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Abstract

The cubic uncertain fuzzy linguistic variable can easily express the fuzzy information, and the power average (PA)
operator is a useful tool which provides more versatility in the information aggregation procedure. In this paper, we will
combine the PA operator and Einstein operations to cubic uncertain linguistic environment and propose some new PA
operators. Firstly, the definition and some basic operations of cubic uncertain linguistic number, power aggregation (PA)
operator and Einstein operations are introduced. Then, we propose cubic uncertain linguistic fuzzy powered Einstein
averaging operator, cubic uncertain linguistic fuzzy powered Einstein weighted (CULFPEWA) operator, cubic uncertain
linguistic fuzzy Einstein geometric operator and cubic uncertain linguistic fuzzy Einstein weighted geometric (CULF-
PEWG) operator and discuss some properties of these in detail. Furthermore, we develop the decision-making methods for
multi-attribute group decision-making problems with cubic uncertain linguistic information and give the detail decision
steps. At last, an illustrate example is given to show the process of decision making and the effectiveness of the proposed
method.

Keywords Cubic uncertain linguistic number - Power aggregation (PA) operator - Cubic uncertain linguistic fuzzy powered
Einstein weighted (CULFPEWA) operator - Cubic uncertain linguistic fuzzy Einstein weighted geometric
(CULFPEWG) operator - Multi-attribute group decision making

Introduction

Fuzzy set (FS) proposed by Zadeh [46] is a very valuable
tool to develop the fuzzy information. However, as FS has
only a membership function, it is hard to term the more
composite fuzzy information. Atanassov [3] further pro-
posed the intuitionistic fuzzy set (IFS) which has a mem-
bership function and a non-membership function, so IFS
has further advantages than FS on describing the
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inconsistent information. IFS is with membership (or called
truth-membership) T4(x) and non-membership (or called
falsity-membership) F,(x). However, because the mem-
bership function and non-membership of IFS are crisp
numbers which are hard to be acquired in real decision
making, the choices of IFS are further extended [4]. Ata-
nassov [5] proposed the interval-valued intuitionistic fuzzy
set (IVIFS) which extended the membership and non-
membership to interval numbers. Zhang et al. [47] gave the
definition of the triangular intuitionistic fuzzy numbers.
Wang [32] defined intuitionistic trapezoidal fuzzy number
and interval intuitionistic trapezoidal fuzzy numbers, and
then, some decision-making methods had been proposed
[31, 34].

In real decision making, sometimes we can use lin-
guistic terms such as ‘good’ and ‘bad’ to define the state or
performance of a car and cannot use some numbers to
express some qualitative information. However, when we
use the linguistic variables to express the qualitative
information, it only means the membership degree
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belonged to a linguistic term is 1 and the non-membership
degree or hesitation degree cannot be expressed. In order to
overcome this shortcoming, Wang and Li [33] offered the
concept of intuitionistic linguistic set by combining intu-
itionistic fuzzy set with linguistic variables. For the above-
mentioned example, we can give an assessment value
‘good’ for the state of the car; however, for this evaluation,
we have the certainty degree of 80% and negation degree
of 10% and then we can use the intuitionistic linguistic set
to direct the evaluation result. Of course, it cannot be
expressed by IFS or linguistic variables.

Furthermore, the information aggregation operators are
chief research direction of decision-making problems and
countless research results have been achieved
[16, 22-26, 35, 36, 39—43]. In general, they are divided into
two types, i.e., the arithmetic aggregation operators and the
geometric aggregation operators. About the differences
between them, Liu [21] gave the clarifications “The
arithmetic aggregation operators emphasize the impact of
the whole attribute data and the compensation between the
different attribute data and the geometric aggregation
operators emphasize the balance of the system and the
coordination between the different attribute data”. In
addition, the whole operators were included in the general
concepts of the t-norms and t-conorms [6], which satisfy
the requirements of the conjunction and disjunction oper-
ators [35]. Einstein operations are a kind of many t-norms
and t-conorms families which can be used to perform the
corresponding intersections and unions of IFSs. So, based
on Einstein operations, Wang and Liu [36] proposed some
intuitionistic fuzzy Einstein aggregation operators such as
the intuitionistic fuzzy Einstein weighted geometric
(IFEWG) operator and the intuitionistic fuzzy FEinstein
ordered weighted geometric (IFEOWG) operator. Wei and
Zhao [37] established intuitionistic fuzzy Einstein hybrid
average (IFEHA) operator and intuitionistic fuzzy Einstein
hybrid geometric (IFEHG) operator and proposed intu-
itionistic fuzzy MADM methods based on them. Guo et al.
[16] proposed some operators which extended Einstein
operators to hesitant fuzzy sets counting hesitant fuzzy
Einstein weighted geometric (HFEWG) operator, hesitant
fuzzy Einstein ordered weighted geometric (HFEOWG)
operator, hesitant fuzzy Einstein hybrid geometric
(HFEHG) operator and hesitant fuzzy Einstein induced
ordered weighted geometric (HFEIOWG) operator.

Yager [45] established a power average operator and a
power OWA operator to provide more versatility in the
information aggregation process. Based on this, Xu and
Yager [44] proposed some new geometric aggregation
operators, such as the power geometric operator, weighted
PG operator and power-ordered weighted geometric oper-
ator. Zhou and Chen [49] presented the generalized power
average operator and the generalized power-ordered
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weighted average operator. Then, they presented the lin-
guistic generalized power average operator and the
weighted linguistic generalized power average operator
and the linguistic generalized power-ordered weighted
average (LGPOWA) operator which extended the GPA
operator and the GPOWA operator to linguistic environ-
ment. The same character of them is their aggregation
functions use linguistic information and generalized mean
in the power average (PA) operator. Xu and Cai [43]
developed the uncertain power average operators which
aggregated interval fuzzy preference relations. Xu and
Wang [40] proposed 2-tuple linguistic power average
(2TLPA) operator, 2-tuple linguistic weighted PA operator
and 2TLPOWA operator. Zhou et al. [50] presented an
uncertain generalized power average operator and an
uncertain generalized power-ordered weighted average
operator to deal with these arguments which take the form
of interval numbers. They developed the generalized
intuitionistic fuzzy power averaging operator and the
generalized intuitionistic fuzzy power-ordered weighted
averaging operator which extended the GPA operator and
the GPOWA operator to intuitionistic fuzzy environment.

Wei et al. [38] utilized these operators to develop some
approaches to solving the picture 2-tuple linguistic multi-
attribute decision-making problems. Jiang et al. [19]
introduced intuitionistic fuzzy entropy weighted power
average aggregation operator. Zhang [48] defined several
trapezoidal interval type-2 fuzzy aggregation operators for
aggregating trapezoidal interval type-2 fuzzy sets and
examine several useful properties of the developed opera-
tors. Liu et al. [27] developed general operational laws for
the I2L information (I2LI) and propose the 12L generalized
aggregation (I2LGA) operator for the I2LI based on
extended TN and TC. Liu et al. [28] proposed the g-rung
orthopair fuzzy weighted averaging operator and the
g-rung orthopair fuzzy weighted geometric operator to deal
with the decision information. Liu et al. [29] proposed the
linguistic intuitionistic fuzzy partitioned Heronian mean
(LIFPHM) operator, the linguistic intuitionistic fuzzy
weighted partitioned Heronian mean (LIFWPHM) opera-
tor, the linguistic intuitionistic fuzzy partitioned geometric
Heronian mean (LIFPGHM) operator and linguistic intu-
itionistic fuzzy weighted partitioned geometric Heronian
mean (LIFWPGHM) operator. Liu et al. [30] proposed the
interval-valued intuitionistic fuzzy power Heronian aggre-
gation (IVIFPHA) operator and interval-valued intuition-
istic fuzzy power weight Heronian aggregation
(IVIFPWHA) operator.

Cubic sets are the generalizations of fuzzy sets and
intuitionistic fuzzy sets, in which there are two represen-
tations, one is used for the degree of membership and other
is used for the degree of non-membership. The membership
function is Hold in the form of interval, while non-
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membership is thought over the normal fuzzy set [20].
Cubic set was introduced by Jun in 2010.

Fahmi et al. [7] developed the Hamming distance for the
triangular cubic fuzzy number and weighted averaging
operator. Fahmi et al. [8] proposed the cubic TOPSIS
method and gray relational analysis set. Fahmi et al. [9]
defined the triangular cubic fuzzy number and operational
laws. Amin et al. [1] defined the generalized triangular
cubic linguistic hesitant fuzzy weighted geometric
(GTCHFWG) operator, generalized triangular cubic lin-
guistic hesitant fuzzy ordered weighted average
(GTCLHFOWA) operator, generalized triangular cubic
linguistic hesitant fuzzy ordered weighted geometric
(GTCLHFOWG) operator, generalized triangular cubic
linguistic hesitant fuzzy hybrid averaging (GTCLHFHA)
operator and generalized triangular cubic linguistic hesitant
fuzzy hybrid geometric (GTCLHFHG) operator. Fahmi
et al. [10] developed trapezoidal linguistic cubic hesitant
fuzzy TOPSIS method to solve the MCDM method based
on trapezoidal linguistic cubic hesitant fuzzy TOPSIS
method. Fahmi et al. [11] define aggregation operators for
triangular cubic linguistic hesitant fuzzy sets which include
cubic linguistic fuzzy (geometric) operator, triangular
cubic linguistic hesitant fuzzy weighted geometric
(TCLHFWG) operator, triangular cubic linguistic hesitant
fuzzy ordered weighted geometric (TCHFOWG) operator
and triangular cubic linguistic hesitant fuzzy hybrid geo-
metric (TCLHFHG) operator. Fahmi et al. [12] defined the
trapezoidal cubic fuzzy weighted arithmetic averaging
operator and weighted geometric averaging operator.
Expected values, score function and accuracy function of
trapezoidal cubic fuzzy numbers are defined. Fahmi et al.
[13] developed three arithmetic averaging operators, that
is, trapezoidal cubic fuzzy FEinstein weighted averaging
(TrCFEWA) operator, trapezoidal cubic fuzzy Einstein
ordered weighted averaging (TrCFEOWA) operator and
trapezoidal cubic fuzzy Einstein hybrid weighted averaging
(TrCFEHWA) operator, for aggregating trapezoidal cubic
fuzzy information. Fahmi et al. [14] defined some Einstein
operations on cubic fuzzy set (CFS) and develop three
arithmetic averaging operators, which are cubic fuzzy
Einstein weighted averaging (CFEWA) operator, cubic
fuzzy Einstein ordered weighted averaging (CFEOWA)
operator and cubic fuzzy Einstein hybrid weighted aver-
aging (CFEHWA) operator, for aggregating cubic fuzzy
data. Amin et al. [2] introduced the new concept of the
trapezoidal cubic hesitant fuzzy TOPSIS method. Fahmi
et al. [15] introduced the triangular cubic hesitant Einstein
aggregation operators.

Due to the motivation and inspiration of the above
discussion, in this paper we generalize the concept of
intuitionistic uncertain linguistic powered Einstein aggre-
gation operator, intuitionistic uncertain linguistic fuzzy

powered Einstein averaging, intuitionistic uncertain lin-
guistic fuzzy powered Einstein weighted operator, intu-
itionistic uncertain linguistic fuzzy Einstein geometric
operator, intuitionistic uncertain linguistic fuzzy Einstein
weighted geometric, interval-valued intuitionistic uncertain
linguistic fuzzy number and interval-valued intuitionistic
uncertain linguistic fuzzy powered Einstein weighted
operator and introduce the concept of fuzzy uncertain lin-
guistic powered Einstein aggregation operator. If we take
only one element in the membership degree of the fuzzy
uncertain linguistic powered Einstein aggregation operator,
i.e., instead of interval we take a fuzzy number, then we get
intuitionistic fuzzy uncertain linguistic powered Einstein
aggregation operator; similarly, if we take membership
degree as fuzzy number and non-membership degree equal
to zero, then we get fuzzy uncertain linguistic powered
Einstein aggregation operator.

Despite having a bulk of related literature on the prob-
lem under consideration, the following aspects related to
cubic uncertain linguistic fuzzy numbers (CULFNs) and
their aggregation operators motivated the researchers to
carry out an in-depth inquiry into the current study.

(1) The main advantages of the proposed operators are:
these aggregation operators provided more accurate
and precious result as compared to the above-
mentioned operators.

(2) We generalize the concept of cubic uncertain
linguistic fuzzy numbers and intuitionistic uncertain
linguistic fuzzy sets and introduce the concept of
cubic uncertain linguistic fuzzy sets. If we take only
one element in the membership degree of the cubic
uncertain linguistic fuzzy numbers, i.e., instead of
interval we take a fuzzy number, then we get
intuitionistic uncertain linguistic fuzzy numbers;
similarly, if we take membership degree as fuzzy
number and non-membership degree equal to zero,
then we get cubic uncertain linguistic fuzzy numbers.

(3) The objectives of this study include:

Propose cubic uncertain linguistic fuzzy sets,
operational laws, score value and accuracy value of
CULFS:s.

Propose four aggregation operators, namely cubic
uncertain linguistic fuzzy powered Einstein averag-
ing (CULFPEA) operator, cubic uncertain linguistic
fuzzy powered Einstein weighted averaging (CULF-
PEWA) operator, cubic uncertain linguistic fuzzy
powered Einstein weighted averaging (CULFPEWA)
operator and cubic uncertain linguistic fuzzy pow-
ered Finstein weighted geometric (CULFPEWG)
operator.

Establish MADM program approach-based cubic
uncertain linguistic fuzzy numbers.

’r @ Springer
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Provide illustrative examples of MADM
program.

(4) In order to testify the application of the developed
method, we apply decision-making methods based
on the CULFPEWA operator and CULFPEWG
operator.

(5) The initial decision matrix is composed of LVs. In
order to fully consider the randomness and ambiguity
of linguistic term, we convert LVs into the cubic
uncertain linguistic fuzzy sets, and the decision
matrix is transformed into the cubic uncertain
linguistic fuzzy decision matrix.

(6) The operator can fully express the uncertainty of the
qualitative concept, and cubic uncertain linguistic
fuzzy operators can capture the interdependencies
among any multiple inputs or attributes by a variable
parameter. The aggregation operators can take into
account the importance of the attribute weights.
Nevertheless, sometimes, for some MAGDM prob-
lems, the weights of the attributes are important

factors for decision process.

In order to achieve this aim, this paper is organized as
follows. In “Preliminaries” section, we represent some
ideas of the linguistic set and uncertain linguistic numbers.
In “The cubic uncertain linguistic set (CULS)” section, we
present the cubic uncertain linguistic set (CULS), the
power aggregation (PA) operator and Einstein operations
of cubic uncertain linguistic numbers. In “Some cubic
uncertain linguistic fuzzy powered Einstein opera-
tors” section, we propose the some cubic uncertain lin-
guistic fuzzy powered Einstein operators, cubic uncertain
linguistic fuzzy powered Einstein averaging operator, cubic
uncertain linguistic fuzzy powered Einstein weighted
operator, cubic uncertain linguistic fuzzy Einstein geo-
metric (CULFPEG) operator and cubic uncertain linguistic
fuzzy Einstein weighted geometric operator and introduce
some properties and special cases of them. “The decision-
making methods based on the CULFPEWA operator and
CULFPEWG operator” section establishes the procedure
of the decision-making method based on the CULFPEWA
and CULFPEWG operators. Section six gives a numerical
example according to our approach. In Section seven, we
discuss the comparison analysis. In Section eight, we give
the conclusion.

Preliminaries

Definition 1 [46] Let H be a universe of discourse. The
idea of fuzzy set was presented by Zadeh and is defined as
follows J = {h,I';(h)|h € H}. A fuzzy set in a set H is
defined as I'y : H — I, which is a membership function.
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I';(h) denotes the degree of membership of the element A
to the set H, where I = [0, 1]. The collection of all fuzzy
subsets in H is denoted by I”. Define a relation on I as
follows: (VI[,nn € I"")(T <n < (Vh € H)(T'(h) <n(h))).

Definition 2 [20] Let H be a non-empty set. By a cubic set
in H, we mean a structure F = {h,a(h),(h) : h € H} in
which « is an IVF set in H and f is a fuzzy set in H. A cubic
set F={h,a(h),B(h):heH} is simply denoted by
F = (o, f5).. The collection of all cubic sets in H is denoted
by Cf. A cubic set F = («,8) in which a(h) =0 and
p(h) = L(resp.o(h) =1 and B(h) =0 for all h€ H is
denoted by 0 (resp. 1). A cubic set D = (4, ¢) in which
A(h) = 0 and &(h) = 0 (resp.A(h) = 1 and &(h) = 1) for all
h € H is denoted by O (resp. 1).

Definition 3 [20] Let H be a non-empty set. A cubic set
F=(C,A) in H is said to be an internal cubic set if
C(h) < A(h) < C*(h) for all h € H.

Definition 4 [20] Let H be a non-empty set. A cubic set
F = (C, ) in H is said to be an external cubic set if A(h) /
€ (C(h),C*(h)) for all h € H.

The linguistic set and uncertain linguistic
numbers

The linguistic set is regarded as a good tool to express this
qualitative information, and we can express the linguistic
set by S = (s0,51,-..,8-1), and s9(0 = 1,2,...,1— 1) can
be called an linguistic number, where 1 is an odd value
which can be the values of 3, 5, 7, 9, etc. Generally, for
example, when [ =9,S = (so,s1, 52,52, 54, S5, S6, 57, 53) =
(extremely poor, very poor, poor, slightly poor, fair,
slightly good, good, very good, extremely good). Let s; and
s; be any two linguistic numbers in linguistic set S, they
have the following characteristics [17, 18]:

(i) Ifi>j, thens; > s;.
(i)  There exists negative operator: neg(s;) = s;, where
j=1—1-1i
(i) If s; >s;, max(si;s;) = s;.
(iv) If s; <sj, min(s;;5;) = s;.

In order to overcome the loss of information in the process
of calculations, the original discrete linguistic set S =
(80,51, --,8-1) is extended to the continuous linguistic set
S = {540 € RT} which also meets the strictly monotoni-
cally increasing condition [18, 50]. Some operational rules
are defined as follows [17, 18]:

(1) Psi = spxi; >0
(2) s ®sj =iy
3) 5 s = Ssix;
@) (s))" = sm; n>0.
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Definition 5 [41] Suppose s = [s,a;spb], S4,85 € S with
a < b are the lower limit and the upper limit of s, respec-
tively, then s is called an uncertain linguistic variable. Let §
be a set of all uncertain linguistic variables. s; = [s4,, Sp,]
and sy = [s4,, S5, are any two uncertain linguistic vari-
ables, and the operational rules are defined as follows
[41, 42]:

(1) s1®s= [sul’sbl] S2] [sawsbz] = [Sal+azvsb1+b2];
Q) 51 @52 = [SaysSb,] @ [Sars Sbr) = [Sayxar Sbyxbs )3
() 81 = [SaysSp,) = [Sivars Sini | 4> 0;

(4) (Sl)A = [Sal,sbl]A = [salz,sbl;,]; /12 0.

The cubic uncertain linguistic set (CULS)

Definition 6 Let Ky, €S, X be the given discourse

({x
(R0,
“x

domain, then A = [ %’ is called cubic linguistic
A
)

)
s (X)),
va(x))]
e X)})
set (CLS), where ([u, : X — [0;1],
va X — [0;1]).

uy : X — [0;1]] and

Definition 7 Let [sg(y),5:(x)] € S, and X be the given dis-

({x[s0c)> 1)
(14 (%), uy (x)],
va(x))] |x € X)})

course domain, then A = is called

cubic uncertain linguistic set (CULS) in which
S0 Siw) €S, (luy : X — [0;1],uf : X —[0;1]]  and
va: X —[0;1]).
< x[[sf)(m)asf(a])L
Definition 8 Let a3 =< [u (a1),ut(a1)], and
v(ar))]}

<{x[[S9(a2),S,(uz)},
[ (az), u” (a2)],

v(a2))})
linguistic numbers, the operational laws are defined as
follows:

a, = be any two cubic uncertain

ar s — { B0@)e0@) S @] (1= (1 —u”(@))(1 = w(a2)), \,
D atae < U@ (= @), vl (@) >

[Se(al)x(?(ao) St(ay)x1( az)]a
2 a®a= <[M(a1) “(@2)),u (a1))ut(a2))], >
(a1) +v(az) —v(ai)v(az)
s o) Sixatan]s (1 — 1* ))/,
3 rap = ) Yy
& < (1= (1= u* ) L > =0
@ = { By Suayli (@), (e (ar)
@ : < 1-— (l —v(a1 420,

133
({[[s2, 4]
Example 1 Let a; =< [0.2,04], and ap =
0.3]})
({xlls1, 53],
[0.1,0.3], be any two cubic uncertain linguistic
0.2})

numbers, the operational laws are defined as follows:

([s4,57), [(1 = (1 =0.2)(1 = 0.1),
(D) arta = 1= (1—04)(1=03)](03)(02)) b;
([s4, 7], [0.28,0.58], 0.06)
2) aq®a = {<[S2,S]2],[0.0270.12]70.44>};
» — (0.2,0.3,0.5)
3)  Ja; = ([s04,503];[0.0647,0.1421],0.5477); A > 0;
“)
a = ([51.1456, 51.3105]; [0.6171,0.7596],0.1633); 2> 0.

Theorem 1 Let a; = [IFEa]
({x[[s0(a)» St(a))
[ (az),u" (a2)],
v(a2))})
guistic numbers, the operational laws have the following
characteristics.

be any two cubic uncertain lin-

1) ar+a=a+ay;

2) a®a=a®a;

3) i(al +Cl2) = lay + lar; A>0;

@) Jar + laay = (A + A)ar; A, 22 > 0;
5) a)' ®af = (a))"*2, 0y, b > 0;

6) af‘ ®a§2 = (a1 ®@ay)™, A >0.
<{x[[?9(a1) t(a )]
Definition 9 Let aj =< [u~ (al),zﬁ(al)], be cubic
v(ai))]}h)

uncertain linguistic number, then the expectation value

E(a;) of a; can be defined as follows: E(a;)=

1 _

X () 1 (@)

x(wh(ar) + 1 —v(ay))

XS ((0)(an)+1(an)
3
= {S<<0)<al>+r<an>x<u<u1)+19v<a1>>x<u+(ol>+1v<um }
Example 2 Let a; = {[s2, 53], a, =
0.8,0.10],0.9) |

{ [0.12%%.1172]3}0 13) } a3 = { 0. 1<7[%] 3), ]0 2) } and a4 =

’r @ Springer
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Fig. 1 E(ay) is the first 4.5
expectation value, E(ay) is the 4
second expectation value, E(az) 4 -
is the third expectation value,
E(a,) is the 4th expectation 35
value
3
2.5
2
1.5
1
0:5 0.3
.

E(a1)

Fig. 2 H(ay) is the first accuracy
value, H(as) is the second
accuracy value, H(ay) is the
third accuracy value, H(a,) is
the 4th expectation value

100%
90%
80%
70%
60%
50%
40%

30%
20%
10%

0%

{ 0.1 9<[(";léi]1] 0.20) } be the four cubic uncertain linguistic

number, then the expectation value E can be defined as
follows:

E(a)) = s03,E(ay

) = $0.9999, E(a3) = 50.99, E(as) = So.6666
(Fig. 1).
({x[[s0(ar) s Se(an)]
Definition 10 Let a; = { [u (a1),u"(a1)], p be cubic

v(an))l})
uncertain linguistic number, then the accuracy function
H(a;) of a; can be defined as follows:

H(a) = (u (@) +v(a)) x (" (ar) +v(ar)) X sw)sen

= SO @) +tag)x (= (ap)+vlag ) x (@ (a))+v(ap) -
3

* @ Springer

2
0.9999 1 0.99
‘ \ ‘ \ 0.66
E(a2) E(as) E(aa)

H(as)
H(aa)
([s1,1], ([s1,1],
Example 3 Let a; = < [0.2,0.4], »,a, =< [0.3,0.5], 3,
0.3) 0.4)
([s1, 52, ([s3, 1],
as = ¢ [0.3,0.7], p and as = { [0.1,0.5], p be the four
0.5) 0.3)

cubic uncertain linguistic number, then the accuracy value
H can be defined as follows: H(a;) = s02333, H(a2)
= So.42, H(a3) = s0.96, H(as) = so.e4 (Fig. 2).

({x[so(ar)» Se(an))s
Definition 11 Let a; =< [u(a1),u"(a)], and
v(a))l})
({xlls01@r)» St
ay =< [u(ap),u"(az)], p be any two cubic uncertain
v(a2)))

linguistic numbers, then



Mathematical Sciences (2019) 13:129-152 135
Fig. 3 Ranking of Hamming — ~
distance *\
(’7/ \
h |
19733 | 1 1.9733
\ ,“:"‘
»‘;x /{J
/
/
/!

(1) if E(a]) > E(az), then a; > as,
(2) if E(a)) = E(ay), then:

(i) if H(a)) > H(az), then a; > ay,
(i) if H(a;) = H(ay), then a; = a;.

[[So(ar)» Se(ar
Definition 12 Let a; =< [u (a1),u"(a1)], and

<{x[[s(9(az)’st(az)}a
™ (az),u" (a2)],

v(a2)))
linguistic numbers, then the normalized Hamming distance
between a; and a, can be defined as follows:

lu™(a1) —u™(a2)| + [u*(a1) — u" (a2)] }
+v(a1) —v(az)| x |0(a1) + 0(az)| x |t(ar) + t(az)]
3(=1)

a) = be any two cubic uncertain

d(ay, @) = {

which meets the following conditions:

() 0<d(a,ar) <1,

(2) d(ai,ax) =0,

(3) d(ai,ax) = d(az,ay),

“4) d(al,az) +d(a2,ag) Zd(al,a3).

Example 4 let a; = { 0 é[sol ’SS]I](; 7) } and a; =

<[S] ;81 ]a . . . ..
{ [0.8,0.12],0.10) be the two cubic uncertain linguistic
number, then the normalized Hamming distance between
a; and ap can be defined as follows: d(aj,a2) = s1.9733

(Fig. 3).

The power aggregation (PA) operator

Definition 13  [45] The power aggregation (PA) operator,
which is firstly proposed by Yager, is defined as follows:

T (14 T(@)a; N
W) =S ) T(ai) =
> j—1sup(ai,a;) and sup(a;a;) means the support for a;

PA(ay,az,...,a where

from a; ,which satisfies the following rules:

(1) sup(a;,a;) = sup(aj,a;);
(2)  sup(a;,a) € [0;1];
(3)  sup(ai,a;) > sup(am, ay) ; if |a; — a;| <|aw — ay|.

Einstein operations of cubic uncertain linguistic
numbers

Einstein operations are a kind of the t-norms and t-conorms
families which can be used to perform the corresponding
intersections and unions of CFSs. Einstein operations are
defined in the following, where Einstein product ®. is a
t-norm and Einstein sum @, is a t-conorm.

<{X[[S(-) fll)’ St(ar) ]
a; =1 [u (@), u’(a1)], and

v(an))}h)

Definition 14 Let

<{XHS9(a2> ) Sz(az)],
[”‘_ (az), ut (aZ)]v

v(a2)))
ational laws of cubic uncertain linguistic numbers based on
Einstein t-norm and t-conorm shown as follows:

ap = , then we can define the oper-
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u (a)) +u (az)

(1)
(1= ) (1-u,)
ay @c ar = (| [56(a))x0(a) » St(ar)x1(az)) L
ay 'uaz Va, + Va,
P (1= ) (1= ) | T vt
2)
i u, +u ug +ug
14+u-wu I +ub ) ’
ay @e ar = (| [50(a1)+0(a) » St(ar)+1(a)) ! .
Va,+Vay
L L= (1= vg)a(1 = vg,)
(3)
.\ A
(I+u, ) — (1 —u,)
led] = 5/19(01)75/1[(01) ’ A i .
(I +u) = —ul) 2v;,
(4 uf) + (1= uf)" (2= va) +(va)’
4)
2u;lA
(@) = (1 ] (2 —ug) +ugt
@) =\ Boa)® Sia)y i p 2 :
(0@ (@) 2ut (v ) — (1= )
2= uf)" +uft (1+va) + (1= va,)
({x[[50(ar)s Se(an))
Theorem 2 Let a1 =< [u (&), u"(a1)], and
v(a1))]}

< [SU(CH)+(’(H2)’Sf(111)+t(az)]7

L+ u(ar)w (az)’
ut(ar) + ut(a)

<{x[[s()(az),st(a2)}, @ e = 1+ ut(ay)ut(az) >

a =X [u (@), ut ()], p be any two cubic uncertain v(ar)w(as)
v(az))) 1= (1= v(a))(1 - V(az))
linguistic numbers, then we have the following operation [820(a1)+0(a))» Sio(ar)+o(an)]»
rules. (1 u ()1 —u (al))’(l +u(a))(1 - »)/]
u (@) (1= u (@) (1 +u- (ﬂz))( “(@))]
1 Dar =ay D ay;

Ez; Zi ®Z§ = Zi @Zi. Haee) _< (1 () (1= (@) (1 + u (@)1 u+<az>)’] >
(3 AMar ®ax) =y éB Aay; A > 0; (14wt (an)(1 =t (@) (14 ut(a2)) (1 - ut(a2))’ ]’
@ lay + ay = (4 + A)ar; Ay, 42 >0; 20(@)¥(a))’ - >
5) d @a® = (@) 0, 50> 0; (4 = 2v(a1) = 2v(a2) + v(a)v(a2)) +(v(a1)v(a2))"

1 1 — ’ ) — Y
©) al'@a = (a1 @ax)", 2 >0. and we have

Proof (3) We have
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(1 (@)’ = (1= u (@)’
(A +u(a) + (1 —u(ar)"
(1 +ut (@) = (1 —u (@) | >
(I ura) + (- (@)
2v*(ay)

)

[Sw(a, Ys Sat(a )} )
;Lfdl —<

(2- "(al))i+(v(a1)i
(1+ lf(az)" —(1- u’(az))i
[516(02)75/';(@)}, (1+ ”_(az))/“ﬁ-ﬁ' (1-= M_(az))if 7
et —< (14 u"(a2) — (1 —u'(a2)) >
(14 ut (@) + (1 — ut (a2))”
2v*

a

2= V(@) +((a))"

then
[830(ar)+0(@) > Sae(ar) +o(a)] _
(1 +u (@)1 —u (@) (1 +u (a2)(1 —u (@)
(I+u (@)1 —u~ (01))’( u(a2))(1 *M‘(aZ))_"“
Jay @ day = < (1 +u (@) (1 = u*(ar)*(1 +u*(az))(1 —u+(az))/_}.>
(1 +ut(ar))(1 — M*(ﬂl))'(l +ut(a)(1 - ut(ar))" |

2(v(ar)v(an))" ‘
(4 —2v(ay) — 2v(az) + L(al)v(az 4 (v(ay)v(ar))

so, we have A(a; ® ay) = dap ® Aa;4>0.
(5) We have

2u™ (ay );" +h

Q—u (@) +u(a)

2ut* (ay)
2= ut(@))" +uti(ar)

( wm U*Wmh>ﬂ
V@) + (1= v(ay))

2u~

—u (a2))? + u”z(az)

on
0(az))" 2u+/

+u+’2(a2) >
az) (I —v(a2)) ~

az) (1 =v(a2)) >>}

[ (0(ar))” 1+42 ]

2u~ (al)"Jr’Z

u(mw@—ummh+uwmh@—uwmh7>

—ut(a))”

' @a = 2t (ay )
wh(a)"(2 - u*(ul))h +u*(u1))”( - u*(al))}"
(T+v(a)" = (1 = v(a))*
(14 (@) + (1= v(a))"
(S0 Suayyn s

- (01)/'+/Z

. w (@) (2= (@) + (@) 2 —u (@)’
(ar)" " =< 2ut(ay )"*’ ’ >
wH(a)" (2 = ut (@) +ut (@) (2 — ut (@))"
(1 +v(a)" = (1= v(a)"

(1 v(@)™ + (1= v(@))")(1 + v(ar)) + (1 = v(ar))?)

O

Some cubic uncertain linguistic fuzzy
powered Einstein operators

In this section, we will combine the PA operator and
Einstein operations to cubic uncertain linguistic environ-
ment and propose cubic uncertain linguistic fuzzy powered
Einstein averaging (CULFPEA) operator, cubic uncertain
linguistic fuzzy powered Einstein weighted averaging
(CULFPEWA) operator, cubic uncertain linguistic fuzzy
powered FEinstein geometric (CULFPEG) operator and
cubic uncertain linguistic fuzzy powered Einstein weighted
geometric (CULFPEWG) operator and discuss the prop-
erties of them.

Cubic uncertain linguistic fuzzy powered Einstein
averaging (CULFPEA) operator

< {xlls0ar)s s1(a); >
Definition 15 Let a; = ( [u (a1),ut(a1)], and
v(a1))]}
<[{x[[59 ) St(a)]

u (ap),ut (02)],> be a collection of cubic

(@2))}

linguistic fuzzy numbers and CULFPEA:

QU+ Tla)a _
> (4T(@))

A e G )7 ; .
DL, (Z?K””“l‘”) , where Q is the set of all cubic

uncertain

Q, — Q. If CULFPEA (ay,4az,...,a,) =

uncertain numbers and

T(a;) = >, sup(a;, a;), in which sup(a;, ;) is the support
i#

for a; from q;, then CULFPEA is called the cubic uncertain

linguistic fuzzy powered Einstein averaging(CULFPEA)

operator.

linguistic fuzzy

Theorem 3 Let a; = ({x[[so(a)s Si(ap], [ (i), u™ (a;)],
v(a;))]}) be a collection of cubic uncertain linguistic fuzzy
numbers, then the result aggregated from Definition 15 is

still cubic uncertain linguistic fuzzy number and

Y
ﬁ @ Springer



138 Mathematical Sciences (2019) 13:129-152

CULFPEA(ay,az,...,a,) =( |s )8
Zn ( 0(a;)(147(a;)) ) Zn ( t(a;) (147 (a;)) )
. 0 i=1 n

i=1 Z::] (14T (ap)) :1(1+T(¢1i))

(14T (q;
]+T(a

() |
sz
()
().

2.
<”1+T(a,<))
[ (1 + (@) <E<)> 11— (@)
< EII+T( 1) >
T (1 + (@) N2 7)) L T (1 = ue(ar))

[
(1+T(a

(147(a)
<]+l(u

1)
+ H;L:i(l —ut(ar))

( (147(a;)) )
21T (v(a) o ) >

(147(aj) (1+7(aj)

[1% (2—v(a))(W>+H (v(a ))(W

i=i

where T(a;) = >\, sup(a;,a;), in which sup(a;, a;) is the CULFPEA (ay,ay,. . .,a,) =

i
support for a; from a;. < {szf] oarer Szk lt(a’)q] ,
Proof We suppose ¢; = (72(”512()&))) T (1 + 0 (@) Ii[(l — (@)
CULFPEA (a1, a3, ..., a,) = Iﬁ(l Fu (@) + fl(l — u(ay))”
(b 0] e e |
10,1+ u (a)" — ﬁ(l —u ()" [T (L 4+ u'(ai)” — ll;[l(l —ut(ar))
i=i k ) k
[0+ u(an))® + [101 = u-(ar))* | 10+ er(@))” + [0 =)™ |
l:; e l:l" " a | 2Hf:i("(ai))l
[Tl +u(@))” = 1'1;11'(1 — @) T2 = v(a)“+ Hf-(:i(V(ai))ci>
ﬁ(l +ut(ay))" + ﬁ(l —ut(ay))” Then, when n=k+1, we have CULFPEA(a,,as, ...
- = - ar+1) = CULFPEA(ay, az, . . ., ar) P (cr1ax+1)
2[Ti(v(a)” >

[T (2 = v(@)"+ [Ty (v(@i)”

(i) When n = 1, the equation above is right obviously.
(i) Suppose when n = k, the equation above is right,
ie.,
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CULFPEA (a1, a2, - - -, &) D [So(ae.  ex. 1+ St(apsr)eenr)
[(1 +u (1) = (1= u (ag1))™
(T4 (@)™ 4+ (1= (@)™
(14wt (@)™ = (1 = u* (@)™,
(1 u (@)™ + (1= ut (@)™
2(v(agy1)) ™ >
(2 = v(@1) ™+ (v(@rr) ™

B < {SZT*,‘ ola)e’ Y <>} ’

M k+1 T

[ (14 @) = TLO = - (@)
k+1 k+;l ’
T+ () + 10— ()"
I (1 + (@) = T1(1 - u* @)
ktl . ey .

_ g<1+u+<al>>“+H(l—wa]))‘f |

2Hk+l ( >
12~ v(a ))"+H"“(( )"

i=i

0.

Theorem 4 (Idempotency) Let a; = ({x[[So(a,), Si(a)];
[u™(a;)ut(a)],v(a;))]}) , then CULFPEA(ay,as,...,a)
=a.

Proof Since a; = a; for all i, we have

CULFPEA(al,az,...A,ak) = <

20T, (v(ar) (Z(<])u>> >
)

(” (i) > < ("wu,))
T2 = v(a) N2t 70 4TI (v(ap)) \ 2O

s 3 5
< " 0(a) (147(a) (a)(147(a;)) :
2 <ZLI(I \T(u,v)) i <Z (1+7()) ):|

z e 1+7(a;)
I (1 +u(@) (Z )—H:-’I-u_u(a,»z'(z(Tﬁ) |
—u- m»Z’*(zﬁfﬁﬁ 0)

)
T (1 +u(a Z (Z (+76a) +1T

(tut a:)? EZ( B ))) - 1—14*(01))2; (Z(wm))

(1474 (147(;) ’
Z Z (147(a;) )

Z,
71r])+1—[u 1— u*al

(1+ut(a))

()
2LT (v(a) ~ T\ )

1 2y s iy = )

<[5ﬂ(u,) St(a, ,)] [u (“1) ”Jr(”l)]rv(”l))b =daj.

O

Theorem 5 (Boundary) The CULFPEA operator lies
between the
Amin = min(ay, dy, . . ., dy);
then

Amin S CULFPEA(al, a, ...,

max and min operators:

Amax = max(ay,ay, ..., d),
ap) < Amax:
([0(a)

)

u+(a1) 5

v(an)l}

St(an)];
Theorem 6 (Monotonicity) Let a; = <[u(a1) > and
]

([$0(a»)

Si(ay)
a = <[u (ag),> be two collections of cubic uncertain
ut(ar)],
v(a2))l}

linguistic ~ fuzzy —number and if  Sa,) < So(a),St(a)
<yt (@r) (@), () Sut(az), vlar) < v(aa),
for all i;i=1,2,...,n, then CULFPEA(a ay,...,a,) <
CULFPEA(ay, az, . . .,ay).

Proof Since

S0(ar) + St(a),50(ar) + i) (a1) <u”(a2),

ut(a)) <ut(ar),v(ar) <v(ap),

~(0la) (1 + T(a))
Z(m”w o)

i=1

+T( i)

s ( ) +s ,
A (T e GEiC . n (1+7(ap)
Zl:l ( ( ])Zil(]”(‘”))) Zi:l <t(a])27+}(l+r(ai>)

1.e.,
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<5 +s : ) )
> 9([12)4("1”@,-)) > t(az)igﬁ(ai)) I (1 +u (al))z’*'(wm) — L0 —u (a ))Z’*'OHW)
i=1 Zi:] (1+7() i=1 Zi:] (14+7(ay)) (I+T(u )) (1+7(a))
. T (14 (@) 27 4 T (1= ()27
Since (1+7(a) (1+7()
1 —u (a)) < 1—u (@) 1—u"(a)) < 1 —ut(as) > [T (1 + “_(az))z‘*‘(w(”‘)) I, (- ”_(az))z'*‘mma'))
_ = _ ’ = - (147 (a;)) (147(a))
l+u(a)) ~ 1+u (@) 14+ut(a)) ~— 1 +ut(a) . S . o
o) (1+70) T (1w (a2)) 27D 4TI (1= e (ag)) 2 70
1 =u (@)\ S (e ) S (1) (1+7(0) (1+7(@))
T < = n S () n ST ()
,-H(l +u(a) H U ’ T (1 (@) 2 ) — T (1 = (@) 2 )
(147(q;)) (147(a))
T (1 )27 4 T (1= (@) 27
(1+7(a;)) (1+7(a))
T O () 27— T (1 = (ag) 2 )
= (1+7(a;)) (1+7@)) -~
T (1 o (@) 27 4 T (1= () 27
Since Z=0e2) > 2=v@) yhen
v(ay = vlay °
(147(a7)) (147(4;)) (147(a7))

" (1+7(ap) " (147@) " (14T@)
(2 — v(a2)> 2 S (2 — v(al)) 2 ﬁ(Z — v(a2)> 2
v(ay) —\ v(a P

V(az)
" (1+70ap)
S (2 —v(ay) 2 1 1
-4 V((ll) M M ,
=1 Z::l(HT(“")) Z/:1(1+T([")>
n 2—v(a n 2—v(a
Hi:l( v(a(z)Z)> +1 Hf:l( v((iz)Z)) i
2 < 2
(157(a))) — (147(a;)) )

Zj:l (1+T(a;)) Z::] (147(a))
2—v(az 1 2—v(a
H;l:l ( v(cfz)_)) +1 H;zl ( V(sz;)) +1

(147(a;)) (147(a;)) SO

I )= < Al =
= 1 2 " +T(a;
2T, (v(az) s ()

i=1

- ()~ = - (4 Tw) ZUT;H) Zori())
_— e (s T T, (2 = v(a)) i (97@) 4 T, (2 = v(a2)) )
1+ HI 1 (1+u (a1 )) Z':l( ) 1+ H; l(1+u az)) Z’:l< ) ! ! (14+7(a))
2 > 2 e - 2 Hl’,‘zl (V(GI)Z;(HT(W))
1—ut(a; Z:L (1+7(q;)) (1 —ut(a )Z: (14+7(q;)) B M M .
1+ H; 1 (1+IA+ (a; ) ' 1+ HI L\ 1+u*(az ' H?:l (2 — v(al))z (17 + H ( — v([ll))Zp](Hm"‘))
We have We can get CULFPEA(ay,ay, . . .,a,)

< CULFPEA(ay,a, . . .,a,), which complete the proof. (]
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Cubic uncertain linguistic fuzzy powered Einstein
weighted averaging (CULFPEWA) operator

[S0(ar)»

St(a;) ]
Definition 16 Let a; = <[u(a,~),> be a collection of
u*(ai)],
v(a))]
linguistic =~ fuzzy numbers, and

cubic  uncertain

CULFPEWA: Qn — Q. If CULFPEWA (a1, a, . ..,a,) =

@ wil+T(ai))ai _ n wi(14+7T(a;))ai .
72; (LT — (—Di:l (7211 w,-(1+T(a,-))> , where Q is the

set of all cubic uncertain linguistic fuzzy numbers, T(a;) =

i1 sup(a;, a;) in which sup(a;,q;) is the support for a;
i

from ajand w = (wi,wy, .. .,wn)T is the weighting vector

of the (aj,ay,...,a,) such that w; € [0;1],>0 , w; = 1.

Then, CULFPEWA is called the cubic uncertain linguistic

fuzzy powered Einstein weighted averaging (CULFPEWA)

operator.

Theorem 7 Let a; = ({x[[So(a)» Su(ap)]> [~ (@i),
ut(a;)],v(@))]}) be a collection of cubic uncertain lin-
guistic fuzzy numbers, then the result aggregated from
Definition 16 is still cubic uncertain linguistic fuzzy num-

ber and

" (1 + T(ar))a;
CULFPEWA(al,az,...,a"):@i:l( wi(l + T(a;))a )

i wi(l + T(ai))

= +s ;
Z” (w) Z” tlay)wi (147(a;))
i=1 Z’:I(Hﬂl-(u;)) i=1 Z:’:I(HT(”‘»

wi(147(a;)) wi(147(a;)) ]
T (1 + u (ag) 2 7 — T, (1 = ()2 (570
wi(147(a;))
T (0 (@) 22 7 T (1= ()2 )
wi(14T(q;))
T (14 (@) 2 ) — T (1= ()27
wi(147(a;)) !
T, (1 + u*(a;))zzzn('*”"”) +11, (1 = u*(a,-))zizn('”("'))_

wi(147(a;))

2T, (v(ap) a7 >

wi(147(a;))

wi(147(a;)) ]

wi(14T(aj))

wi(14T(q;)) wi(14T(q;))

Hn (2- V(az))z;;l(wr(m) + H;l:l 2- V(az))z;;l(wr(a,))

i=1

where T(a;) = 37, sup(a;, @), in which sup(a;, a;) is the
i#j

support for a; from a; w = (wi,wa, ..., w,,)T is the

weighting vector of the (ai,a,...,a,) such that

w; € [O, 1],2?:1 w; = 1.

Theorem 8 (Idempotency) Let a; =a for all i, then

CULFPEWA (ay,az,...,a,) = a.

Theorem 9 (Boundary) The CULFPEWA operator lies

between the max and min operators:

Amin = min(ay,dy, . . .,dy); Amax = Max(ay, da, ..., dy),
then amin, <CULFPEWA(ay,ay,...,d,) < amax-

Cubic uncertain linguistic fuzzy powered Einstein
geometric (CULFPEG) operator

([S0(a)
< St(a)); >

Definition 17 Let a; = ( [u~(a;), ) be a collection of

”ﬁ(ai)L

v(ai))]
cubic uncertain linguistic fuzzy number, then cubic
uncertain linguistic fuzzy powered Einstein geometric
(CULFPEG) operator of dimension n is a mapping and is

(147())a
() S
where T(a;) = >, sup(a;,a;) in which sup(a;, @) is the
i7]

support for a; from a; and w = (wi,wy,..
weighting vector of the
w; € [O, 1],2?:1 w; = 1.

CULFPEG(ay,as, .. ., a,) = )"

i=1 ’

wa) s the
(ay,az,...,a,) such that

[[Sﬁ(ai)»sz(a; ]7
Theorem 10 Let a; = <[u (ai),u+(ai)],> be a collec-
v(a))]
tion of cubic uncertain linguistic fuzzy number, then the
result aggregated from Definition 17 is still cubic uncer-
tain linguistic fuzzy numbers and
/(’HT(H,-J)u,
CULFPEG(ay,az,. . .,a,) = @?:1 (ai)zzzl wi(1+7)
CULFPEG(ay, az,. . .,a,) =

(1+7(aj))a

®?:1 (a,)w [T (1 + V(ai))hi -, (1 = V(ai))hi%

T (1 + via)” + TT7, (1= v(@))”
(1+7(4))a;
where b, DRG] and T(a;) = Z}ll sup(a;, aj), in
i#j

which sup(a;, a;) is the support for a; from a;.

Theorem 11 (Idempotency) Let a; = a for all i, then

CULFEG(ay,ay, .. .,a,) = a.

Theorem 12 (Boundary) The CULFPEWA operator lies
between the max and min operators:
Amin = min(ay, dy, . . .,dy); dmax = max(a,ay, . . .,a,), and
then amin <CULFEWA (ay,ay,...,d,) < dmax.
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[[SU(al)a
St(al)]a
Theorem 13 (Monotonicity) Let a; = <[u (al),> and
u+(a1)]’
v(ar))]

[[50(6,)

St(by)]»
b, = <[u<(zl;2),> be two collections of cubic uncertain
ut (bZ)]7
v(b2))]
linguistic fuzzy number and if so,) < So(b,),5t1(a1) < Si(bs)>
u (ar) <u (by),u(a1) <ut(by),v(a1) <v(by), for all
ii=1,2,...,n, then CULFEG(a; a, . . .,a,) <
CULFEG(by, by, ..., by,).

Cubic uncertain linguistic fuzzy powered Einstein
weighted geometric (CULFPEWG) operator

[[SU(ai)7

St a; L
Definition 18 Let a; = <[u((c)z,»),> be a collection of
u+(ai)}>
v(ai))]
cubic uncertain linguistic fuzzy
CULFPEWG : Qn — Q. If

numbers, and

(147 (@) )a;
CULFPEWG(ar, a3, . . ., an) D] (i) 2" (1)
where Q is the set of all cubic uncertain linguistic fuzzy
numbers, and T(a;) = Y, sup(a;,a;), and sup(a;,q;) is
i#j
the support for a; from ajand w = (wy,wa, ..., wn)T is the
weighting vector of the (aj,ay,...,a,) such that w; €
[0;1], 3", w; = 1. Then, CULFPEWG is called the cubic
uncertain linguistic fuzzy powered Einstein weighted

geometric (CULFPEWG) operator.

[S0(ar)s St(ap)]
Theorem 14 Let a; = < [u(ai),u+(ai)],> be a collec-
v(a))]
tion of cubic uncertain linguistic fuzzy number, then the
result aggregated from Definition 18 is still cubic uncer-
tain linguistic fuzzy numbers and

’r @ Springer

(1+7(aj))ai

CULFPEWG(ay,ay, .. .,a,) = ®?:1 (a,v)zizlw’(]m”"))

- <SH71 (0(ai)")? sH;,:l W)y’
ZH?:l(”_(ai)bi
I (2 = w (@) + T, (2 = u (@)™
2 [T, (u (a)”
[T (2 = wt(a)” + T (2 = w(a)”
T (1 + v(a)” =TT, (1 - V(af))b’>
T (14 v(@)” + T, (1= v(a)”
(147(a))a;

where bi :Zi:lwi(lﬂ(ai)) and T(ai) = 27:1 sup(ai,aj), in
i#f
which sup(a;,a;) is the support for a; from a;.

3

1

Theorem 15 (Idempotency) Let all a; = a for all i, then
CULFEWG(ay, as, .. .,a,) = a.

Theorem 16 (Boundary) The CULFPEWG operator lies

between the max and min operators: dmin =
min(ay,da, ..., ay); dmax = max(ay,ay,...,a,), and then

amin < CULFEWG(ay,az,...,a;) < dmax-

The decision-making methods based
on the CULFPEWA operator and CULFPEWG
operator

In order to strengthen the efficiency of this decision mak-
ing, we can make several experts participate in the decision
making under cubic uncertain linguistic fuzzy environ-
ment. Considering the multi-attribute group decision-
making problems with cubic uncertain linguistic fuzzy
information described as follows.

Let A = {A|,As,...,A,} be a set of alternatives, C =
{Cy,Cy,...,C,} be the set of attributes and W =
{wi,wa2,...,w,} be the weight vector of the attribute
Ci(j = 1;2;::5n), where w;>0, j=1,2,...,n, >0,
wj = 1. Let D ={D;,D,,...,D,} be the set of decision
makers and A = (44, 42, . .,/lp)T be the weight vector of
decision makers Dy,(¢ =1,2,...,p), where ¢>0, ZJ’-’:I
Jq = 1.

Suppose Hl-qj = [h

lj]mXVl

h(q) = ([s0g),,, Stta

[u’(hl(»;’)), u*(hfj’))], v(hqu)» takes the form of the cubic
uncertain linguistic variables given by the decision maker
D, for alternative A; with respect to attribute Cj,

u- (hz(jq)) > 0,M+ (hz(jq)) > 07 V(hl(jq)) > 07 S()(q)(hij) 5 Sl(q)(h’,j)

are the decision matrices where

€.
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Then, the ranking of alternatives is finally acquired. The (1+704))24
methods involve the following steps: 2HZZI(W(;,Z))EFl"«("””Z))

Step 1 Calculate the supports. (1+160))4 (o) |’

sup([hy, i), n) =1 — d(fhy?, mi ), h0), which sat- [TTp-) (2w (i) 2 “C 70 4 T 2w ) 2 o0 10)
isfies the support conditions expressed definition 23, where % %

P q q:ll"/ 147 h,.,.J _ 74 _ q q:l/"’ 14T h”

d([hu",h+"] h(f)) is the distance between two CULFNs [gor (1 -+ v(g)) [Ty (1 = ()
d([hg?, n ), m).

Step 2 Calculate T(hg])). T(h,(jq)) =57,

1#q
sup([i;?, b 1], hl)).
Step 3 Utilize the CULFPEWA operator or the CULF-
PEWG operator to aggregate the individual cubic uncertain

linguistic fuzzy decision matrices H = [ into the

lj]mX}’l
collective cubic uncertain linguistic fuzzy decision matrix
where h; =

H = (hg) i = (5001, S0, s 107 (),
wt (h)], v(hi))

h; = CULFPEWA (AL K2, .. 1Y)

ij> Mij> ij
=(s + s
< » 0 (hj)iq (””"”)) N 1‘1(/1,_/)/4/(I+T(/ll/.)) ’

i i1 \mZ))

;4(1»1(1,3))

T, (1 () 2] T (1 — e () 2 ()
4 ( T ’) (1+T(/rf’,)) ?
T (1 ()22 C70) 4 T, (1 = () 2 (70) |
[ 0 (1470) iq(1+700)
Ty (14w () S ) T (1 — et () S C5)
wlen) almep) |
T (1 () (0] T (1= e () 2 ()

Aq(1+r(/,,’,.))

2111, () 275

z‘,(lfmjj)) ’
D) T (2 = v(hd))2m (1)

(I+T( ))

.- v(h?,-))Z il

where T(a;) = >, sup(a;, @) , in which sup(a;, ;) is the
i

support for a; from a;, w:(wl,wz,...,wn)T is the
weighting vector of the (a1,as,...,a,) such that
€ [0, 1],2?:1 w; = 1.
hj = CULFPEWG(h},, ki, . . ., b))
_<S (1+108)) 2 »§ (14164
T 0y 2 75 H(W
2T (u (1)) 2 (70
(170 )ia (o) |7
AR G AR AR

(Hr(h”)) ('”(”Z‘)"’"
2:| /'q(l \T(/:Z))

Ty (1 ()29 T (11— vl >
Step 4 Calculate the supports

sup([;?, hi ), mY) = 1 — d([hg?, b, h)),

U? U?

Step 5 Calculate

T(hy).T(h) =3 "

17#q

sup([h;?, 7], h(f>).

lj7

Step 6 Aggregate the cubic uncertain linguistic fuzzy
numbers for each alternative by the CULFPEWA (or
CULFPEWG) operator:

hyj = CULFPEWA (hiy, hia, . . 1)

= <s +s s
n 0w (147 ()
Z;:! (,,/71“/) n 1(hyg)w; (14T (hi))
Zj 1 w( i) Z,:l Z" ) (i
(j

- wj (14T (k)

[ wi (147(y)) 42 ()
i wj (147 (hy))
n _ T n _ =1
T (1 ()2~ T (1w (hy)
wi (147 0)) wj (147 () ’
E/“ wi (147 ) Zi wi (14T ()
LT (14w ()~ I (=)™ ]
- Z:/(FT(W) Z” (I+T(hUJ)
N FIw,(HT[h,,)) . 1 wj (14 (hyz))
[T (1 + ut (hy)) — I (=t (hy)
wi (147(h)) wi (147 (k) ’
Z/“ wi (14T (k7)) Z, wi (14T ()
I+ )™ I =)™
wi (147 ()
u Z'L] wi (147 (ki)
211 ()™ >
w; (147 () wi (147 () .
. Z'[;l wi (17 (hy)) . Z,” (17 00))
[T (2 = v(hy)) + 111 (2 = v(hy))
hij = CULFPEWG (h;y, hi, . . .hiy)
= < =(s (i) S s
—_— (1—11/1,,));(,
wi (1470 , ~ 7
T @02 7) [T 2o C7)
a=1
(s
n _ wj |+nhZ)
21T () 27
(1+7(hg))w; (17 (hyj))w; ’
S . S o (o)
T 12— ()20 T (2 () 2O
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(170mj) )w;
" (1)
20T G ()20
T2 — )2 C 70 T 2 = e gy 270
(14T (0) )y (147 (k7)) w;

Ty (1 v(g) 2078 g 1 — v<h,-,~>>2?7“f('”’"”f’>>

lSl \T(ItU))w/ (14 T\hu))wj

T (1 -+ w0270 LTI (1= w(ig) 2 )
Step 7 Calculate the value E(h;) of h;.
Step 8 Rank h;(i =1;2,...,m) in descending order
according to the comparison method of CULFNs
Step 9 End (Fig. 4).

An numerical example

In this section, we provide an example to illustrate the
application of CULFPEWA and CULFPEWG operators.
Suppose that an investment company wants to invest an
amount of money to a company. There are four candidate
companies A;(i = 1,2,3,4) evaluated by three decision
makers {D;,D,,D3}. The weight vector of the decision
makers is 1 = (0.5,0.45,0.50)T and the attributes consid-
ered include: C; (the risk index), C, (the growth index), Cs
(the social-political impact index) and C4 (the environ-
mental impact index). Suppose the attribute weight vector
is w = (0.30,0.28, 0.20, O.22)T. The three decision makers
{D1, Dy, D5} evaluate the four companies A;(i = 1,2,3,4)
with respect to the attributes C;(j = 1,2,3,4) by using the
cubic uncertain linguistic variables (suppose that the
decision makers wuse linguistic term set S=
(80,51, 52,53,54) to express their evaluation results) and

construct the following decision matrices H¢) = [hgf)] (g =
1,2,3) listed in Tables 1, 2 and 3.

Ranking four candidate companies
by the CULFPEWA operator

Step 1 Calculate the supports (i = 1,2,3,4; j =1,2,3,4).

’r @ Springer

0.7053
0.9579
0.9824
0.9579
0.5789
0.9338
0.8737
0.7474
0.8246
0.9561
0.9473
0.9210

0.7894
0.8527
0.7789
0.9368
0.9264
0.8316
0.9853
0.6922
0.8737
oo | 07895
sup(y: ) =16 9508
0.4106

0.6148
0.9579
0.9631
0.9263
0.7222
0.8246
0.7474
0.9369
0.9719
0.9438
0.8878
0.8422

0.5516
0.9263
0.8158
0.9807
0.7664
0.9369
0.9859
0.8948
0.8316
0.9508
0.8685
0.7895

12y _
sup(hij7 h;) =

sup(hizj, h?,) =

Step 2 Calculate T(h{")(i = 1,2,3,4; j = 1,2,3,4).

1.9894
2.7189
1.7189
1.6368
2.7264
2.1316
2.1653
1.5922
2.6737
1.8895
2.0908
2.3106

2.4148
2.3579
2.7631
2.2263
2.5022
2.0246
2.6474
2.4369
2.7316
2.5438
2.4878
2.6422

2.6516
1.8263
2.5158
2.7807
2.1569
2.1369
2.3859
2.7948
2.5316
2.0508
2.4685
2.1895

2.5053
2.4579
2.2824
3.0579
1.3789
1.3338
2.0737
2.5474
2.6246
2.5561
2.4473
2.721

~
—~
=
S}
N
I

Step 3 Utilize the CULFPEWA operator to aggregate all
the three decision matrices mentioned above into the fol-
lowing decision matrix given in Table 4

Step 4 Calculate the supports
(k,j=1,2,3,4):

according to
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Cubic uncertain linguistic
variables

Fig. 4 Proposed method

Table 1 Decision matrix H' Table 2 Decision matrix H?
C, Cy
s1,82], [s1,52], [52,52], S1,584), 2,83, [s1,52], [s2, 53], 52, 54],
<[0206> <[0408 > <0509]> <[0409]> <[0408 > <[07018]> <05019> <[0104]>
0.3
[s1, 53], [s1,81], [s1,54], S1,84), 53, 54/, (52,52, [s1, 53], [s1,54],
<[04o9 > <[0208 > <0105],> <[03o7]> <[05010]> <[0206 > <0106]> <[0.3,o.7],>
0.4
51,53, [$2, 54], [s4, 4], S1,82], 52, 83), (2, 54], [s1,81], [s1, 53],
<[07013]> <[0408 > <0408]> <[0306],> <[09015]> <[o409 > <0207]> <[0.2,o.6],>
0.11 0.13 0.4
52, 54], [$2, 3], 53, 54], 51,82, S15582], [s1,83], [$2,82], [s3,83],
<[0104 > <[0306 > <0408]> <[0509]> <[0204 > <[0308 > <0409]> <[0.4,o.9],>
0.5
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Table 3 Decision matrix H>

Table 4 Decision matrix

Cy C G Cs Cy
[s1,54], [s1,54], [s2,584], [s1,54], [$3.0012, [53.000, [$3.1705, [$3.0555,
< [0.5,0.7] > < [0.4,0.9] > < [0.1,0.9], > < [0.2,0.9],> 53.4375], 84.5134], $3.2781], $3.4662]5
0.7 < [0.1491, > < [0.1327, > < [0.0995, > < [0.0804, >
(51, 52], s, Ya] [Yh h] (51, 54), 0.3277), 0.2204], 0.1761], 0.3606],
0.6 [$3.1075, [53.1565, [53.000, [53.000,
[s1, 4], [s2, q4] [Yl , Sl] [s3, 3], 53.3167) 53.1565) 53.4205) 53.4856)
0.9,0.13], 0. 3 0 8], 0. 2 0 9], 0.4 0.6, [0.1251, [0.0707, [0.0331, [0.0999,
011 0.5 0.1697], 0.2618], 0.2298], 0.2738),
0.9109 0.8252 0.7546 0.8275
[s2, 53], [s1, S3] [ShSZ] [s3, 53],
[0. 3 0 9], 0. 4 0 8], 0. 4 () 6] [0.2,0.9], [53.1026, [53.1606, [$3.1250, [$3.1148,
0.7 53.484]7 33.3301]-, 53.|250L S3.2s36},
< (0.4488, > < [0.0866, > < [0.0695, > < [0.0886, >
0.1377), 0.2698], 0.2805], 0.1924],
0.5184 0.8955 0.8629 0.8213
1.000 0915 0904 0.679 !
[53.1901 , [53.0562-, [‘93.15267 [S3.15987
() 0.915 1 0.489 0.916 < 53.430) > < 53.2923), 832371, $3.2072),
sup(hyj, hij) = , 0.0797, [0.0886,> <[o.1038,> <[0.0829,>
0504 0489 1 0958 0.3026], 0.2421], 0.2614], 0.2997],
0.678 0.916 0.958 1 0.7349 0.8493 0.8743 0.9194
1.000 0.929 0.832 0.141
0.929 1 0.901 0.614 . .
sup(hyj, hyj) = , Step 8 Rank E(h;) in descending order; we can get the
0.832 0.901 1 0.824 best alternative.
0.141 0.614 0.824 1 E(hy) > E(h3) > E(hs) > E(hy). A, is the best choice.
1.000 0.463 0.789 0.156 Step 9 End.
0.463 1 0.302 0.972
W) =\ 0780 0302 1 0859 | Ranking four candidate companies
0.156 0972 0.859 1 y the operator
1.000 0706 0.748 0.894 Step 1’ Calculate the supports and the result is same with
0706 1  0.957 0.906 Step 1.
sup(hyj, haj) = P
0.748 0957 1 0.755 0.7894 0.6148 0.5516 0.7053
0.894 0506 075 1 (1) 12y | 08527 09579 09263 09579
su N/ ,
Step 5 Caleulate T(hy)(i,j = 1,2,3,4). P2 =1 0.7789 09631 0.8158 0.9824
4.000 3.013 3273 1.869 0.9368 0.9263 0.9807 0.9579
. 3013 4.000 2.648 3.408 0.9264 0.7222 0.7664 0.5789
71 3273 2649 4.000 3.396 sup(hi,hz) 0.8316 0.8246 0.9369 0.9338 7
1.869 3408 3.396 4.000 0.9853 0.7474 0.9859 0.8737
0.6922 0.9369 0.8948 0.7474
Step 6 Aggregate cubic uncertain linguistic fuzzy numbers 0.8737 0.9719 0.8316 0.8246
f h alt tive by th LFPEWA tor:
or each alternative by the CU operator Ly | 07895 09438 0.9508 09561
hy =((55 3164, 85 6706, [0.1236,0.2095]; 0.8802), suplhy 1) =1 0.9508 0.8878 0.8685 0.9473
0.4106 0.8422 0.7895 0.9210

]

=((55.3094, 85.4055) [0.0858,0.2334]; 0.6836),

:<(S5_31937 S5,4011>7 [01993, 0.2157]; O7497>,
( ) [ ]

h4 :< 85.3213,55.3856 ) » 00908,06370 708491>
Step 7 Calculate the value E(h;) of h; (Fig. 5).
E(hy) = s0.2632; E(h3) = 5024055 E(h4)

E(hy) = 50.0078; = 50.2265-

’r @ Springer

Step 2 Calculate T(h{")) (i = 1,2,3,4; j = 1,2,3,4).
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Fig. 5 E(h,) is the first 03
expectation value, E(h3) is the
second expectation value, E(hy4)
is the third expectation value, 0.25
E(hy) is the 4th expectation
value
0.2
0.15
0.1
0.05
0
E(h1)
1.9894 2.4148 2.6516 2.5053
T(hl) B 2.7189 2.3579 1.8263 2.4579
i 1.7189 2.7631 2.5158 2.2824 |’
1.6368 2.2263 2.7807 3.0579
27264 2.5022 2.1569 1.3789
T(hz) _ 2.1316 2.0246 2.1369 1.3338
V| 21653 2.6474 23859 2.0737 |’
1.5922 2.4369 2.7948 2.5474
2.6737 2.7316 2.5316 2.6246
T(h3) B 1.8895 2.5438 2.0508 2.5561
¥ 2.0908 2.4878 2.4685 2.4473
23106 2.6422 2.1895 2.721
Table 5 Decision matrix
Cy Cy C3 Cy
[s1.0012, [s1.000, [51.1904 [s1.0555,
515015], 532306]; 513035), 51.5408],
< [0.7156,> < [0.8650, > < [0.7856, > < [0.6857, >
0.8704], 0.8886], 0.8960], 0.9226],
0.2275 0.2206 0.2152 0.1882
[S1A1075, [Suazz, [Smoo, [Smom
51.3493]7 51.1622], 51.4820}, S1.5668L
< [0.6516,> < [0.7275, > < [0.5479, > < [0.7261, >
0.7395], 0.8977], 0.8604], 0.9000],
0.2374 0.1280 0.1292 0.1834
[51,10267 [51,16937 [81.1250, [81.11487
51.5659]; 513677)5 s1.1250)5 513105],
< [0.9368,> < [0.8324, > < [0.7632, > < [0.7581, >
0.5433], 0.9620], 0.9490], 0.8815],
0.0445 0.1452 0.1370 0.1307
[SL1990, [Smoss, [S1A1581, [SlA1598,
51.4919], s13216), 512549], s12216],
< [0,6008,> < [0.7981, > < [0.8311, > < [0.8386, >
0.8276], 0.9311], 0.9405], 0.9789],
0.1833 0.1310 0.1473 0.1597

E(h2) E(hs) E(ha)

Step 3 ' Utilize the CULFPEWG operator to aggregate all
the three decision matrices mentioned above into the fol-
lowing decision matrix given in Table 5.
Step 4 ' Calculate the supports
(k; j=1,2,3,4).
1.000 0.915 0.904
0.915 1 0.489 0.916
0.904 0.489 1 0.958
0.678 0916 0.958 1
1.000 0.929 0.832 0.141
0.929 1 0.901 0.614
0.832 0.901 1 0.824
0.141 0.614 0.824 1
1.000 0.463 0.789 0.156
0.463 1 0.302 0.972
0.789 0.302 1 0.859
0.156 0972 0.859 1
1.000 0.706 0.748 0.894
0.706 1 0.957 0.906
0.748 0.957 1 0.755
0.894 0.906 0.755 1

according to

0.679

sup(hlj, hlj) =

sup(hoj, hyj) =

sup(haj, haj) =

sup(haj, haj) =

Step 5 Calculate T'(hy) (i,j = 1,2,3,4).

4.000 3.013 3.273 1.869
3.013 4.000 2.648 3.408
3.273 2.649 4.000 3.396
1.869 3.408 3.396 4.000

T(hy) =

Step 6 ' Aggregate the cubic uncertain linguistic fuzzy
numbers for each alternative by the CULFPEWG operator.
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Fig. 6 E(h;) is the first 0.9
expectation value, E(h3) is the

second expectation value, E(hy4) 0.8
is the third expectation value,
E(hy) is the 4th expectation 0.7
value in the CULFPEWG
operator 0.6
0.5
0.4
0.3
0.2
0.1
0

E(hi)

(s1.0791, 51.8030), [0.7657,0.9006
( [0.6743,0.8472

(11261, 513472), [0.8367,0.8065
=((s1.1503, S1.3116), [0.7725,0.9241

:0.2166),
:0.1713),
:0.1097),
:0.1529).

(
=
=(

)
50.5636, 51 .3497) )
)

Step 7' Calculate the value E(h;) of h; (Fig. 6).

E(hy) = so3353; E(hy) = So.5354; E(h3) = 50.8053;

E(hs) = s07847-

Step 8' Rank E(h;) in descending order; we can get the
best alternative.

E(hy) > E(h3) > E(hg) > E(hy). A, is the best choice.

Step 9 End.

Results and discussion

See Table 6.

Comparison analyses

In order to verify the validity and effectiveness of the
proposed approach, a comparative study is conducted using
the methods of intuitionistic linguistic fuzzy number [24]
and intuitionistic uncertain linguistic fuzzy number [21],
which are special cases of CULFNS, to the same illustrative
example (Fig. 7).

E(h,) E(hs) E(ha)

A comparison analysis with the existing MCDM
method intuitionistic linguistic fuzzy number

The intuitionistic linguistic fuzzy number can be consid-
ered as a special case of cubic uncertain linguistic fuzzy
numbers (CULFNs) when there is the element in mem-
bership and non-membership degrees. For comparison, the
intuitionistic linguistic fuzzy number (ITrFNs) can be
transformed to CULFNs by calculating the average value
of the membership and non-membership degrees [24].
After transformation, the intuitionistic linguistic fuzzy
number (ILFNs) information is given in Table 7.

Step 1 Calculate the ILFWA operator and
w = (0.30,0.28,0.20,0.22)".

Step 2 Calculate the score
—s07165; E(h2) = —s1.7515 E(h3) =
E(hs) = —50.9801-

Step 3 Find the ranking
E(hy) > E(h3) and E(h,) (Table 8).

function E(h;) =
—50.36325

E(/’lz) > E(h4) >

A comparison analysis with the existing MCDM
method intuitionistic uncertain linguistic fuzzy
number

The intuitionistic uncertain linguistic fuzzy number can be
considered as a special case of cubic uncertain linguistic
fuzzy numbers (CULFNs) when there is the element in
membership and non-membership  degrees. For

Table 6 Results and discussion

of above values Score value CULFPEWA operator Ranking 1 CULFPEWG operator Ranking 2  Final ranking
E(hy) 50.0978 4 50.8353 1 1
E(hy) 502632 1 50.5354 4 4
E(h3) 50.2495 2 50.8053 2 2
E(hy) 50.2265 3 50.7847 3 3
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4.5

Fig. 7 Comparison analysis

3.5

2:5

1.5

0.5

Table 7 Intuitionistic linguistic fuzzy decision matrix

Cy Cy C; Cy

< 02,06 > < 04.08) > < 05.09) > < 0.4.09) >
(ads)  p2bm)  (oros)  (pion)
< 07.0.13] > < 04.0.8] > < 0.4.0.8] > < 03.06] >
(oiva)  (osoa) (oaos) (psos)

Table 8 ILFWA operator 522973, [0.4408, 0.7532]

[
52,9562, [0.2845,0.6798]
8§2.4914, [04033, 05491]
525622, [0.2971,0.6796]

o~ o~~~
= = " -

comparison, the intuitionistic uncertain linguistic fuzzy
number can be transformed to CULFNs by calculating the
average value of the membership and non-membership
degrees [21]. After transformation, the intuitionistic
uncertain linguistic fuzzy number information is given in
Table 9.

Step 1 Calculate the IULFWA operator and w =
(0.30,0.28,0.20, O.22)T (Table 10).

Step 2 Calculate the score function E(h) =
s1.8276; E(h2) = —s02160; E(h3) = —S0.1437; E(hs) =
—S81.4547-

Step 3 Find the ranking E(hy) > E(hs) > E(hy) >
E(/’l3) and E(hl)

The ranking values of the above discussion are given in
Table 11.

The following advantages of our proposal can be sum-
marized on the basis of the above comparison analyses.

3
1
0.8353 0.8053 0.7847
0.5354
() 2632 0.2495 0.2265
= 0.0978
1 1.5 2 2.5 3 3:5 4 4.5
Table 9 Intuitionistic uncertain linguistic fuzzy decision matrix
Cy
[s2, 53], [s1,52], [s2, 53], [s2, 8],
[0.4,0.8] [0.7,0. 18] [0.5,0.19] [0.1,0.4]
(53, 54], [52,52], [s1, 53], [s1,54],
[0.5,0.10] [0.2,0.6] [0.1 06] [0.3,0.7]
[32733] [Sz,S4] [51»33]7
[0.9,0.15] [0.4,0.9] 0 2 0 7] [0.2,0.6]
[s1,52], [s1, 53], [52, 2], [s3, 53],
[0.2,0.4] [0.3,0.8] [0.4,0.9] [0.4,0.9]

Table 10 IULFWA operator

[1.8661+ 53.6074), [0.5295,0.2580]
[s1.6515, 535895, [0.3201, 0.3567]
[513105 512010, [0.4789, 0.5632)]
[s1.4831, 52,1908 [0.2969, 0.7431]

o~ o~~~
= = =

Cubic uncertain linguistic fuzzy number (CULFN) is very
suitable for illustrating uncertain or fuzzy information in
MCDM problems because the membership and non-mem-
bership degrees can be two sets of several possible values,
which cannot be achieved by Intuitionistic linguistic fuzzy
numbers (ILFNs) and intuitionistic uncertain linguistic

Table 11 The ranking values of the above all given methods

Method Ranking

CULFPEWA operator E(hy) > E(h3) > E(hs) > E(hy)
CULFPEWG operator E(hy) > E(h3) > E(hy) > E(hy)
ILFWA operator [24] E(hy) > E(hs) > E(h) > E(h3)
IULFWA operator [21] E(hy) > E(hy) > E(hy) > E(h3)
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Fig. 8 Flowchart of whole paper

Cubic uncertain linguistic set

Operational laws

Normalized Hamming distance between aland a2

Einstein operations of cubic uncertain linguistic numbers

Cubic uncertain linguistic fuzzy powered Einstein averaging (CULFPEA) operator

Cubic uncertain linguistic fuzzg F})owered Einstein weighted averaging

(CULFPEWA) operator

Cubic uncertain linguistic fuzzy powered Einstein geometric (CULFPEG) operator

Cubic uncertain linguistic fuzzg é)owered Einstein weighted geometric

fuzzy numbers (IULFNs). On the bases of basic operations,
aggregation operators and comparison method of cubic
uncertain linguistic fuzzy number can be also used to process
intuitionistic linguistic fuzzy numbers and intuitionistic
uncertain linguistic fuzzy number after slight adjustments,
because cubic uncertain linguistic fuzzy number (CULFN5)
can be considered as the generalized form of intuitionistic
linguistic fuzzy numbers (ILFNs) and intuitionistic uncer-
tain linguistic fuzzy numbers (IULFNs). The defined oper-
ations of cubic uncertain linguistic fuzzy numbers
(CULFNSs) give us more accurate than the existing operators.

Conclusion
In this paper, we define the idea of cubic uncertain lin-

guistic set and operational laws of cubic uncertain lin-
guistic set. We initiated the concept of cubic uncertain
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(CULFPEWG) operator

Numerical Application

Comparison analysis of score function

linguistic set. The concept of cubic uncertain linguistic set
is the generalization of cubic number, intuitionistic
uncertain linguistic fuzzy numbers, cubic uncertain lin-
guistic fuzzy set and interval-valued uncertain linguistic
fuzzy numbers. We proposed a new decision method to
solve the MCDM problems. The cubic uncertain linguistic
numbers are a valuable instrument to convey the fuzzy
information. This paper focuses on multi-attribute group
decision-making (MAGDM) problems in which the attri-
bute values are expressed by cubic uncertain linguistic
numbers. The definition and some basic operations of cubic
uncertain linguistic numbers, power aggregation (PA)
operators and Einstein operations are introduced. Then, we
apply the Einstein operations to the PA operators under
cubic uncertain linguistic environment and put forward
some new aggregation operators such as cubic uncertain
linguistic fuzzy powered Einstein averaging operator, cubic
uncertain linguistic fuzzy powered Einstein weighted
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averaging operator, cubic uncertain linguistic fuzzy Ein-
stein geometric operator and cubic uncertain linguistic
fuzzy Einstein weighted geometric operator. We also dis-
cuss some properties of them in detail. Further, we propose
the decision making for MAGDM problems with cubic
uncertain linguistic information and show the detail deci-
sion steps. In the future, we should try our best to use the
proposed operators to extend the scope of application
(Fig. 8).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creative
commons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give
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link to the Creative Commons license, and indicate if changes were
made.
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