�)

[
1 −

6(1 − x)

3 − 2�
+

12(1 − x)2

(3 − 2�)(3 − 4�)

]
.

U(x, y, 0) = 15ix2(1 − x)2y2(1 − y)2,

U(x, y, t) = 0, (x, y) ∈ ��, t ∈ [0, T],

U(x, y, t) = 15[t + i(1 + t)2]x2(1 − x)2y2(1 − y)2.

fractional-order derivative 0 < 𝛼 ≤ 1 and 1∕2 < 𝛽 ≤ 1 . Fig-
ure 1 shows the numerical solution of the proposed method 
and contour plot has shown the physical behavior of the 
proposed method. In Table 1, the tabulated results of the 
proposed method with different fractional-order derivatives 
� and � are presented. The numerical results of the proposed 
method achieved better accuracy as number of grid points in 
both space and time directions are increased. Moreover, it is 
demonstrated that the numerical method is more efficient. 
Two authors have discussed the numerical solutions of the 
equation with the different set of data; for comparisons pur-
pose, we refer to [12, 13]. Further, it is found that the results 
obtained by the proposed method show very good agree-
ment with published results. Moreover, proposed method 
has obtained 9th order of accuracy.

Example 2

Let us consider two-dimensional space-NFSE

where G(x, y, t) = 3

2
− 2

sin(x+y−0.5t)

sin(x+y)
.

Initial condition is

boundary condition is

and exact solution is [27]

Ut + i
(
��
x
U + ��

y
U
)
+ iG(x, y, t)U = 0,

(x, y) ∈ �, t ∈ [0, T],

U(x, y, 0) = sin(x + y), t ∈ [0, T],

U(x, y, t) = 0, (x, y) ∈ ��, t ∈ [0, T],
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Fig. 1  Numerical solutions of example 1 at time T = 1.0 with � = 0.8 and � = 0.85
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In this example, we obtain the numerical solutions of the 
proposed method in � = [0, 2�]2, t ∈ [0, 1] and fractional-
order derivative 1 < 𝛽 ≤ 2 . Error norms for two-dimensional 
nonlinear space fractional Schrodinger equation have been 
calculated with different values of grid point and different 
fractional-order derivative � . In Table 2, it can be seen that 
the accuracy of the numerical results is increased along with 

U(x, y, t) = exp
(
−3it

2

)
sin(x + y).

the number of grid points and also achieved good order of 
accuracy. We are also shown the 3D graph of numerical 
solutions at time T = 1 with fractional derivative order 
� = 1.2 in Fig. 2. Contour plots have clearly shown the 
physical behavior of the proposed method. Figure 3 shows 
the graphical results of numerical and exact solutions with 
fractional derivative order � = 1.2 at T = 1 . It is also clear 
that the 2D plot of the numerical and exact solutions is very 
close to each other. Authors have discussed the numerical 
solutions of the equation with the different set of data; for 

Table 1  Numerical solutions of 
proposed method with different 
�, � and grid points M for 
example 1

M � = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 1.0

L2 L2 L2 L2 L2

� = 0.70

 16 1.9236e−04 3.2736e−04 4.4412e−04 5.6202e−04 3.5931e−05
 32 7.7368e−04 1.3167e−04 1.7863e−04 2.2605e−04 1.4452e−05
 64 3.5523e−04 6.0453e−04 8.2014e−04 1.0379e−04 6.6353e−05
 128 2.4379e−05 4.1489e−05 5.6287e−05 7.1230e−05 4.5538e−06
 256 4.6965e−05 7.9926e−05 1.0843e−05 1.3722e−05 8.7727e−06
� = 0.85

 16 2.9351e−05 5.4325e−05 3.4143e−05 4.2313e−05 6.5295e−05
 32 1.1805e−05 2.1850e−05 3.4331e−06 4.2546e−06 6.5655e−06
 64 5.4202e−06 1.0032e−05 7.8814e−07 9.7673e−07 1.5072e−06
 128 3.7199e−07 6.8851e−07 1.0818e−07 1.3407e−07 2.0688e−07
 256 7.1661e−07 1.3264e−07 2.0840e−07 2.5827e−07 3.9855e−08
� = 1.00

 16 7.1124e−05 3.5341e−05 2.3774e−05 3.4571e−05 6.6325e−05
 32 5.1516e−06 3.5536e−06 2.3905e−06 3.4762e−06 6.6690e−06
 64 1.6418e−06 8.1579e−07 5.4878e−07 7.9802e−07 1.5310e−06
 128 2.2535e−07 1.1198e−07 7.5327e−08 1.0954e−07 2.1015e−08
 256 4.3413e−08 2.1572e−08 1.4511e−08 2.1102e−08 4.0484e−09
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Fig. 2  Numerical solutions of example 2 at time T = 1.0 with different � = 1.2
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comparisons purpose, we refer to [28]. Further, it is found 
that the results obtained by the proposed method show very 
good agreement with published results in [28]. Moreover, 
proposed method has obtained 7th order of accuracy.

Conclusion

In this work, we have discussed highly accurate fully dis-
crete time–space Chebyshev pseudospectral method for the 
two-dimensional time- and space-NFSE, defined on a rec-
tangular domain. The new fractional derivative matrix has 
been established using a Caputo fractional derivative for-
mula at CGL points for different order of fractional deriva-
tives. To demonstrate the performance, the method has been 
employed on three different model problems on a convex and 
rectangular domain and obtained good order of accuracy. 
Reported numerical results are highly accurate which shows 
the efficiency of the proposed method.
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