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Abstract

The aim of this paper is to discuss the estimation and prediction problems for the Burr type-III distribution under progressive
type-II hybrid censored data. We obtained maximum likelihood estimators (MLEs) of unknown parameters using stochas-
tic expectation maximization (SEM) algorithms, and the asymptotic variance—covariance matrix of the MLEs under SEM
framework is obtained by Fisher’s information matrix. We provide various Bayes estimators for unknown parameters using
Lindley’s approximation method and importance sampling technique from square error, entropy, and linex loss functions.
Finally, we analyze a real data set and generate a simulation study to compare the performance of various proposed estima-

tors and predictors under different situations.
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Introduction

In many lifetime and reliability studies, the experimenter
may not always obtain complete information on failure times
for all experimental units. The experimenters remove some
unit from the experiment, or in some cases, it may happen
that some units are unintentionally lost from the experiment.
So, the censored data obtained from such experiments and
censoring occur commonly. Type-I censoring and type-II
censoring are the most common censoring schemes [33].
One important characteristic of these two censoring schemes
is that they do not allow for units to be removed from the
test at any point other than the final termination point. The
mixture of type-I and type-II censoring schemes is known
as the hybrid censoring scheme which was firstly introduced
by Epstein [16], and it becomes quite popular in reliability
and life testing experiments. A lot of work has been done
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on hybrid censoring and many different variations in it (see
[6, 11, 14, 21, 22]). For example, Fairbanks et al. [17] intro-
duced the type-I hybrid censoring (HCS) and considered the
special case when the lifetime distribution is exponential.
The main disadvantage of type-I HCS is that most of the
inferential results need to be developed in this case under
the condition that the number of observed failures is at least
one; moreover, there may be very few failures occurring
up to the pre-fixed time, which results in low efficiency of
the estimator(s) of the model parameter(s). For this reason,
Childs et al. [11] introduced an alternative hybrid censoring
scheme that would terminate the experiment at the random
time 7% = max{X,,.,..,, T'}. This hybrid censoring scheme
is called type-II hybrid censoring scheme (type-1I HCS),
and it has the advantage of guaranteeing at least m failures
to be observed by the end of the experiment. If m failures
occur before time 7, then the experiment would continue
up to time 7 which may end up yielding possibly more
than m failures in the data. On the other hand, if the mth
failure does not occur before time 7, then the experiment
would continue until the time when the mth failure occurs
in which case we would observe exactly m failures in the
data. Hybrid censoring schemes have been introduced in
the context of progressive censoring as well. Kundu and
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Joarder [23] discussed type-1I progressive hybrid censor-
ing scheme (Type-1I PHCS). Type-II PHCS overcomes the
drawback of the type-I PHCS that the maximum likelihood
(ML) may not always exist. In brief, progressive type-II
hybrid censoring scheme can be described as follows. Con-
sider n identical, independent units with distinct distribu-
tions which are placed in a lifetime test, each random vari-
able X, ... Xo:p:poe-»Xpm:m:n 1S identically distributed, with
p.d.f f(x;0) and c.d.f F(x;0), where 6 denotes the vector of
parameters (a, ). The correct value of m (m < n)is a random
variable. Suppose R, R,, ..., R,, are fixed before the start of
the experiment called progressive censoring scheme with
R; > 0 and 2;":1 R; +m = n is specified in the experiment.
Under the type-II progressive censoring scheme, at the time
of the first failure, X;. ., , R of the n — 1 surviving units are
randomly withdrawn from the life test, then at the time of
the second failure X,. ., , R, of then n — R, — 2 surviving
units are withdrawn, and so on, and finally at the time of
mththe failure X,,,.,,,.,alR,, =n—R;, — R, — - =R, _,
surviving units are withdrawn from the life test. Since
R;s are pre-fixed, let us denote these failure times
Xiomn X500 < £ X, though their distributions
depend on R’s. The type-II PHCS involves the termination of
the life test at time 7 = max{X,,.,,.,» T} , and let D denote
the number of failures that occur before time T, and d shows
the observed value of D. Then, if X,,., > T, the experiment
would terminate at the mthfailure, with the withdrawal of
units occurring after each failure according to the pre-fixed
progressive censoring scheme (R, R,,...,R,,). However,
if X,,., < T, then instead of terminating the experiment by
removing all remaining R,, units after the mth failure, the
experiment would continue to observe failures without any
further withdrawals up to time 7. Thus, in this case, we have

—m

where a and g are the shape parameters of the distribution.
Burr [7] introduced twelve cumulative distribution func-
tions for fitting various failure lifetime data. Among these
distributions, Burr type-III distribution can accommodate
different hazard lifetime data, so it has received considerable
attention in the recent past. Also, it can properly approximate
many well-known distributions such as Weibull, gamma, and
log-normal for fitting lifetime data. This makes it worthwhile
model to these distributions. Inferences for the parameters
a and f of Burr(a, #) distribution have been investigated by
many researchers such as [3, 4, 9, 26, 28, 31, 32, 37]. We
have organized the rest of this paper as follows. The MLEs
of unknown parameters are discussed in “Maximum like-
lihood estimation” section. We have proposed SEM algo-
rithm for this purpose. The asymptotic confidence intervals
are also constructed by using fisher’s information matrix in
“Fisher’s information matrix” section. Bayes estimators are
obtained with respect to loss functions in “Bayesian esti-
mation” section. In “Data analysis” section, a real-life data
set is analyzed to illustrate the proposed statistical methods,
and also Monte Carlo simulations have been performed for
comparison purposes in “Simulation study” section. Finally,
a conclusion is given in “Conclusion” section.

Maximum likelihood estimation

In this section, we derive MLEs of the unknown param-
eters of the Burr type-III distribution when the lifetime
data are observed under progressive hybrid type-II censor-
ing. Suppose that x = (x(l),x(z), ,x(m)) from Case I and
Xe = (X1)s X@)s +++ s Xm: :memys -+ » X(p:y) from Case II are
observed sample from Burr(a, f) distribution under progres-

R, =R, = =Ry = 0,and the resulting failures times  sive hybrid type-II censoring scheme. Then, the likelihood
are indicated by X, ..., Xo.pon> -+ s Xonomens Xona1:n0 -+ » Xg:n-  function of (a, ) given the observed data x can be written
We denote the two cases as Case I and Case II, respectively:  as:

Casel : {Xlzm:n < XZ:m:n << Xm:m:n}’ ime:m:n 2 T’

Case Il : {Xlim:n << Xm:m:n < Xm+1:n << XD:n}’ ime:m:n <T.

In this paper, we consider the estimation and prediction of
unknown parameters of Burr type-III distribution under pro-
gressive type-1I hybrid censored sample from both classi-
cal and Bayesian perspectives. Also, we provide predictive
estimates and intervals for future unknown observable value
based on some priori information. The p.d.f and c.d.f of a
random variable X following Burr type-III distribution have
the following form

fa, ) =apx P 1A +x?) " x>0,a>0, >0,
)

Fxia,p) =1 +x7% x>0 a>0,p>0. 2)
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Case I: L(0) = |11 f(X;. .31 = F(X;.p 3155 (3)

Case II: L(9) = ¢, ]17 f(X;.,p..;O[1 — F(X;.,..,:0)]1%
D . RD (4)
0, /(X0 [1 = F(T)]
where
c,=nn—-R, -1)..(n—-R, —R,— -+ —R,_, —m+1);
¢ =nm—-R -1)..n—R —Ry— =R, | —D+1),
and
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m—1 m—1
=Y R.R,=0, Ry=n-D-)R.D>m
k=1

D=m+1,...

and f(.;a, f) and F(.;a, ) are as defined in Eqgs. (1) and
(2). Now using the associated log-likelihood function
[ =InL(a, p | x), ML estimates of a and # can be obtained
on simultaneously solving the partial derivatives equations
of [ with respect to a and f. In most cases, the estimators
do not admit explicit expressions and some numerical pro-
cedures such as Newton—Raphson method (NR) have to be
used to determine the estimators. NR is a direct approach for
obtaining the MLEs by maximizing the likelihood function
and a well-known numerical algorithm for finding the root of
a function or equation [39]. It involves calculation of the first
and second derivatives of the observed log-likelihood with
respect to the parameters. However, when employing NR

m R;

Expectation-Maximization (EM) algorithm

The EM algorithm was introduced an iterative procedure to
compute the MLEs in the presence of missing data and con-
sists of an expectation (E) step and a maximization (M) step
by Dempster et al. [12]. Dealing with hybrid censored obser-
vations, the problem finding MLEs of unknown parameters
with the Burr type-XII model can be viewed as an incom-
plete data problem [30]. Under progressive hybrid type-II
censoring, X(i) shows at the time of ith failure, and R; shows
the number of units which are removed from the experi—
ment. Now suppose that Z; = (Z;, Z,, ..., Zg),i = 1,

and Z = (Z,, 2, ... Z ) denote a vector of those R; and RD
number of censored units. Then, the total censored data can
be viewed as Z = (Z,, Z,, ..., Z,,) and 7 = (ZI,ZZ, ,ZRD).
Now the complete sample of n number of units can be seen
as a combination of the observed data and the censored data,
that is, W = (X, Z, Z). Consequently, the log-likelihood func-
tion of the complete data set can be written as:

log L(W;a, p) = nlogf + nloga + (—f — 1) Zlogx + 2 ZZU + Z logx; + Zlogzl

i=1 j=1

i=m+1

+(—a—1) ZIOg(1+xﬂ)+ZZIOg(1+Zﬂ)+ 2 log(1 +x;7) ®)

i=1 j=1

RD
+ ) log(1+2) |.
=1

i=m+1

method, some errors can be occur, such as time-consuming
depending on the size of your system, or may fail to conver-
gence. So, the traditional NR method or a numerical tech-
nique that can be used to solve the associated log-likelihood
partial derivative equations as a closed form for the MLEs
does not exist. Here we use the expectation-maximization
algorithm for this purpose, see [12]. The main advantage of
this algorithm is that: it is more reliable particularly dealing
with censored data. Note that the Case I has been discussed
by Singh et al. [15]. So, our aim in this paper is that we pro-
pose the classical and Bayesian estimation for Case II; they
are given in the next sections.

p=n Zlnx(l)+ Z lnx(,)+221nzy+21nzl

i=m+1 i=1 j=1

=
nox, Inxg lnx(l)

ﬂlnz

Now, by taking the partial derivatives with respect to  and f
and equating them to zero, we get the following expressions

m D
— —p
a=n Zln(l +x0)+ 'len(l +x.7)
i= i=m+

= Q)

=

i

Rp
In(1+2,") + > n(1+£7)
1 =1

)

i=1 j

(N

-1
& 57 Ing

~@+ 1Y 2

. -5
S+

m R;
ij
R )R

i=m+1 (1 +-x(l)) i=1

S1+%7
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The above two equations need to be solved simultaneously
to obtain the ML estimates of (a, #). EM algorithm consists
of two steps. In E-step, expression of the censored observa-
tions is replaced by their respective expected values. Further,
M-step involves the maximization of E-step. Now suppose
that at the kth stage in E-step estimate of (a, f) is (a®, p0);
then, after using the M-step it can be shown that the (k + 1)th
stage updated estimators are of the form

kD = p Zln(1+ )+ 2 In(1 +x7")
i=m+1
+ Z RiE; (@, p©) + RpEy (), p©)
i=1

m D m
PED =n| Y Inxy + Y Inxg D RiEy(@®, pO) + RyEL(@®, p©)
i=1 i=m+1 i=1
_ﬂ(k)
X lnx(i)
Ty 9
o )

m X

D
(a(k+l)+1)[2 (0 — 2

) i=mt1 (1 +x

11(1+ (l)

-1
m
+ Z RiESi(‘I(k)’ pP) + RDEGi(a(k), ﬂ(k))>:|

i=1

where

E(a,p) =

Py l+x(_’)ﬁ
= —/ w @D Iy du,
1- F(X(i);as B Ji

Exfa.f) = En(1+57) | 2> x)

o 1+7-F
— —(a+1)l d
- F(Ta, ﬂ)/, " e,

E(In(1 + Zi]_.ﬂ) | 2 > X))

Es(a, p) = E(Inz; | z; > x;)
= * / Y@ In = 1) du,
Bl - F(x(i);a, /) )i
E,(a,p)=E(nz |z, >T)

1+77°
- #/ WD In(w — 1) du
A = F(T;a, B)) J, '

z, ﬂlnzj
Es(a, p) = —_ | Zij > X
1 +zij

1
[04

" B = Figia, M) it

¢/ Ing,
E¢(a,p)=E |z >T
1+ z[.

1

u Dy — Din(u — 1) du,

a

== —(a+2)(,, _ _
= B = F(T;a, §) WP~ 1 In(u ~ 1) du,

1+T-F
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Notice that the iterative procedure in M-step can be ter-
minated after the convergence is achieved, that is, when
we have |a®+D — g®| 4 |p*+D — p0| < ¢ for some given
e > 0. However, one of the biggest disadvantages of EM
algorithm is that it is only a local optimization procedure
and can easily get stuck in a saddle point [40], in particu-
lar with high-dimensional data or increasing complexity
for censored and lifetime models. A possible solution to
overcome the computational inefficiencies is to invoke sto-
chastic EM algorithm suggested by Celeux and Diebolt [8,
19, 29, 38]. It can be seen that the above EM expressions
E(a,p),s =1,2,3,4,5,6 do not turn out to have closed
form, and therefore, one needs to compute these expressions
numerically. So, we used the stochastic expectation maximi-
zation (SEM) algorithm to obtain ML estimators.

SEM algorithm

In this section, the SEM algorithm is used in computing
MLEs of unknown parameters. Diebolt and Celeux [13] pro-
posed a stochastic version of EM algorithm that replaces
the E-step by stochastic (S-step) and execute it by simula-
tion. Thus, SEM algorithm completes the observed sample
by replacing each missing information by a value randomly
drawn from the distribution conditional on results from the
previous step. The algorithm has been shown to be compu-
tationally less burdensome and more appropriate than the
EM algorithm in a lot of problems, see [2, 13, 35]. Recently,
Zhang et al. [40] considered SEM algorithm to obtain ML
estimates for unknown parameters of various models when
the data are observed under progressive type-1I censoring;
also they compared the results with EM algorithm. Next,
we use the same idea to generate the independent R; num-

ber of samples ole],z =1,2,...,mand j=1,2,...,R; and
=y, ... S ZiRys s Ll oo ,ZmRi),Z =(Z,,2,,... ,ZRD)
from the following conditional distribution function
Gi( Bl >xs) F(Z,;/;a, B) — F(xga, p) S
(z:a, i X)) = 5 Zjf Xy
i\Zjj Zjj @) 1 — F(x(i);a, B) Zjj @)
F(sa, p) — F(Tsa, p)
GGpa,plz,>T) = ,>T.
1o, Bl g ) 1 —F(T.a B) <y

Subsequently, the ML estimators of @ and f at the (k + 1)th
stage are given by

o« =p [ 3 In(1 + 5 + 2 In(1 +x )
i=1

i=m+1

-1(10)

+221n(1+z P ))+Zln(1+z[ﬂ(k))

i=1 j=1
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0_21 921 1
(k+1) & —l da? 0ugp ]
=n lnx + Inx,; + ln + ln ol ol ’
m PO x D x POy where
— (@™ 4 1) 2 N0 9, Z 0 @
S A+ =+ )
=l 0 i=m+1 0 Pl m R i F(xsa, p)In(l + x, )?
m R P® Inz; Ry 5= | 2 02 a? i P 1 — F(x;;a, B)
+ Z Z lj Z 3 = »
SET Y 1 R R (1 4 2
1 - F(x;a, p))?
D-m RyD-mF(T:a p)In(l+TF)
2 1 - F(T;a,
Further, the above iterative procedure can be terminated . * ) (Ta ﬁﬁi
after the convergence is achieved. _Rd(D —mF(Ta, f)"In(1 +T77)
(1 = F(T;a, p))*
Fisher’s information matrix ey i ﬂln(x)
60:6/3 P 1+ x
In this section, we present the observed fisher’s informa- - e (1 42~
tion matrix obtained by using the missing value principle of + Ri(z ( i, )‘:’;z‘ () In(l +x7)
Louis [27]. The observed fisher’s information matrix can be i=1 (I+x90 - Flxza, §))
used to construct the asymptotic confidence intervals. The F(x;a, ﬂ)xi_ﬂ In(x;)
idea of missing information principle is as follows: - (1 +x7)1 = Fxa, B))
Observed information = Complete information - Fee AP In(1 +; e’ In(xy) >>
— Missing information. (1 = Flxsa fR(0 +x7) (13)

This section deals with obtaining fisher’s information matrix
which will be further used to compute interval estimates for
the unknown parameters of the Burr type-III distribution.
The asymptotic variance—covariance matrix of the MLEs of
(a, p) can be obtained by inverting the observed information

matrix and is given by
()2 In(x)?
(1+x7)2

Fxza, f)a?(x;”)? In(x,)?

X7 Inx,)?

1+x7

i xi_ﬂ In(x;)
izmt1 1+ X,-_ﬂ

R, (D — m)F(T;a, f)aT~ In(T) In(1 + T~#)
(1 +T-%)(1 - F(T;a, §))
R, (D — m)F(T;a, /)T~ In(T)
T T A+ T - F(T:a, p)
Rd(D m)F(T;a, f)* In(1 + T~?)aT~? In(T) In(1 + T~#)
(1 = F(T:a, £)2(1 + T-F) >

Fxza, fa(x; ) In(x,)?)

+R, -
<§‘ < (1451 = Flxsa, )

(F(xza, f)Ya’(x;")? In(x,)? D—m
(1 +x72(1 = Fxza, p)P r

Do /3P Inx)? ()2 In(x,)?
_ +1 i 1 _ i 1
“ )<,~=§11( 1+x7 1 +x7)2 >>

_ Ry(D = mF(Tsa, f)a>(T~")* In(T)?

U+ (0 = Pl p)

(14)

R(D — m)F(T;a, f)aT~" In(T)?

(1+T-%2(1 — F(T;a, B)
~ R,(D — m)F(T:a, p)aT~" In(T)? ~

A+T%1 - F(T;a, p)
Ry (D — m)(F(Tsa, §))*a>(T~*)? In(T)>?

1+ T-%)2(1 — F(T;a, )

(1+T-%2(1 — F(T;a, B)?
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Next, we use the SEM algorithm to compute observed
information matrix. We first generate the censored observa-
tions z; using Monte Carlo simulation from the conditional
density as discussed in the previous section. Subsequently,
the asymptotic variance—covariance matrix of the MLEs of
(a, p) can be obtained as

2 2 -1

_ | 0a® oaop
2 0 '
opoa op> docapp

where [* = In L(w;a, f) given in (5). Further, the involved
expressions are given by
a2 ao?

azl* _ o xi_ﬁ ln(xl-) =
= (2(5)- (2

Riz;” In(z;)
1+z,.;ﬂ
m p 2
92 In(x;)
A
g )(Z(1+x ))

i=1
z,’ 1n<z )2 R,v(z;”)2 In(z;)?
(1+27)

—(a+ 1)<i (
i=1 ij

621* _ 621*
dadf dfda

Pl

Finally, in all the three cases using the idea of large sample
approximation the two-sided 100(1 — )%, 0 < y < 1, asymp-
totic confidence intervals for a and f, respectively, can be
obtained as @ + 2L v/Var(p) and § + 2t \/ Var(f). Here 2 is
the upper gth percentile of the standard normal distribution.
Notice that, here @ and y represent the ML estimates of « and
f, obtained by NR, EM algorithm and SEM algorithm in the
previous section.

Bayesian estimation

Suppose that a sample x = (x(l),x(z), ,x(m)) is observed
from Burr type-III distribution under progressive hybrid
type-II censoring scheme R = (R, R,, ..., R,). We assume
an independent gamma priors for the unknown parameters
a and g having pdfs of the following form:

a
(a) —%a)a“"e_b", a>0.b>0,
d° -1 —ap
= ,c>0,d>0.
z(B) F(c)ﬁ c

@ Springer

Here a, b, ¢ and d are the hyper-parameters and are respon-
sible for providing information about the unknown param-
eters. Now, the joint posterior density of (a, ff) can be written
as 7(a, f) = n(a)z(p). Further, the joint posterior density of
(a, p) given the observed data x is obtained as

(e, f)L(a, B | x)
s mla, HL(a, B | )dadp’

m

a(b+21n(l+x )+ Z In(14+x

m(a, f|x) =

!

— — (@)
O(K(XD-W lﬁD+c 1e i

m D m D
—pd+y Inxg+ ¥ Inxg) — Ylnxy— ¥ Inxg
i=1 i=m+1 e i=1 i=m+1

€

_ —hy_

. E;lln(prx ) z ln(1+x(l) R,ln(l—(1+x,_,,ﬂ)’“)
n(1—(14+T-Fy2

R In(1=(14T~)"0)

5)

where K is the normalizing constant given by

m ,
/ / oPra-1 ﬁD+c 1 a(b+Zln(l+x(l) )+ E 1“(1”(,) )

m
P+ T Inx+ 2 lnx(,))
e i=m+1

E Inxg— Z Inx,

_y h_
o &) ,_%11““”@) R, In(1=(14x,)70)

eRi In(1-(1+T-%)~)
(16)

In Bayesian estimation, selection of loss function plays an
important role. The most commonly used loss function is
square error loss, given by d¢; (g(9), 2(9)) = (g(0) — 2(6))%;
here g(6) represent an estimate of g(#). Bayes estimator of
g(0) under the square error loss is the posterior mean given
by

8seL(0) = E(g(0) | x) = /0 /0 8O)x(a, p | x)dadp.

a7
It is to be noticed that square error loss is a symmetric loss
function and it puts an equal weight to the under estimation
and overestimation. In many practical situations, underes-
timation may be more serious than the overestimation, and
vice versa. In such cases, asymmetric loss function can
be taken into account. So, we considered linex loss func-
tion which was proposed by Varian [36] and is given by
51.1.(8(0), 8(9)) = e¥D=¢@ — y(3(6) — g(6)) — 1, wherev # 0
is a shape parameter. Notice that v > 0 suggests the case
when overestimation is more serious than underestimation,
and vice versa for v < 0. The Bayes estimator of g(6) under
linex loss is given by



Mathematical Sciences (2019) 13:79-95

85

2.0 = — l In [E(e—vg(e) | x)]
v

{ w0 o (18)
=—=In [ / / e O z(a, p | x)dadp]|.
v 0 0

We further consider entropy loss function, given by

6pL(8(0), 8(0))  (8(0)/8(6))" — wIn(g(0)/g(6)) — 1, w # 0.
Here w > 0 suggests the case when overestimation is more
serious than underestimation, and vice versa for w < 0. The
Bayes estimator of g(#) under entropy loss function is given
by

2rL(0) = (E(g((0) ™ | x)~ '/

o oo - (19)
=[/0 /0 g((0) " z(a, B | x)dadp

Notice that for w = —1, Bayes estimator of g(6) under
entropy loss function coincides with Bayes estimator of g()
under square error loss function. Now, observe that Bayesian
estimators given by (17), (18) and (19) do not admit closed-
form expressions. Therefore, in the next section we use the

;o9 1
0= 5 =

S 1
R.
a(Z‘ (437 = 136 +1)3

approximation method of Lindley [25] and importance sam-
pling technique.

Lindley approximation

In this section, we use the method of Lindley to obtain
approximate explicit Bayes estimators of « and g. The
Bayesian estimates involve the ratio of two integrals; we
consider /(X) defined as:

® [ (a, ﬂ)el(a,ﬁlXHp(a,ﬁ)dadﬁ
I(X)=f° f?» i . (20)
/0 /0 el@plX+r@hdadp

By applying the Lindley’s method, /(x) can be approximated
as:

R . Lioa A A YA N A oA \a
8= g(“? ﬁ) + 5 [(gnn( + 2gapa)o-aa + (gaﬁ + zgap[i)o-aﬁ

@n

+(8pu 28580 8 pu + (8pp + 28P5) 5]
+ 5 [(g(xo-(m + gﬁaaﬂ) (laaao-rm + laﬁao-aﬂ + lﬂ(l(lo-ﬁa + lﬁﬂﬂaﬁﬂ)

+(84650 +865) (193635 + Lupp®pe + LpapBpa + lpuabia)]-
where

(n(x)* (1 + 27257 =31+ 772 o + (1 + 57 a?

=20+ x5 4300+ 5705 e+ P+ ) = A+ x4+ D)+ 2 )

m ln(xi)3(—xl/_3 +xi2ﬂ) X m ln(xi)f}(_xf +x?ﬂ) . Py 2m + Rz(
B Z— pra— Z— ’laaa=ﬁ= e

5 o+ pr N € )

. 3 ) 3 m a2y ?
laﬂﬂ=L=1ﬂﬂu=L=— 2— _R.
0ao?p 0po%a ~ (1+x72

i

In(1+x7)2 (U4 ?) +(142 )2 o
(45 7)y)=1)3

(22)
1

(1 +x77) = 13 +1)2

(In(x)*((1 +x,7)%)

In(1 +x7 o = (14577 In(1 +x7)a? = (1 +x77)* In(1 + 372l — o In(1 +x7)(1 +x77)"

— A+ 421+ 5770+ 22 (1 + 577y —2a(1 + x77)* — xf))

a—1 c=1 Rl 5l . Pl .
-1 B, p. = —b, p, = —dl =2t g =2t = 1=
p=nz(@.p). po Pr="5 = 52 PP o T Gpaa” P T Gaap
Pl Pl Pl Pl

Dopp = o howa =~ bapp = == Lypy = ==
PPP = gp3° @ ™ gg3” PP T ga02p” PP T 9po2a
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Here [(., .) denotes the log-likelihood function, z(a, f)
denotes the corresponding prior distribution, and o;; repre-
sents the (i, j)th element of the variance covariance matrix.
All the expressions in Eq. (19) are evaluated at the ML esti-
mates. Suppose, we want to estimate a under the squared
error loss. Then, we take g(a, f) = @ and subsequently
observe that g, = 1, 8,, = 8, = 8pp = 8pa = &ap = 0. Con-
sequently, the Bayes estimator of « is obtained as:

agpr, =E(a | X) =a +0.5[2p,6,, +2pp6,5 + 621

aaaaa

+ Guapplppa + 26450 palupp + Gupbpplppp]

where oy, i,j=1,2 are the elements of the variance-covar-
iance matrix of (&, f) as reported in “Fisher’s information
matrix” section. Other involved expressions (evaluated at
(a, B) = (&, p)) are reported in “Appendix.” In a similar way,
Bayes estimator of y under linex loss and entropy loss is,
respectively, obtained as:

A 1 —va
G = —;ln[E(e | X)]

E(@™ [ X)=a" +0.5[24460q + 8a(2Ps00q + 2056 0p + 62 lua
+ 6000 pplapa + 26upbpalapp + Gapbpplapp)]-

(24)
And with g(a, ) =a™ ,g, = —wa~®*D ¢ =ww+1)
a0, gy = g5 = 84, = 84p = 0. Similarly, Bayes estima-
tor of f under square error, linex and entropy loss functions
can easily be obtained. Details are not presented here for the
shake of brevity. Further notice that highest posterior den-
sity (HPD) interval estimates of & and § can not be obtained
using Lindley approximation. Therefore, we next use impor-
tance sampling technique for this purpose.

Importance sampling
Importance sampling is a very useful technique to draw

sample from the posterior densities. Observe that posterior
density given by (15) can be written as:

m D
2@, B | ) Ga|ﬂ<D+a,b+ Zln(l +xl+ Y ln<1 +xj_ﬂ>>

j=1 j=m1
m D
where Gﬁ(D +e,d+ 1nxj> + ) Inx)h(a, p)
Jj=1 Jj=m+1
E@e™™) =™ 4+ 0.5[8,404q + 8a(2P a0y + 256 0p + 62 luga (25)
+ 60u8pplpsa T 26450 palups + 6upbpplspp)] where
23)
o py 1nx/-—2j[;m+] Inx—-37, 1n(1+x;/’)—§;jﬂ=m+1 ln(l+x;ﬁ)+Rj In[1-(1+x,2)"1R, In[1-(1+T=F)==]
h(a, f) = — = 5 >
b+ ijl In(1+x") + ijmH In(1 +x;7))P*a
and with Now consider the following steps to draw samples from the
above posterior density.
— a— — - — 1 2a—
gla,f)=e"", g, = —ve " g, = ve,

8p = 8pp = 8pa = 8ap = 0-

Finally, the Bayes estimator of Burr type-III under the linex
loss function is given by:

1
g = E(@™ | X) W

where

Step 1. Generate f; from Gamma(D + c,d + Z:’;l Inx;
+ Zi.;m+l 1lej).

Step 2. Given the value of f;, generate a; from
m - D
Gamma(D + a,b + Y\ In(1 + x; ’y+ D iml
In(1 +x77))
Step 3. Repeat the steps 1 and 2 s times to obtain

(a17 ﬁl )7 (a27 ﬁ2)a L] (a_;’ ﬁs)

Now Bayes estimator of @ under square error and entropy
loss functions are, respectively, obtained as:

Table 1 Goodness of fit tests for

the real data set Model pdf & ﬁ NLC AIC BIC KS
G(a, p) %xa—l e Px 2.4731 0.0935 257.816 519.6326 5239188  0.1059
W(a, §) l%x""e( -1 )" 1.4298 29475 262.414 528.8282 533.1145 0.13796
GE(a, p) aﬁe’ﬂ"(l - e*ﬂX)“ 3.3274 0.0741 255.701 5154009 519.6872 0.1163
Burr (e, B)  f(x;a, B) 225.75 1.9555 249.247  502.4946  506.7809  0.0578
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Table2 SEM algorithn.l and n m Scheme SEM NR
NR average and MSE (in
parentheses) value when 7' = 8 @ I & I
30 20 (10,0%19) 0.4120(0.2320) 1.1632(0.2193)  0.6690(0.4068)  0.0520(0.4603)
(0,10, 0%19) 0.4755(0.0289) 1.6863(0.2081)  0.6532(0.3588)  0.0705(0.4248)
0719, 10) 0.5822(0.0051)  1.3904(0.1094)  0.5313(0.2712)  0.2888(0.3924)
25 (5,02 0.4327(0.4269) 1.2562(0.2911)  0.3264(0.3914)  0.0451(0.4263)
(0%12,5,0%12)  0.4628(0.0403)  1.7473(0.1408)  0.3237(0.3413)  0.0552(0.4067)
(0%24,5) 0.5200(0.0253) 1.6174(0.0464)  0.3166(0.2709)  0.0978(0.4170)
50 40 (10,0%) 0.4785(0.1343)  1.6293(0.2613)  0.3654(0.3012)  0.0212(0.3818)
(0*1°,10,0%20)  0.5532(0.0212) 1.2691(0.2817)  0.3649(0.2984)  0.0256(0.3520)
0", 10) 0.5037(0.0142)  1.4803(0.0233)  0.3644(0.2130)  0.0387(0.4104)
45 (5,0 0.4803(0.0213) 1.3685(0.2134)  0.1873(0.3120)  0.0189(0.4011)
(0°2,5,0"22)  0.5286(0.0157)  1.4152(0.1380)  0.1872(0.2906)  0.0208(0.4609)
(0%44,5) 0.5128(0.0126) 1.4610(0.0501)  0.1872(0.2270)  0.0252(0.41119)

o Zf-;l a;h(a;, B;)
o ijl h(a;, B;) ’
1 X e ke, B)
aqp=—-In|—/—""—
v i Wa, )

| i e B
P Zj:l h(ais ﬁl)

Next we use the method of [10] for computing HPD inter-
vals. Suppose that « is the unknown parameter of interest,
and z(a | x) and I1(@ | x). respectively, denote its posterior
density and posterior distribution functions. If a”’ denotes
the pth quantile of « then we have
aP =inf{a : TI(a | x) > p;0 < p < 1}. It can be observed
that for a given a*, a simulation consistent estimator of

1 S ZS= 1a<a*h(ai’ﬂi)
II(a* | x) can be obtained as: Il(a* | x) = === "~
(a* [ x) (a* | x) 3T hah
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Table 3 SEM algorithm and

. n m Scheme SEM NR
NR average and MSE (in
parentheses) value when 7 = 12 & B a B
30 20 (10,019 0.4546(0.0304)  1.2704(0.0593)  0.6690(0.4068) 0.0518(0.3142)
(0%, 10, 0*10) 0.4726(0.0173)  1.4317(0.1102)  0.6533(0.3687) 0.0701(0.4147)
(0*1°,10) 0.5722(0.0051)  1.5583(0.0102)  0.5332(0.3152) 0.2846(0.3671)
25 (5,0 0.4263(0.0461)  1.3253(0.0306)  0.3264(0.3964) 0.0451(0.4163)
(0%12,5,0%12) 0.4929(0.0124)  1.3674(0.0207)  0.3237(0.2962) 0.0551(0.4067)
(0%, 5) 0.5329(0.0103)  1.4923(0.0110)  0.3166(0.2634) 0.0975(0.2301)
50 40  (10,0%%9) 0.5891(0.0271)  1.3814(0.0216)  0.3654(0.2762) 0.0212(0.3018)
0*19,10,0%20)  0.5626(0.0147)  1.4897(0.2553)  0.3649(0.241) 0.0256(0.3620)
(03, 10) 0.5496(0.0092)  1.5340(0.0121)  0.3644(0.2601) 0.0386(0.298)
45 (5,0 0.5526(0.0062)  1.4712(0.0253)  0.1873(0.0307) 0.0189(0.3820)
(0%22,5,0%22) 0.5501(0.0109)  1.4845(0.0102)  0.1872(0.0204) 0.0208(0.3509)
0%%,5) 0.5124(0.0081)  1.5301(0.014) 0.1872(0.30439)  0.0252(0.2308)
Table 4 Asymptotic confidence m Scheme Asymptotic Bayesian
interval when 7 = 8
& i & I3
30 20 (10,0%19) (0.27331.2042)  (2.05481.1882) (0.72361.0013)  (1.31041.7953)
(0%, 10, 0%10) (0.35531.2686)  (1.04312.3293) (0.35100.8911)  (1.42581.9121)
(0*19, 10) (0.58210.6022)  (0.94831.88041)  (0.31160.7914)  (1.51461.9227)
25 (5,014 (0.28391.9495)  (1.18862.1763) (0.44790.7208)  (1.24292.0297)
(0%12,5,0%12) (0.38310.8822)  (1.04642.1864) (0.36700.5381)  (1.36282.6144)
(0*24,5) (0.34090.8989)  (1.06832.0263) (0.51960.6992)  (1.40882.1087)
50 40  (10,0%%) (0.46472.3056)  (1.0992.5507) (0.45710.6271)  (1.59232.5084)
(0*19,10,0*20y  (0.51160.8947)  (0.99121.5468) (0.39510.5292)  (1.4042.5299)
(0%, 10) (0.47590.5314)  (0.96291.6028) (0.40180.5290)  (1.31491.8172)
45 (5,0"%) (0.44680.5291)  (1.00482.1335) (0.41840.5771)  (1.40512.2780)
(0%22,5,0%%2) (0.49780.5594)  (0.99801.5390) (0.38270.5256)  (1.40661.975)
(0*%,5) (0.48800.5375)  (0.96691.5551) (0.39280.5219)  (1.49961.7523)
Table 5 Asymptotic confidence " Scheme SEM Bayesian
interval when 7" = 12
& ] & p
30 20 (10,0%1%) (0.2737,0.6754)  (0.8916, 1.9190)  (0.3744, 0.8914)  (1.1574, 1.5437)
(0,10, 0719y (0.4386, 0.5064)  (1.0008, 1.8626)  (0.3235,0.8211)  (1.2940, 1.6956)
(0*1°,10) (0.5821, 0.6022)  (0.9483, 1.8804)  (0.3220, 0.8039)  (1.4793, 1.8759)
25 (5,01 (0.4856,0.8142)  (0.9656, 1.5848)  (0.4313,0.6345) (1.2187, 1.6043)
(0*12,5,0%12) (0.4013, 0.8905)  (0.9525,1.7822)  (0.4614, 0.5244)  (1.3084, 1.6687)
0*%*,5) (0.3409, 0.9989)  (1.0683,2.2463) (0.4072,0.7884)  (1.3905, 1.7728)
50 40 (10,0%%) (0.4725,0.7520)  (0.9466, 1.8755)  (0.3487,0.8764)  (1.5073, 2.1025)
(0*12,10,0%20)  (0.4603,0.6178)  (0.9732,1.7862)  (0.4024,0.5381)  (1.4735, 1.8837)
(0%%,10) (0.3118, 0.680) (0.9747,1.7531)  (0.4136, 0.5439)  (1.4031, 1.8391)
45 (5,0 (0.5888, 0.6130)  (0.9228, 1.6716)  (0.4342,0.5994)  (1.4431, 1.728)
(0%22,5,0%2) (0.5382,0.5811)  (0.9761, 1.7928)  (0.3956, 0.5340)  (1.4515, 1.681)
(0*4,5) (0.5225,0.5542)  (0.9774,1.6142)  (0.4044, 0.5357)  (1.4297, 1.6603)
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tne Lindley soprosimationany T " m  Scheme B LB EB
risk value & B & B & B
8 30 20 (10,0*19) 0.3804 1.3334 0.3804 1.3313 0.3824 1.3346
0.1299 0.1146 0.0986 0.0184 2.4280 0.2298
(0%, 10, 0*19) 0.6277 1.4314 0.6269 1.4355 0.6294 1.4364
0.1699 0.0513 0.0746 0.0010 0.2076 0.2011
(0*12,10) 0.4159 1.4024 0.4131 1.4016 0.4523 1.4066
0.0595 0.2281 0.0281 0.1058 1.8930 0.9650
25 (5,024 0.3915 1.3297 0.3919 1.3253 0.3942 1.3277
0.2386 0.2235 0.1018 0.1881 0.3451 0.38029
(0*12,5,0%12) 0.4245 1.6593 0.4240 1.6582 0.4242 1.6514
0.1940 0.0010 0.0861 0.1652 0.133 0.1271
(024, 5) 0.5837 1.5239 0.5812 1.5200 0.5958 1.5205
0.1130 0.1093 0.0512 0.1351 0.1580 0.1756
50 40 (10,0%3) 0.3743 1.3995 0.3744 1.3940 0.3725 1.3985
0.2625 0.0462 0.0971 0.6280 0.1610 0.1255
(0*12,10, 0%20) 0.4239 1.6307 0.4234 1.6357 0.4263 1.6303
0.1178 0.0640 0.0930 0.1153 0.0410 0.1808
(0*3,10) 0.4642 1.5848 0.4628 1.5892 0.4676 1.5853
0.0997 0.1071 0.0454 0.0953 0.0756 0.1921
45 (5,044 0.4160 1.4130 0.4156 1.4134 0.4199 1.4181
0.1769 0.1246 0.1163 0.1620 0.1631 0.1492
(0*22,5,0%%2) 0.4505 1.4748 0.4573 1.4716 0.4516 1.4778
0.0131 0.0350 0.0992 0.0056 0.0653 0.0156
(04, 5) 0.4906 1.5291 0.4996 1.5210 0.4941 1.5234
0.0159 0.0212 0.0704 0.0836 0.0264 0.0097

where 1,_,. is the indicator function. Let a; be the ordered
values of ;. Then, the corresponding estimate is obtained as

0, if a* <a),
(a* | x) = Z;=1 Wi, if @y <a* <agy,
M *
1 if a* > A(5)s
where
hag), By)

W= POy
izt hag, By

Subsequently a® can be estimated as

Ay, if p=0,
&@:{ O r
%y

if Yojw<p< X w

To obtain a 100(1 — p)% confidence interval for «, we con-
sider the intervals of the form

A(D) AU . .
(a sSS,a0 s >,z =1,2,...,5 — [(1 — p)s]with [«] denoting
the greatest integer less than or equal to u. The interval with

the smallest width is treated as the HPD interval. Similarly,
the HPD interval for the parameter f can be constructed.

Data analysis
In this section, we analyze a real data set for illustration
purpose. We consider a data set that represents the strength

measured in GPA for single carbon fibers of 10 mm in gauge
lengths and is given below.
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Table 7 Bayes estimator using T " m Scheme SB LB EB
the Lindley approximation and
risk value @ B & B & B
12 30 20 (10,019 0.3287 1.3291 0.3287 0.3452 0.3293 1.3804
0.1946 0.2710 0.0844 0.4691 0.2004 1.3141
(0*°,10,0%10) 0.6177 1.6334 0.6169 1.6355 0.6194 1.6364
0.1699 0.0513 0.0746 0.0064 0.2076 0.2011
(0*19,10) 0.5393 1.4224 0.5331 1.4113 0.5342 1.4173
0.0595 0.1211 0.0281 0.1058 0.1230 0.1501
25 (5,012 0.4415 1.3897 0.4419 1.3853 0.462 1.3877
0.1381 0.1235 0.1016 0.0881 0.1453 0.1029
(0*12,5,0%12) 0.4745 1.6493 0.4740 1.6482 0.4742 1.6414
0.1940 0.0086 0.0861 0.0651 0.1253 0.08506
(0*%4,5) 0.4837 1.5223 0.4818 1.5205 0.4258 1.5202
0.0130 0.3109 0.0512 0.1351 0.08507  0.0175
50 40 (10,0*%) 0.4284 1.4495 0.4244 1.4447 0.0272 1.4485
0.0262 0.0421 0.0971 0.0280 0.02610  0.1255
(0%1,10,0*2%)  0.4939 1.6230 0.4934 1.6276 0.4963 1.6203
0.0217 0.0640 0.0930 0.0917 0.0410 0.2803
(0*%,10) 0.5375 1.5445 0.5355 1.5412 0.5304 1.5492
0.0855 0.2760 0.0393 0.1256 0.0590 0.0650
45 (5,0 0.4460 1.4270 0.4445 1.4234 0.4498 1.4283
0.0276 0.0724 0.1163 0.0968 0.1463 0.1494
(0*22,5,0%22) 0.01479  1.4748 0.4787 1.4707 0.4716 1.4786
0.0231 0.0235 0.0992 0.0023 0.0535 0.0506
(0*4,5) 0.5018 1.4971 0.5005 1.497802  0.5048 1.4939
0.1429 0.00305 0.00413  0.00123 0.0033 0.0099
6.693, 8.432, 9.052, 9.281, 9.554, 10.486, 10.602, 10.979, 10.990, 11.531,
11.635, 11.870, 12.404, 12.453, 12.491, 12.579, 13.131, 13.654, 13.681, 13.708,
13.791, 14.282, 14.512, 15.456, 15.487, 17.392, 18.486, 18.690, 18.859, 18.859,
19.629, 20.005, 20.697, 22.760, 23.081, 23.220, 25.028, 25.103, 25.406, 25.610,
26.154, 26.364, 26.950, 27.994, 28.389, 29.283, 30.205, 31.031, 32.884, 33.149,
34.364, 34.953, 35.234, 37.637, 47.087, 47.990, 48.716, 53.038, 55.924, 56.092,
68.374, 81.045, 151.41

In literature, this data set has been discussed for Burr
type-III distribution. In fact authors considered a transforma-
tion X = e¥, where Y represent the original lifetime data that
fits the generalized logistic distribution, see [1, 5]. Notice
that the transformed variable X follows Burr type-III dis-
tribution. For comparison purpose, we also consider fitting
of gamma, Weibull, and generalized exponential distribu-
tion. We use the method of negative log-likelihood criterion
(NLC), Kolmogorov—Smirnov (KS) test statistics, Akaike’s
information criterion (AIC) and Bayesian information

@ Springer

criterion to judge the goodness of fit as discussed in Farbod
and Gasparian [18]. The results are shown in Table 1. It
can be clearly verified that the Burr type-III distribution has
better fit to this data set based on the minimum KS test sta-
tistics and NLC. Also, from Fig. 1 we observe that the Burr
type-III has a good fit for these data. Then, we generate the
progressive hybrid type-II censored sample with different
schemes as shown in Table 2 when T' = 65. The values of
SEM and NR estimates are also given in Table 2. Also, the
Bayes estimates based on Lindley and Markov Chain Monte
Carlo MCMC) methods are given in Tables 3 and 4.
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Table 8 Bayes estimator using

; . . n m Scheme SB LB EB
MCMC approximation and risk
value when T’ = 8 & B @ B & B
8 30 20 (10,0%19) 0.3861 1.43594  0.3861 1.43594 0.3861 1.43594
0.08769  0.00410  0.04851  0.00201 —0.83711  0.08826
(0*°,10,0%19) 0.4127 1.62094  0.4127 1.62852 0.4127 1.62852
0.04525 0.00343  0.02432  0.00175 0.65293  0.07582
(0*1°,10) 0.4684 1.55852  0.4684 1.55094 0.4684 1.55094
0.02512  0.01463  0.01325  0.00762 0.51604  0.15215
25 (5,07 0.3980 1.38021  0.3980 1.38004 0.3980 1.56304
0.00033  0.23060  0.00502  0.13610 0.00016  1.81989
(0*12,5,0%12) 041477  1.42952  0.41477 1.42743 0.41477  1.42743
0.00144  0.00726  0.00080  0.00353 0.39239  1.08703
(0°24,5) 0.53587  1.61886  0.53587  1.61886 0.53587  1.61886
0.00434  0.05705  0.00222  0.03094 0.24016  0.28513
50 40 (10,0%%) 0.42799  1.63681  0.42799  1.63681 0.50360  1.63681
0.00001  0.05608  0.03001  0.03039 0.01433  0.28293
(0719,10,0%20)  0.43359  1.58297  0.42799  1.58297 0.42799  1.58297
0.00519  0.36357  0.00253  0.22457 0.32376  0.62461
0*,10) 0.5236 1.53819  0.5236 1.54016 0.5236 1.54307
0.00441  0.55979  0.00210  0.35611 0.28865  0.73365
45 (5,00 0.46008 1.60871  0.46008  1.60871 0.46008  1.60871
0.00159  0.58751  0.00079  0.09616 0.16998  0.45509
(0°22,5,0%22) 0.48276  1.47261 0.48276 1.47261 0.48276  1.47261
0.00597  0.32788  0.00291  0.20028 0.35048  0.59962
(0*4,5) 0.51616  1.50345 0.5161 1.51434 0.5161 1.50346
0.00545  0.41403  0.00266  0.25958 0.33308  0.65715

Simulation study

In this section, we conduct a Monte Carlo simulation study
to compare the performance of proposed estimators. We
simulate the data from Burr (0.5, 1.5) distribution under var-
ious progressive hybrid type-II censoring schemes for dif-
ferent combinations of (n, m). For each case, we obtain ML
estimates of @ and f using NR method which was introduced
in [24] and SEM algorithm. We mention that all the val-
ues are based on 5000 Monte Carlo simulations. Further, in
the tables we denote the censoring schemes like (5, 0, 0, 0)
as (5, 0*3) for convenience. All the average estimates and
means square error (MSE) values of @ and f are reported in

Tables 5 and 6. It is seen the table SEM estimates are better
than NR estimates in the sense of having lower MSE values.
The 95% asymptotic and Bayesian confidence intervals are
also included in Tables 4 and 5. It can be observed that the
both Bayesian and asymptotic confidence intervals generally
have less lengths.

Tables 6 and 7 show the Bayes estimates based on Lind-
ley approximation method. Also, Tables 8 and 9 show the
Bayes estimates based on MCMC method that discussed in
Rizzo [33] and Givens and Hoeting [20]. For both methods,
we used the non-informative prior distribution by setting
a = b = ¢ = d = 0. The results show that both methods have
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Table 9 Bayes estimator using

; . . n m Scheme SB LB EB
MCMC approximation and risk
value & b & B a A
12 30 20 (10,0 0.4186 1.36312  0.4186 1.36312 0.4186 1.36312
0.0201 0.05611  0.02909  0.02597 0.69784 0.35942
(0*°,10,0%10)  0.4738 1.40209  0.4738 1.40209 0.4738 1.40209
0.0215 0.00959  0.01593  0.00464 0.55508 0.13733
(0*1,10) 0.4967 1.58254  0.4967 1.58254 0.4967 1.58254
0.0136 0.00681  0.01515  0.00350 0.54423 0.10572
25 (5,007 0.4423 1.39451  0.4423 1.39451 0.4423 1.39451
0.0240 0.03441 0.01840 0.01619 0.58712 0.27312
(0*12,5,0%12) 0.4609 1.47742  0.4609 1.47742 0.4609 1.47742
0.0221 0.00857  0.01203  0.00416 0.49642 0.12949
(0*24,5) 0.4901 1.49002  0.4901 1.49002 0.4901 1.49002
0.0102 0.00010  0.01253  0.00005 0.50463 0.01337
50 40 (10,0 0.4370 1.63142  0.4370 1.63142 0.4370 1.63142
0.0135 0.02606  0.00017  0.01376V  0.07244 0.19936
(0*1°, 10,029y 0.4786 1.45049  0.4786 1.45049 0.4786 1.45049
0.0034 0.28142  0.00193  0.16928 0.27783 0.56408
(0*%°,10) 044712 149019 0.44712  1.49070 0.44712 1.49193
0.00301 0.44915 0.00148  0.27545 0.23005 0.67171
45 (5,0%) 0.4757 1.61294  0.47578  1.61294 0.47578 1.6129
0.0005 0.08005  0.00029  0.04409 0.10054 0.33149
(0*22,5,0%22) 049171  1.5309 0.49171  1.53109 049171  21.53109
0.00466  0.25109  0.00228  0.14943 0.30504 0.53864
(0*44,5) 0.5102 1.5126 0.5102 1.5026 0.5102 1.5126
0.0037 0.0024 0.0018 0.0601 0.0018 0.0013

very good performance to estimate unknown parameters.
However, the Lindley method has generally lower MSEs.

Conclusion

In this study, we consider the estimation of the parameters
of Burr type-III model in the presence of progressive type-1I
hybrid censored data. To do this, we applied classical esti-
mation methods such as NR and SEM as well as Bayesian
approximation techniques including Lindley and MCMC

@ Springer

approximation method. The results showed that the SEM
method is preferable to NR method. Also, the Bayes esti-
mates based on Lindley method have lower MSEs than the
MCMC method. All computations have been done by using
statistical R software version 3.1.3.
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