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Abstract
In this paper, we develop a new hybrid conjugate gradient method that inherits the features of the Liu and Storey (LS), 
Hestenes and Stiefel (HS), Dai and Yuan (DY) and Conjugate Descent (CD) conjugate gradient methods. The new method 
generates a descent direction independently of any line search and possesses good convergence properties under the strong 
Wolfe line search conditions. Numerical results show that the proposed method is robust and efficient.
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Introduction

In this paper, we consider solving the unconstrained opti-
mization problem

where x ∈ ℝ
n is an n-dimensional real vector and 

f ∶ ℝ
n
→ ℝ is a smooth function, using a nonlinear conju-

gate gradient method. Optimization problems arise naturally 
in problems from many scientific and operational applica-
tions (see e.g. [12, 19–22, 35, 36], among others).

To solve problem (1), a nonlinear conjugate gradient 
method starts with an initial guess, x0 ∈ ℝ

n , and generates 
a sequence {xk}∞k=0 using the recurrence

where the step size �k is a positive parameter and dk is the 
search direction defined by

The scalar �k is the conjugate gradient update coefficient 
and gk = ∇f (xk) is the gradient of f at xk. In finding the step 

size �k, the inexpensive line searches such as the weak Wolfe 
line search

the strong Wolfe line search

or the generalized Wolfe conditions

where 0 < 𝛿 < 𝜎 < 1 and �1 ≥ 0 are constants, are often 
used. Generally, conjugate gradient methods differ by the 
choice of the coefficient �k. Well-known formulas for �k can 
be divided into two categories. The first category includes 
Fletcher and Reeves (FR) [11], Dai and Yuan (DY) [6] and 
Conjugate Descent (CD) [10]:

where ‖ ⋅ ‖ denotes the Euclidean norm and yk−1 = gk − gk−1. 
These methods have strong convergence properties. How-
ever, since they are very often susceptible to jamming, 
they tend to have poor numerical performance. The other 

(1)min f (x),

(2)xk+1 = xk + �kdk,

(3)dk =

{
−gk, if k = 0,

−gk + 𝛽kdk−1, if k > 0.

(4)
{

f (xk + �kdk) ≤ f (xk) + ��kg
T
k
dk

gT
k+1

dk ≥ �gT
k
dk,

(5)
{

f (xk + �kdk) ≤ f (xk) + ��kg
T
k
dk

|gT
k+1

dk| ≤ �|gT
k
dk|,
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{
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dk
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T
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category includes Hestenes and Stiefel (HS) [16], Polak-
Ribière-Polyak (PRP) [28, 29] and Liu and Storey (LS) [26]:

Although these methods may fail to converge, they have an 
in-built automatic restart feature which helps them avoid 
jamming and hence makes them numerically efficient [5].

In view of the above stated drawbacks and advantages, 
many researchers have proposed hybrid conjugate gradi-
ent methods that combine different �k coefficients so as to 
limit the drawbacks and maximize in the advantages of 
the original respective conjugate gradient methods. For 
instance, Touati-Ahmed and Storey [31] suggested one of 
the first hybrid method where the coefficient �k is given by

The authors proved that �TS
k

 has good convergence properties 
and numerically outperforms both the �FR

k
 and �PRP

k
 methods. 

Alhawarat et al. [3] introduced a hybrid conjugate gradient 
method in which the conjugate gradient update coefficient 
is computed as

where �k is defined as

The authors proved that the method possesses global conver-
gence property when weak Wolfe line search is employed. 
Moreover, numerical results demonstrate that the proposed 
method outperforms both the CG-Descent 6.8 [14] and CG-
Descent 5.3 [13] methods on a number of benchmark test 
problems.

In [5], Babaie-Kafaki gave a quadratic hybridization of 
�FR
k

 and �PRP
k

 , where

�HS
k

=
gT
k
yk−1

dT
k−1

yk−1
, �PRP

k
=

gT
k
yk−1

‖gk−1‖2
, �LS

k
= −

gT
k
yk−1

dT
k−1

gk−1
.

�TS
k

=

{
�PRP
k

, if 0 ≤ �PRP
k

≤ �FR
k
,

�FR
k
, otherwise.

𝛽AZPRP
k

=

⎧⎪⎪⎨⎪⎪⎩

‖gk‖2 − gT
k
gk−1

‖gk−1‖2
, if ‖gk‖2 > �gT

k
gk−1�,

‖gk‖2 − 𝜇k�gTk gk−1�
‖gk−1‖2

, if ‖gk‖2 > 𝜇k�gTk gk−1�,
0, otherwise,

�k =
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𝛽
HQ±

k
=

⎧⎪⎨⎪⎩

𝛽+
k
(𝜃±

k
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∈ [−1, 1],
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−𝛽FR
k
, 𝜃±

k
< −1,

𝛽FR
k
, 𝜃±

k
> 1,

and the hybridization parameter �±
k
 is taken from the roots 

of the quadratic equation

that is

and

Thus, the author suggested two methods �HQ+
k

 and �HQ−
k

 , cor-
responding to �+ and �−, respectively, with numerical results 
showing �HQ−

k
 to be more efficient than �HQ+

k
.

More recently, Salih et al. [30] presented another hybrid 
conjugate gradient method defined by

The authors showed that the �YHM
k

 method satisfies the suf-
ficient descent condition and possesses global convergence 
property under the strong Wolfe line search. In 2019, Fara-
marzi and Amini [9] introduced a spectral conjugate gradient 
method defined as

with the spectral search direction given as

where

with r and D being positive constants. The authors suggested 
computing the spectral parameter �k as

or
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where � and � are constants such that 1
4
+ � ≤ �k ≤ �,

and

Convergence of this method is established under the strong 
Wolfe conditions. For more conjugate gradient methods, the 
reader is referred to the works of [1, 2, 8, 15, 17, 18, 23–25, 
27, 32, 33].

In this paper, we suggest another new hybrid conjugate 
gradient method that inherits good computational efforts of 
�LS
k

 and �HS
k

 methods and also nice convergence properties 
of �DY

k
 and �CD

k
 methods. This proposed method is presented 

in the next section, and the rest of the paper is structured as 
follows. In Sect. 3, we show that the proposed method satis-
fies the descent condition for any line search and also present 
its global convergence analysis under the strong Wolfe line 
search. Numerical comparison with respect to performance 
profiles of Dolan-Morè [7] and conclusion is presented in 
Sects. 4 and 5, respectively.

A new hybrid conjugate gradient method

In [32], a variant of the �PRP
k

 method is proposed, where the 
coefficient �k is computed as

�k =

{
�N−
k−1

, if �N−
k

∈ [
1

4
+ �, �],

1, otherwise,

�N−
k

= 1 −
‖zk−1‖2dTk−1gk

(dT
k−1

zk−1)(z
T
k−1

gk)

�N+
k

= 1 −
1

zT
k−1

gk

�‖zk−1‖2dTk−1gk
dT
k−1

zk−1
− sT

k−1
gk

�
.

�WYL
k

=

‖gk‖2 − ‖gk‖
‖gk−1‖g

T
k
gk−1

‖gk−1‖2
.

This method inherits the good numerical performance of 
the PRP method. Moreover, Huang et al. [17] proved that 
the �WYL

k
 method satisfies the sufficient descent property and 

established that the method is globally convergent under the 
strong Wolfe line search if the parameter � in (5) satisfies 
𝜎 <

1

4
. Yao et al. [34] extended this idea to the �HS

k
 method 

and proposed the update

The authors proved that the method is globally convergent 
under the strong Wolfe line search with the parameter 𝜎 <

1

3
 . 

In Jian et al. [18], a hybrid of �DY
k

, �FR
k
, �WYL

k
and �YWH

k
 is 

proposed by introducing the update

with

Independent of the line search, the method generates a 
descent direction at every iteration. Furthermore, its global 
convergence is established under the weak Wolfe line search.

Now, motivated by the ideas of Jian et al. [18], in this 
paper we suggest a hybrid conjugate gradient method that 
inherits the strengths of the �LS

k
, �HS

k
, �DY

k
 and �CD

k
 methods 

by introducing �PKT
k

 as

with direction dk defined as

Now, with �k and dk defined as in (7) and (8), respectively, 
we present our hybrid conjugate gradient algorithm below.
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k
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,
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⎧
⎪⎪⎨⎪⎪⎩
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k
gk−1

max{dT
k−1

yk−1,−g
T
k−1

dk−1}
, if 0 < gT

k
gk−1 < ‖gk‖2,

‖gk‖2
max{dT

k−1
yk−1,−g

T
k−1

dk−1}
, otherwise,

(8)dk =

�
−gk, if k = 0 or �gT

k
gk−1� ≥ 0.2‖gk‖2,

−

�
1 + 𝛽PKT

k

dT
k−1

gk

‖gk‖2
�
gk + 𝛽PKT

k
dk−1, if k > 0.
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Global convergence of the proposed method

The following standard assumptions which have been used 
extensively in the literature are necessary to analyse the 
global convergence properties of our hybrid method.

Assumption 3.1 The level set

is bounded, where x0 ∈ ℝ
n is the initial guess of the iterative 

method (2).

Assumption 3.2 In some neighbourhood N of X, the objec-
tive function f is continuous and differentiable, and its gradi-
ent is Lipschitz continuous, that is, there exists a constant 
L > 0 such that

If Assumptions 3.1 and 3.2 hold, then there exists a 
positive constant � such that

Lemma 3.1 Consider the sequence {gk} and {dk} generated 
by Algorithm 1. Then, the sufficient descent condition

holds.

Proof If k = 0 or �gT
k
gk−1� ≥ 0.2‖gk‖2, then the search direc-

tion dk is given by

This gives

X = {x ∈ ℝ
n ∶ f (x) ≤ f (x0)},

‖g(x) − g(y)‖ ≤ L‖x − y‖ for all x, y ∈ N.

(9)‖g(x)‖ ≤ � for all x ∈ N.

(10)dT
k
gk = −‖gk‖2, ∀k ≥ 0,

dk = − gk.

gT
k
dk = − ‖gk‖2.

Otherwise, the search direction dk is given by

Now, if we pre-multiply Eq. (11) by gT
k
, we get

Therefore, the new method satisfies the sufficient descent 
property (10) for all k.   ◻

Lemma 3.2 Suppose that Assumptions  3.1 and 3.2 hold. 
Let the sequence {xk} be generated by (2) and the search 
direction dk be a descent direction. If �k is obtained by the 
strong Wolfe line search, then the Zoutendijk condition

holds.

Lemma 3.3 For any k ≥ 1, the relation 0 < 𝛽PKT
k

≤ 𝛽CD
k

 
always holds.

Proof From (5) and (10), it follows that

and since 0 < 𝜎 < 1, we have

(11)dk = −

�
1 + �PKT

k

dT
k−1

gk

‖gk‖2
�
gk + �PKT

k
dk−1.

gT
k
dk = − ‖gk‖2

�
1 + �PKT

k

dT
k−1

gk

‖gk‖2
�

+ �PKT
k

gT
k
dk−1

= − ‖gk‖2 − �PKT
k

dT
k−1

gk + �PKT
k

gT
k
dk−1

= − ‖gk‖2.

(12)
�
k≥0

(gT
k
dk)

2

‖dk‖2
< +∞

dT
k−1

yk−1 ≥(1 − �)‖gk−1‖2,
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Also, by descent condition (10), we get

implying

Therefore, from (7), (13) and (14), it is clear that 𝛽PKT
k

> 0. 
Moreover, if 0 < gT

k
gk−1 < ‖gk‖2, then

and since max{dT
k−1

yk−1,−g
T
k−1

dk−1} ≥ −gT
k−1

dk−1, we have

Hence, lemma is proved.   ◻

Theorem 3.1 Suppose that Assumptions  3.1 and 3.2 hold. 
Consider the sequences {gk} and {dk} generated by Algo-
rithm 1. Then

Proof Assume that (15) does not hold. Then there exists a 
constant r > 0 such that

Letting �k = 1 + �PKT
k

dT
k−1

gk

‖gk‖2 , it follows from (8) that

Squaring both sides gives

(13)dT
k−1

yk−1 > 0.

−gT
k−1

dk−1 = ‖gk−1‖2,

(14)−gT
k−1

dk−1 > 0.
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k
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k−1
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k−1

dk−1}
,
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k

≤
‖gk‖2

−gT
k−1

dk−1

= �CD
k

.

(15)lim inf
k→∞

‖gk‖ = 0.

(16)‖gk‖ ≥ r, ∀k ≥ 0.

dk + �kgk = �PKT
k

dk−1.

‖dk‖2 + 2�kd
T
k
gk + �2

k
‖gk‖2 = (�PKT

k
)2‖dk−1‖2,

⇒ ‖dk‖2 = (�PKT
k

)2‖dk−1‖2 − 2�kd
T
k
gk − �2

k
‖gk‖2.

Now, dividing by (gT
k
dk)

2 and applying the descent condition 
gT
k
dk = −‖gk‖2 yields

Since �PKT
k

≤ �CD
k

=
‖gk‖2

−gT
k−1

dk−1
, we obtain

Noting that

and using (17) recursively yields

From (16), we have

Thus,

which implies that

‖dk‖2
(gT

k
dk)

2
= (�PKT

k
)2
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(gT

k
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2
+

2�k
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.
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−
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(�2
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− 2�k + 1 − 1)

=
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(gT
k−1
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2
−

(�k − 1)2
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+

1

‖gk‖2

≤
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(gT
k−1
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2
+

1
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.
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(gT

0
d0)

2
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1
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,
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(gT

k
dk)

2
≤
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i=0

1
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i=0

1
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.

(gT
k
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2
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≥
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k + 1
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Table 1  Numerical results of the methods

Function Dim PKT AZPRP N

NI FE GE CPU NI FE GE CPU NI FE GE CPU

Ext. QP2 10,000 6 399 171 0.307 37 289 191 0.243 33 163 83 0.220
Ext. Rosenbrock 10,000 19 101 43 0.0169 43 266 163 0.0762 71 317 149 0.0851
Ext. Penalty 500 10 49 15 0.00339 15 65 23 0.00615 24 103 25 0.00774
Ext. Beale 10,000 14 43 26 0.134 17 110 95 0.303 46 109 47 0.262
Ext. Wood 50,000 43 218 90 0.2 157 634 167 0.621 70 248 71 0.283
Ext. Denschnb 50,000 8 24 14 0.0318 9 20 11 0.0414 12 25 13 0.0484
Ext. Denschnf 20,000 13 71 31 0.0626 12 49 16 0.0361 24 86 25 0.0663
Ext. Himmelblau 50,000 9 37 15 0.0409 11 38 16 0.0495 13 41 15 0.0593
Ext. Powell 2000 41 187 106 0.197 224 693 345 0.836 947 2820 948 2.29
Ext TET 2000 6 17 11 0.00529 5 14 9 0.00415 9 19 10 0.00568
Perturbed Quad 500 122 611 241 0.116 122 489 123 0.0688 122 489 123 0.0695
DQDRTIC 10,000 10 41 14 0.0154 5 19 7 0.00603 32 109 33 0.0365
ARWHEAD 100 6 28 12 0.00204 7 27 10 0.00192 20 69 21 0.00437
QUARTC 7000 3 22 20 0.0603 10 81 80 0.178 82 449 448 1.14
Tridia 500 597 3477 1080 0.195 225 1125 284 0.0614 1496 7235 1497 0.396
LIARWHD 500 14 82 28 0.00538 26 112 32 0.00685 33 141 34 0.00836
ENGVAL1 500 19 54 31 0.00473 20 51 29 0.00446 21 45 22 0.00452
NONSCOMP 20,000 38 152 69 0.0782 38 135 64 0.0680 41 127 47 0.0758
Diagonal4 10,000 6 13 7 0.00419 6 14 8 0.0382 10 24 11 0.00871
Ext. Tridiagonal 2 1000 26 54 28 0.058 26 54 28 0.00673 29 56 30 0.0283
FLETCHCR 1000 2012 13350 4336 1.13 2986 13688 4702 1.17 4276 17273 4339 1.36
NONDIA 20,000 7 55 8 0.11 32 238 60 0.105 141 998 144 0.34
CUBE 500 1640 8511 2831 1.86 5898 26124 8561 6.05 - - - -
Ext. Tridiagonal 1 20,000 12 63 53 0.302 17 76 70 0.386 334 464 450 2.95
SINQUAD 800 120 740 327 0.158 118 737 429 0.0988 379 1577 401 0.182
Almost Perturbed Quad 20,000 804 4829 808 1.7 1339 6983 1625 2.12 1314 6677 1315 3.3
Perturbed Trid Quad 50,000 1201 9608 2435 9.81 1201 7207 1202 6.76 1201 7207 1202 7.53
Cosine 5000 8 27 19 0.0196 8 27 19 0.0271 19 41 22 0.0533
FHess1 50 246 934 514 0.0686 404 1160 546 0.0894 1368 4028 1372 0.303
FHess2 500 882 5536 1202 0.775 4276 25496 4530 3.11 4166 24,977 4167 3.13
FHess3 10,000 2 13 3 0.00619 2 13 3 0.00588 2 13 3 0.00525
Ext. BD1 50,000 9 35 22 0.101 11 41 29 0.103 17 46 28 0.122
Perturbed Quad Diagonal 100,000 343 1356 393 39.9 2334 11467 2452 248 1907 9528 1908 193
Gen. Quartic 50,000 9 26 16 0.0379 6 14 8 0.0299 7 15 � 0.031
Quadratic QF1 500 122 610 362 0.0411 122 489 241 0.0317 196 676 197 0.0468
Quadratic QF2 500 214 1083 224 0.0615 221 893 230 0.0469 218 873 219 0.132
Diagonal 5 5000 2 5 5 0.0105 4 5 5 0.00479 4 5 5 0.00447
Diagonal 5 1000 2 5 5 0.00339 3 4 4 0.0013 3 4 4 0.00152
Diagonal 2 5000 280 1341 1332 0.965 430 7187 7186 3.31 5623 12829 12,829 10.7
Gen. Tridiagonal 1 1000 19 57 24 0.00676 20 60 24 0.00663 26 73 27 0.0088
Gen. Tridiagonal 2 1000 39 138 52 0.0108 32 105 41 0.00812 35 106 36 0.00888
Gen. PSC1 1000 12 93 85 0.0108 17 93 90 0.0123 76 387 383 0.0507
Ext. PSC1 1000 7 26 15 0.00389 9 21 11 0.00303 10 22 11 0.00336
Dixon3dq 5000 2500 5012 2513 1.10 5000 10010 5011 1.95 5000 10007 5008 2.47
Ext. Quad Penalty QP1 500 6 27 16 0.00228 9 45 29 0.00395 15 36 17 0.00337
Biggsb1 500 500 1007 508 0.100 500 1007 508 0.0926 500 1004 505 0.0988
Ext. White & Holst 400 35 202 86 0.0266 43 203 96 0.0265 148 573 149 0.0665
NONDQUAR 1000 1006 3739 3463 2.82 1691 4045 3497 3.49 5747 7715 7201 7.44
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This contradicts the Zoutendjik condition (12), concluding 
the proof.   ◻

Numerical results

In this section, we analyse the numerical efficiency of our 
proposed �PKT

k
 method, herein denoted PKT, by comparing 

its performance to that of Jian et al. [18], herein denoted N, 
and that of Alhawarat et al. [3], herein denoted AZPRP, on 
a set of 55 unconstrained test problems selected from [4]. 
We stop the iterations if either ‖gk‖ ≤ 10−5 or a maximum 
of 10,000 iterations is reached. All the algorithms are coded 

∞�
k=0

(gT
k
dk)

2

‖dk‖2
≥ r2

∞�
k=0

1

k + 1
= +∞.

Table 1  (continued)

Function Dim PKT AZPRP N

NI FE GE CPU NI FE GE CPU NI FE GE CPU

Raydan2 200 3 5 5 0.00113 3 5 5 0.000969 56 6 6 0.00112
BDQRTIC 50 59 250 85 0.0248 102 402 132 0.055 106 386 107 0.0423
Raydan1 200 84 180 94 0.0220 85 175 88 0.0146 84 171 85 0.0146
Gen. White & Holst 50 1243 7061 1990 0.625 1174 5189 1679 0.373 1461 5830 1467 0.424
Ext Quad Exponential EP1 50 2 11 3 0.00111 3 13 4 0.000937 3 13 4 0.00110
Diagonal1 10 18 48 27 0.0433 18 63 45 0.027 19 39 20 0.0204
Diagonal2 5000 280 1323 1318 1.01 471 2102 2101 1.48 5703 13,034 13,034 12.5
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in MATLAB R2019a. The authors for both N and AZPRP 
methods suggested that their algorithms will have optimal 
performance if they are implemented with the generalized 
Wolfe line search conditions (6) with the following choice 
of parameters: � = 0.1, � = 0.0001 and �1 = 1 − 2� for N 
method and � = 0.4, � = 0.0001 and �1 = 0.1 for AZPRP 
method. Hence for our numerical experiments, we set the 
parameters of N and AZPRP as determined in the respective 
papers. For the PKT method, we implemented the strong 
Wolfe line search conditions with � = 0.0001 and � = 0.05.

Numerical results are presented in Table 1, where “Func-
tion” denotes name of test problem, “Dim” denotes dimen-
sion of test problem,“NI” denotes number of iterations, 
“FE” denotes number of function evaluations, “GE” denotes 
number of gradient evaluations, “CPU” denotes CPU time 
in seconds and “-” means that the method failed to solve 
the problem within 10,000 iterations. The bolded figures 
show the best performer for each problem. From Table 1, 
we observe that the PKT and AZPRP methods successfully 
solved all the problems, whereas the N method failed to 
solve one problem within 10,000 iterations. Moreover, the 
numerical results in the table indicate that the new PKT 
method is competitive as it is the best performer for a sig-
nificant number of problems.

To further illustrate the performance of the three meth-
ods, we adopted the performance profile tool proposed by 
Dolan and Morè [7]. This tool evaluates and compares the 
performance of ns solvers running on a set of np problems. 
The comparison between the solvers is based on the perfor-
mance ratio

(19)rp,s =
fp,s

min(fp,i ∶ 1 ≤ i ≤ ns)
,

where fp,s denotes either number of functions (gradient) 
evaluations, number of iterations or CPU time required by 
solver s to solve problem p. The overall evaluation of the 
performance of the solvers is then given by the performance 
profile function

where � ≥ 0. If solver s fails to solve a problem p, we set the 
ratio rp,s to some sufficiently large number.

The corresponding profiles are plotted in Figs. 1, 2, 
3 and 4, where Fig. 1 shows the performance profile of 
number of iterations, Fig. 2 shows the performance pro-
file of number of gradient evaluations, Fig. 3 shows the 
performance profile of function evaluations and Fig. 4 
shows the performance profile of CPU time. The figures 
illustrate that the new method outperforms the AZPRP 
and N conjugate gradient methods.

Conclusion

In this paper, we developed a new hybrid conjugate gradi-
ent method that inherits the features of the famous Liu and 
Storey (LS), Hestenes and Stiefel (HS), Dai and Yuan (DY) 
and Conjugate Descent (CD) conjugate gradient methods. 
The global convergence of the proposed method was estab-
lished under the strong Wolfe line search conditions. We 
compared the performance of our method with those of Jian 
et al. [18] and Alhawarat et al. [3] on a number of benchmark 
unconstrained optimization problems. Evaluation of perfor-
mance based on the tool of Dolan-Moré [7] showed that the 
proposed method is both efficient and effective.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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