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Abstract
This article presents a parametric bootstrap approach to inference on the regression coefficients in panel data models. We 
aim to propose a method that is easily applicable for implement hypothesis testing and construct confidence interval of the 
regression coefficients vector of balanced and unbalanced panel data models. We show the results of our simulation study 
to compare of our parametric bootstrap approach with other approaches and approximated methods based on a Monte Carlo 
simulation study.
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Introduction

Panel data are the combination of observations on a cross 
section of individuals, cities, factories, etc., over many 
time periods. Panel data have been applied in econom-
ics extensively. The Panel Study of Income Dynamics 
(PSID) from the Survey Research Center at the Univer-
sity of Michigan and the Gasoline demand panel of annual 
observations across 18 Organisation for Economic Co-
operation and Development (OECD) countries, covering 
the period 1960–1978, are two famous examples of panel 
data. Analysis of panel data models has worked in statis-
tics and econometrics by many researchers ([1, 5, 14], and 
references therein). Baltagi [2] presents an overview for 
panel data models excellently. Precious inferences in panel 
data are difficult when these models have nuisance param-
eters. Zhao [23] suggested generalized p value inferences in 
panel data models of generalized p values. When nuisance 
parameters are present in models, generalized p values are 
effective to solve the testing problems [8, 11, 16–19, 24]. 
Parametric bootstrap approaches are used as another method 

for inferences in panel data models, when unknown param-
eters are present. Xu et al. [21] and [22] provided parametric 
bootstrap inferences for parameters of the linear combination 
of regression coefficients in balanced and unbalanced panel 
data models, respectively.

In this article, we aim to propose a method that is easily 
applicable for implement hypothesis testing and construct con-
fidence interval of the regression coefficient vector of balanced 
and unbalanced panel data models. Our procedure is based on 
a new parametric bootstrap pivot variable. The performance of 
our PB method is compared with generalized p value approaches 
introduced by [23]. The numerical results in section “Simulation 
study” show that in terms of the type I error rate and power, the 
performance of our method is better than generalized p value 
(GPV) inferences and approximate (AP) method.

The rest of this paper is organized as follows. Our PB 
approaches for hypothesis testing and constructing confidence 
region about the regression coefficients vector are presented for 
the balanced and unbalanced panel data models in section “PB 
inferences for the regression coefficients”. In section “Simula-
tion study”, the proposed PB methods are evaluated in terms 
of type I error rates and powers. The suggested PB approaches 
are illustrated with a real data example in section “Example”. 
The some conclusions are assumed in section “Conclusions”. * A. Malekzadeh 
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PB inferences for the regression coefficients

Balanced panel data models

Panel data regression models show the behaviour of 
several explanatory variables on the response variable 
between N individuals over T time periods. A panel data 
model is

with

where Yit and �it are the response value and K explana-
tory variables on the ith individual for the tth time period, 
respectively. uit is the regression disturbance, �i denotes 
the unobservable individual specific effect and �it denotes 
the remainder disturbance. Usually, in the random effects 
model, we suppose that �i ∼ N(0, �2

�
) and �it ∼ N(0, �2

�
) vary 

independently. � is the intercept and � is K × 1 vector of 
unknown coefficients. Let yit denote the observed values of 
Yit for i = 1, 2,… ,N;t = 1, 2,… , T .

Equation (2.1) can also be expressed as matrix 
notations,

where � = (Y11,… , Y1T ,… , YN1,… , YNT )
� , � is a NT × K 

matrix, � = [�NT ,�] , � = (�, ��)� is a unknown regression 
coefficients vector, �� = �N ⊗ �T  , � = (�1,�2,… ,�N)

� , 
� = (�11,… , �1T ,… , �N1,… , �NT )

� , � = ��� + � , �N is an 
identity matrix of order N, �T denotes the T × 1 vector whose 
elements are all ones and ⊗ denotes Kronecker product.

Let �T = �T�
�
T
 , �T =

1

T
�T and �T = �T − �T . Then, the 

covariance matrix of � is

where �2
1
= T�2

�
+ �2

�
 , � = �N ⊗ �T  and � = �N ⊗ �T  . 

(2.3) is the spectral decomposition representation of � , 
which is the main key to the following inferences. Both � 
and � are symmetric and idempotent matrices, such that 
�� = �� = 0 . [15] using the properties of � and � show 
that

where r is an arbitrary scalar. Hence,

The generalized least squares estimator (GLSE) of � is 
obtained by [12] as

(2.1)Yit = � + ��
it
� + uit,

uit = �i + �it, i = 1, 2,… ,N;t = 1, 2,… , T ,

(2.2)� = ��NT + �� + ��� + � = �� + �,

(2.3)
Cov(�) = � = 𝜎2

𝜇
(�N ⊗ �T ) + 𝜎2

𝜈
(�N ⊗ �T ) = 𝜎2

1
� + 𝜎2

𝜈
�,

(2.4)�r =
(
�2
1

)r
� +

(
�2
�

)r
�,

(2.5)�−1 =
(
�2
1

)−1
� +

(
�2
�

)−1
�.

It is easy to verify

To attain the estimators of �2
�
 and �2

1
 , transformed model 

(2.2) is as follows:

It is easy to show that �� ∼ N(���, �2
�
�) and 

�� ∼ N(���, �2
1
�) , such that �� and �� are mutually 

independent, since

Therefore, we can define

such that S2
1
 and S2

�
 are independently distributed as

where �2
(m)

 denotes a central Chi-square random variable 
with m degree of freedom. Then, the unbiased estimators of 
�2
1
 , �2

�
 and �2

�
 can be given

According to (2.4) and (2.5), the natural estimators of � and 
�−1are, respectively,

When � is known, a natural pivotal quantity for inferences 
on � is given by

Then,

is an exact 100(1 − �)% confidence region for � , where �̂0 is 
the observed value of �̂ by replacing � in (2.6) by � and �2

(� ,m)
 

stands for the lower (1 − �) th quantile of the central Chi-
square distribution with m degree of freedom.

(2.6)�̂
(
𝜎2
1
, 𝜎2

𝜈
,�

)
= (���−1Z)

−1
���−1�.

(2.7)�̂
(
𝜎2
1
, 𝜎2

𝜈
,�

)
∼ N(�, (���−1Z)

−1
).

(2.8)
(
��

��

)
=

(
��

��

)
� +

(
��

��

)
=

(
���

���

)
+

(
��

��

)
.

Cov

(
��

��

)
=

(
�2
�
� �

� �2
1
�

)
.

(2.9)
S2
1
= ���� − ����(����)−1����,

S2
�
= ���� − ����(����)−1����,

(2.10)
S2
1

�2
1

∼ �2
(N−K−1)

,
S2
�

�2
�

∼ �2
(N(T−1)−K)

,

(2.11)

�̃�2
1
=

S2
1

N − K − 1
, �̃�2

𝜈
=

S2
𝜈

N(T − 1) − K
, and �̃�2

𝜇
=

1

T

(
�̃�2
1
− �̃�2

𝜈

)
.

(2.12)
�̃ = �̃�2

1
� + �̃�2

𝜈
� and �̃

−1
=
(
�̃�2
1

)−1
� +

(
�̃�2
𝜈

)−1
�.

(2.13)H∗ = (�̂ − �)�(���−1�)(�̂ − �) ∼ 𝜒2
(K+1)

.

(2.14)R� =
{
�|(�̂0 − �)�(���−1�)(�̂

0
− �) < 𝜒2

(𝛾 ,K+1)

}
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The values of �2
�
 , �2

�
 and then � are usually unknown in 

practice. Therefore, we propose to replace �2
�
 and �2

�
 with 

their unbiased estimators, which leads to

where �̃ = (���̃
−1
�)

−1
���̃

−1
� is a feasible GLSE.

We can construct a approximated (AP) confidence 
region as

where �̃0 is a observed value of �̃ . This approximated method 
is applicable while the sample size is large. Since the distri-
bution of H is unknown and approximated method has poor 
performance (based on simulation results), we use a para-
metric bootstrap approach to approximate distribution of H.

Let s2
�
 and s2

1
 be the observed values of S2

�
 and S2

1
 in (2.9), 

respectively. For a given (�̃0, s2
1
, s2

𝜈
) , let �B ∼ N(��̃

0
, �̃0) , 

where �̃0 is the observed value of �̃ . Then, the PB pivot 
variable based on the random quantity (2.15) is

where

and

Distribution of HB for a given (�̃0, s2
1
, s2

𝜈
) in (2.16) does not 

depend on any unknown parameters. Therefore, we can con-
struct a PB confidence region for the parameter � based on 
the distribution of HB, where HB

�
 denotes the lower (1 − �) th 

quantile of HB . Then, we propose a 100(1 − �)% confidence 
region for � by

Next, we consider the problem of hypothesis testing about 
� as

where �∗ = (�∗, �∗
1
,… , �∗

K
)� is a pre-specified values vector. 

Our proposed test statistic is

(2.15)H = (�̃ − �)�(���̃
−1
�)(�̃ − �),

RAP
�

= {�|(�̃0 − �)�(���̃
−1
�)(�̃

0
− �) < 𝜒2

(𝛾 ,K+1)
},

(2.16)HB = (�̃B − �̃
0
)�(���̃

−1

B
�)(�̃B − �̃

0
),

�̃B = (���̃
−1

B
�)

−1
���̃

−1

B
�B, �̃B = �̃�2

1B
� + �̃�2

𝜈B
�,

�̃�2
1B

=
S2
1B

N − K − 1
, �̃�2

𝜈B
=

S2
𝜈B

N(T − 1) − K
,

S2
1B

= ��
B
��B − ��

B
��(����)−1����B

S2
�B

= ��
B
��B − ��

B
��(����)−1����B.

(2.17)RB
�
=
{
�|(�̃0 − �)�(���̃

−1

0
�)(�̃

0
− �) < HB

𝛾

}
.

(2.18)H0 ∶ � = �∗ vs. H1 ∶ � ≠ �∗,

The null hypothesis (2.18) is rejected at level � when 
D0 > HB

𝛾
 , where D0 is the observed value of D. Also, it can 

be defined a PB p value as

Therefore, H0 is rejected at level � when p < 𝛾.

Unbalanced panel data Models

The unbalanced panel data model is given by:

with

where Yit , �it and so on are similar to the balanced case which 
is defined, with the difference that in unbalanced case, the 
time period for each ith cross section is different and equal 
to the time Ti . In matrix notations, equation (2.21) can also 
be expressed as

where n = �N
i=1

Ti,� = (Y11,… , Y1T1 ,… , YN1,… , YNTN )
� , 

� is a n × K  matrix, � = [�n,�] , � = (�, ��)� , �� = diag 
(�

T1
,… , �

T
N

) , � = (�1,�2,… ,�N)
� , � = (�11,… , �1T1 ,…

�
N1,… , �

NT
N

)� and � = ��� + �.
�Ti = �Ti�

�
Ti

 ,  �Ti =
1

Ti
�Ti  and  �Ti

= �Ti − �Ti  ,  fo r 
i = 1,… ,N . Then, the covariance matrix of � is

where � = diag(�T1
,… ,�TN

) . It is established that

Then, the generalized least square estimator (GLSE) of � is

Also, the GLSE of � is distributed as

Similar to the balanced case, we consider the following two 
quadratic forms defining the Between and Within residuals 
sums of squares to obtain the estimators of �2

�
 and �2

�
.

(2.19)D = (�̃ − �∗)�(���̃
−1
�)(�̃ − �∗).

(2.20)p = P(HB > D0).

(2.21)Yit = � + ��
it
� + uit,

uit = �i + �it, i = 1, 2,… ,N;t = 1, 2,… , Ti,

(2.22)� = ��n + �� + ��� + � = �� + �,

(2.23)

Cov(�) = � = �2
�
diag(�T1 ,… , �TN ) + �2

�
�n

diag[(T1�
2
�
+ �2

�
)�T1 ,… , (TN�

2
�
+ �2

�
)�TN ] + �2

�
�,

(2.24)
�−1 = diag

[
(T1�

2
�
+ �2

�
)
−1
�T1 ,… , (TN�

2
�
+ �2

�
)
−1
�TN

]
+ (�2

�
)−1�.

(2.25)�̂(𝜎2
1
, 𝜎2

𝜈
,�) = (���−1Z)

−1
���−1�.

(2.26)�̂(𝜎2
1
, 𝜎2

𝜈
,�) ∼ N(�, (���−1Z)

−1
).
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where � = diag(�T1 , ..., �TN ) and S2
2
∕�2

�
∼ �2

(n−N−K)
 . Accord-

ing to [12], the unbiased estimators of �2
�
 and �2

�
 can be given 

as

Therefore, the natural estimators of � and �−1 are

To construct a confidence region for � in this case, we pro-
pose to use a similar random quantity H in (2.15) and PB 
approach to approximated its distribution.

Simulation study

In this section, we present the results of our simulation study 
to compare the size and powers of our PB approach with 
generalized p values by [23] and approximated methods 
based on a Monte Carlo simulation study. we use the abbre-
viation PB, GPV and AP to refer these three methods. At 
first, we briefly review the GPV method.

[23] only proposed a generalized p value method for 
testing H0 ∶ � = �∗ v.s H1 ∶ � ≠ �∗ in balanced panel data 
state. He proposed the generalized F test for testing the null 
hypothesis as

Subsequently, the generalized p value can be computed as

w h e r e  S
2

�
(�2

1
, �2

�
) = (���−1�)−1,U ∼ �2

(N−K−1)
,V ∼

�2

(N(T−1)−K)
,�2 ∼ �2

(K+1)
 and �2,U,V  a re  mutual ly 

independent.
Algorithm: We use the following steps to estimate pow-

ers of the PB and GPV methods.

(2.27)
S2
1
=���� − ����(����)−1����,

S2
2
=���� − ����(����)−1����,

(2.28)

�̃�2
𝜈
=

S2
2

n − N − K
, �̃�2

𝜇
=

S2
1
− (N − K − 1)�̃�2

𝜈

n − tr((����)−1��Z𝜇Z
�
𝜇
�)

.

(2.29)

�̃ =diag[(T1�̃�
2
𝜇
+ �̃�2

𝜈
)�T1 ,… , (TN �̃�

2
𝜇
+ �̃�2

𝜈
)�TN ] + �̃�2

𝜈
�,

�̃
−1

=diag[(T1�̃�
2
𝜇
+ �̃�2

𝜈
)−1�T1 ,… , (TN �̃�

2
𝜇
+ �̃�2

𝜈
)−1�TN ] + (�̃�2

𝜈
)−1�.

T̃T (�;�, 𝜎
2
1
, 𝜎2

𝜈
, �) =

(
�̂(𝜎2

1
, 𝜎2

𝜈
,�) − �∗)�S−2

�
(𝜎2

1
, 𝜎2

𝜈
)(�̂(𝜎2

1
, 𝜎2

𝜈
,�) − �∗

)
(
�̂(𝜎2

1

ss1

SS1
, 𝜎2

𝜈

ss𝜈

SS𝜈
, �) − �∗)�S−2

�
(𝜎2

1

ss1

SS1
, 𝜎2

𝜈

ss𝜈

SS𝜈
)(�̂(𝜎2

1

ss1

SS1
, 𝜎2

𝜈

ss𝜈

SS𝜈
, �) − �∗

) .

p = P

(
TT ≥ 1 ∣ H0) = P(

𝜒2

(�̂(
ss1

U
,
ss𝜈

V
, �) − �∗)�S−2

�
(
ss1

U
,
ss𝜈

V
)(�̂(

ss1

U
,
ss𝜈

V
, �) − �∗)

≥ 1

)
,

1. For a given (N, T) and (�, �, �2
�
, �2

�
) , generate � and 

compute s2
1
, s2

𝜈
, �̃0 , �̃

0 and observed value of H from (2.15), 
i.e. h0 , respectively.

2.  Generate  �B ∼ N(��̃
0
, �̃0) ,  U ∼ �2

(N−K−1)
,V ∼

�2

(N(T−1)−K)
,�2 ∼ �2

(K+1)
.

3. Repeat step 2 many times ( n = 5000 ) to obtain values 
of HB

1
,...,HB

n
 and TT1,...TTn and compute the estimations of 

the p values of PB and GPV methods.
4. Repeat steps (1) to (3) for m = 5000 times to obtain 

estimations of the two test powers.
For power estimation of the AP method, we compute 

the fraction of times that the value of D0 is exceed �2
(� ,K+1)

.

The results of simulation for the different values of 
N, T , �2

�
, �2

�
 are shown in Table 1. Also, we take �∗ to be 

equal to (2, 3, 1, 5) and � be various values of vectors. 
Notice that, in this simulation, we have used the three col-
umns of the panel data as reported in Table 2 instead of the 
matrix � . That is, (ln Y∕N, lnPMG∕PGDP, lnCar∕N) , where 
we clarified this example in section 5. The first column of 
Table 1 shows estimated type I error rate (actually size) of 
the tests and other three columns show estimated powers. 
We consider the following reasonable criterion for com-
paring the methods: firstly, a method is preferred to the 
other methods when its estimated size is not significantly 
different than 0.05. We refer to such a method as a reliable 
method. Secondly, the candidate for the best method must 
have the largest power among reliable methods, see [7, 9, 
10, 20] and [6]. In addition, using the central limit theorem, 
98% confidence intervals around estimates between 0.0428 
and 0.0572 cover the nominal level 0.05. In other words, if 
the estimated size of a test is less than or greater than that 
of these bounds, we can conclude that that test is conserva-
tive or liberal, respectively. In Table 1, the estimated sizes 

in boldface show that they are significantly less or greater 
than 0.05.

Note that the estimated powers vary slightly from one 
simulation to another [9]. Therefore, we used the well-known 
z test to compare powers of two methods. One can conclude 



71Mathematical Sciences (2020) 14:67–73 

1 3

that the powers of two test procedures are statistically signif-
icant at 100� % level when �p̂1 − p̂2� > Z𝛼∕2

√
p̂(1 − p̂)∕5000 , 

where p̂ = (p̂1 + p̂2)∕2 and p̂1 and p̂2 denote the estimated 
powers of the two test procedures based on 5000 samples. In 
the following remarks, we discuss the results of simulation.

Remark 1 In all cases that we considered here, the estimated 
sizes of our PB test vary between 0.0446 and 0.0547 which 
shows that our proposed test behaves like the exact test.

Remark 2 The simulated size probabilities in the GPV and 
AP often exceed the upper limit of this range, and then, these 
methods are assumed to be liberal. Therefore, in this paper, 
the powers of these test methods cannot be comparable with 
our parametric bootstrap approach.

Remark 3 To compare the estimated power, in the cases that 
the estimated size of GPV is close to 0.05, the PB test and 
GPV have not significantly different powers.

Table 1  Simulated powers of 
the GPV, PB and AP tests at 5% 
nominal level

 (N, T)  (�2
�
, �2

�
) �

Tests (2,3,1,5) (2.1,3.1,1.1,5.1) (4,3,1,5) (2,3.1,1,5.1) (2,3,1.5,5.1)

 (10, 6)  (0.01, 1) GPV 0.0628 1.0000 1.0000 1.0000 1.0000
PB 0.0458 1.0000 1.0000 1.0000 1.0000
AP 0.1448 1.0000 1.0000 1.0000 1.0000

 (1, 1) GPV 0.0718 0.8582 0.9570 0.8784 0.8194
PB 0.0446 0.8700 0.9754 0.8956 0.7896
AP 0.1308 0.9530 0.9942 0.9654 0.9114

 (10, 1) GPV 0.0638 0.2612 0.2622 0.2578 0.3680
PB 0.0508 0.2388 0.2870 0.2416 0.3006
AP 0.0972 0.3654 0.4068 0.3550 0.4456

 (100, 1) GPV 0.0576 0.1322 0.0814 0.1336 0.2556
PB 0.0466 0.1074 0.0756 0.1078 0.2483
AP 0.0912 0.1788 0.1280 0.1782 0.3312

 (12, 5)  (0.01, 1) GPV 0.0518 1.0000 1.0000 1.0000 1.0000
PB 0.0486 1.0000 1.0000 1.0000 1.0000
AP 0.1408 1.0000 1.0000 1.0000 1.0000

 (1, 1) GPV 0.0494 0.8594 0.9796 0.8850 0.6903
PB 0.0496 0.8484 0.9760 0.8730 0.6812
AP 0.1300 0.9620 0.9964 0.9732 0.8734

 (10, 1) GPV 0.0628 0.1826 0.2724 0.1888 0.1386
PB 0.0508 0.1632 0.2362 0.1596 0.1200
AP 0.1352 0.3320 0.4498 0.3354 0.2662

 (100, 1) GPV 0.0772 0.0880 0.0654 0.0630 0.0710
PB 0.0547 0.0644 0.0484 0.0446 0.0528
AP 0.1318 0.1466 0.1106 0.1138 0.1286

 (20, 3)  (0.01, 1) GPV 0.0588 1.0000 1.0000 1.0000 1.0000
PB 0.0492 1.0000 1.0000 1.0000 1.0000
AP 0.0964 1.0000 1.0000 1.0000 1.0000

 (1, 1) GPV  0.0616 0.9948 1.0000 0.9968 0.9726
PB 0.0528 0.9960 1.0000 0.9968 0.9698
AP 0.0952 0.9988 1.0000 0.9988 0.9840

 (10, 1) GPV 0.0606 0.3576 0.5180 0.3628 0.3818
PB 0.0516 0.3456 0.5166 0.3558 0.3548
AP 0.0828 0.4302 0.6010 0.4446 0.4446

 (100, 1) GPV 0.0510 0.0968 0.0950 0.0906 0.2002
PB 0.0456 0.0912 0.0900 0.0836 0.1906
AP 0.0704 0.1284 0.1266 0.1190 0.2452
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Remark 4 Overall, it seems that the proposed PB method has 
better performance than two other methods in terms of both 
controlling the type I error rates and powers.

Example

To illustrate our suggested approach to inference on the 
regression coefficients of a panel data, we consider the 
following gasoline demand equation like [3] as

where Gas/Car is motor gasoline consumption per auto, 
Y / N is real per capita income, PMG∕PGDP is real motor gas-
oline price and Car∕N denotes the stock of cars per capita. 
This panel consists of annual observations across 18 OECD 
countries, covering the period 1960–1978. We take a part 
of the panel as well as reported in Table 3 by [23]. At first, 
let � = (�, �1, �2, �3)

� , then a computed GLSE of � is given 
as �̃ = (0.765, 0.323,−0.469,−0.578)� and unbiased estima-
tors of �2

�
 and �2

�
 are 0.0552 and 0.0012, respectively. The p 

values are computed using simulations consisting of 20,000 
runs in the three methods.

For testing H0 ∶ � = (1.7, 0.55,−0.42,−0.61)� , the p val-
ues of the PB, GPV and AP for the regression coefficients 
are computed to be 0.014, 0.0006 and 0.0002, respectively. 
Thus, for the problem of testing regression coefficients 
vector, the three methods made the same decision reject 
the corresponding null hypothesis at the nominal level of 
5%, but PB method is not reject null hypothesis at level 
1%.

In this example, for obtaining PB confidence region for 
the regression coefficient vector � = (�, �1, �2, �3)

� , at the 
confidence level of 0.95 by (2.17), we have

ln
Gas

Car
= � + �1 ln

Y

N
+ �2 ln

PMG

PGDP

+ �3 ln
Car

N
+ u,

Table 2  Data of motor gasoline consumption

Country Year lnGas∕Car ln Y∕N lnP
MG

∕P
GDP

lnCar∕N

 Austria 1960 4.1732 −6.4743 −0.3345 −9.7668
1961 4.1010 −6.4260 −0.3513 −9.6086
1962 4.0732 −6.4073 −0.3795 −9.4573
1963 4.0595 −6.3707 −0.4143 −9.3432
1964 4.0377 −6.3222 −0.4453 −9.2377

Belgium 1960 4.1640 −6.2151 −0.1657 −9.4055
1961 4.1244 −6.1768 −0.1717 −9.3031
1962 4.0760 −6.1296 −0.2223 −9.2181
1963 4.0013 −6.0940 −0.2505 −9.1149
1964 3.9944 −6.0365 −0.2759 −9.0055

Canada 1960 4.8552 −5.8897 −0.9721 −8.3789
1961 4.8266 −5.8843 −0.9723 −8.3467
1962 4.8505 −5.8446 −0.9786 −8.3205
1963 4.8381 −5.7924 −1.0190 −8.2694
1964 4.8398 −5.7601 −1.0029 −8.2524

Denmark 1960 4.5020 −6.0617 −0.1957 −9.3262
1961 4.4828 −6.0009 −0.2536 −9.1931
1962 4.3854 −5.9875 −0.2188 −9.0473
1963 4.3540 −5.9731 −0.2480 −8.9528
1964 4.3264 −5.8947 −0.3065 −8.8526

France 1960 3.9077 −6.2644 −0.0196 −9.1457
1961 3.8856 −6.2209 −0.0239 −9.0443
1962 3.8237 −6.1736 −0.0689 −8.9301
1963 3.7890 −6.1371 −0.1379 −8.8186
1964 3.7671 −6.0872 −0.1978 −8.7110

Germany 1960 3.9170 −6.1598 −0.1859 −9.3425
1961 3.8853 −6.1209 −0.2310 −9.1838
1962 3.8715 −6.0943 −0.3438 −9.0373
1963 3.8488 −6.0684 −0.3746 −8.9136
1964 3.8690 −6.0134 −0.3997 −8.8110

Spain 1960 4.7494 −6.1661 1.1253 −11.5884
1961 4.5892 −6.0578 1.1096 −11.3840
1962 4.4291 −5.9805 1.0570 −11.1578
1963 4.3465 −5.9051 0.9768 −10.9845
1964 4.3006 −5.8585 0.9153 −10.7879

Sweden 1960 4.0630 −8.0725 −2.5204 −8.7427
1961 4.0619 −8.0196 −2.5715 −8.6599
1962 4.0064 −7.9972 −2.5345 −8.5774
1963 4.0028 −7.9667 −2.6051 −8.4943
1964 4.0249 −7.8976 −2.6580 −8.4335

Switzer 1960 4.3976 −6.1561 −0.8232 −9.2624
1961 4.4413 −6.1116 −0.8656 −9.1582
1962 4.2871 −6.0930 −0.8222 −9.0461
1963 4.3125 −6.0680 −0.8601 −8.9508
1964 4.3134 −6.0215 −0.8677 −8.8394

Turkey 1960 6.1296 −7.8011 −0.2534 −13.4752
1961 6.1062 −7.7867 −0.3425 −13.3847
1962 6.0846 −7.8363 −0.4082 −13.2459
1963 6.0751 −7.6312 −0.2250 −13.2550
1964 6.0646 −7.6269 −0.2522 −13.2103

Table 2  (continued)

Country Year lnGas∕Car ln Y∕N lnP
MG

∕P
GDP

lnCar∕N

U.K. 1960 4.1002 −6.1868 −0.3911 −9.1176

1961 4.0886 −6.1689 −0.4519 −9.0489

1962 4.0481 −6.1667 −0.4229 −8.9669

1963 3.9853 −6.1307 −0.4634 −8.8559

1964 3.9768 −6.0864 −0.4958 −8.7498
U.S.A. 1960 4.8240 −5.6984 −1.1211 −8.0195

1961 4.7963 −5.6952 −1.1462 −7.9993
1962 4.7989 −5.6488 −1.1619 −7.9864
1963 4.7879 −5.6269 −1.1799 −7.9595
1964 4.8083 −5.5871 −1.2003 −7.9299

Taken from [3]



73Mathematical Sciences (2020) 14:67–73 

1 3

where,

and the lower 0.95th quantile of HB, i.e. HB
0.05

 , using 20,000 
simulations, is computed to be around 13.74.

Conclusions

In this article, we propose a parametric bootstrap method for 
testing hypothesis as well as constructing confidence region 
on the regression coefficients vector ( � ) in panel data mod-
els in balanced and unbalanced panels. We study perfor-
mance our PB method with GPV and AP methods based 
on simulation study in balanced state. The simulation study 
is compared type I error rate and power of three methods. 
The simulation results show close estimated size of our PB 
test to the nominal level (0.05), in which two other methods 
are often liberal (significantly greater than 0.05). However, 
in the cases that the estimated size of GPV is close to 0.05, 
the PB test and GPV have not significantly different pow-
ers. Therefore, for testing or constructing confidence region 
about � we propose PB method.
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