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Abstract

The aim of this paper is to introduce the concept of generalized multivalued (Y', A)-contractions and generalized multivalued
(Y, A)-Suzuki contractions and introduce some new common fixed point results for such maps in complete b-metric spaces.
Our results are an improvement of the Liu et al. fixed point theorem and several comparable results in the existing literature.
We set up an example to elucidate our main result. Moreover, we also discuss an application to existence of solution for

system of functional equations.
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Introduction and preliminaries

Fixed point theory plays an important role in functional and
nonlinear analysis. Banach [1] proved a significant result
for contraction mappings. Afterward, a large number of
fixed point results have been established by various authors
and they showed different generalizations of the Banach’s
results, see for example ([2-28]).

On the other hand, Czerwik [26, 27] gave a generaliza-
tion of the famous Banach fixed point theorem in so-called
b-metric spaces. For some results on b-metric spaces,
see ([17-25, 28]) and related references therein.
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Definition 1 [18] Let w be a non-empty set. A func-
tiond : o X w — [0, ) is said to be a metric if for all
{,n,0 € o, we have

(1) (:1({,',11) = Oif and only if x = y;
2) d¢,m) =dn. )
(3) d(¢,n) < d(&,v)+d(v,n).

In this case, the pair (o, d) is called a metric space (or for
short MS).

Definition 2 [27] Let w be a non-empty set and
0> 1€ (—00,0). A function d,, : ® X @ — [0, o) is said
to be a b-metric if for all £, #, v € w, we have

(1) d,(¢,n) =0if and only if x = y;
@) dy&m=dyn.0x
(3) dy(&.m) < 0]dy(&.0) +dy(v,1)].

In this case, the pair (o, ab) is called a b-metric space with
constant ¢ (or for short bMS).

Note that the concept of convergence in such spaces is
similar to that of the standard metric spaces. The b-metric
space (w, ZZ,,) is called complete if every Cauchy sequence of
elements from (w, Zz’b) is convergent. In general, a b-metric
is not a continuous functional. If b-metric cvlb is continuous,
then every convergent sequence has a unique limit.
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Theorem 3 [10] Let (w,cvi) be a compact MS and let
S: w— w.Assume thatV¢,n € w with& # 1,

2300 < A& n) = AS©, S0) < A,

Then § has a unique fixed point in .
Jleli and Samet [3, 4] introduced the notion of 6
-contraction.

Definition 4 Let(w,d)be a MS. A mapping T : 0 —> wis
said to be a f-contraction, if there exist a constant k € (0, 1)
and 6 € O such that

&€ o, dT), T(n) #0
—s 0(d(T©), Tay) < [0(2¢.n)]",

where 0 is the set of functions 8 : (0, o) — (1, oo) satisfy-
ing the following conditions:

(®1) 0is non-decreasing,
(®2) for each sequence {t.} € (0,0),

lim 6(f,) =1 if and only if lim ¢, =0T,

(®3) there exist r€(0,1) and 7 € (0, 00] such that
lim 0=t —y
t—o+ ¥ '

(®4) 4@ is continuous.

Jleli and Samet [3] established the fixed point theorem
as follows:

Theorem 5 [3] Let (a), 3) be a complete MS and T:0w->w
be a O-contraction. Then T has a unique fixed point.

Very recently, Liu et al. [6] introduced the notion of
(Y, A)-Suzuki contractions.

Definition 6 Let(w,d)be a MS. A mapping T : @ - wis
said to be a (Y, A)-Suzuki contraction, if there exist a com-
parison function Y and A € @ such that, for all, {,n € @
with 7(¢) # T(n)

2a(6.7@) <ac.n
= A(d(T©), T(m))) < YIAWUE, m)],
where
U, n) = max {d@, m,d(¢, 1)), d(n.T(n)),
d(¢, T(m) +d(n, T()) }

2
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@ is the set of functions A : (0, c0) — (0, o0) satisfying the
following conditions:

(@1) Aisnon-decreasing,
(@2) for each sequence {{,} C (0, c0),

lim A(f,) =0 if and only if lim ¢, =0,
(®P3) Ais continuous.

And as in [2], a function Y : (0,00) — (0, 00) is
called a comparison function if it satisfies the following
conditions:

(1) v is monotone increasing, that is,

<t =T(t) <7 (L)
(2) lim}_ _ T(t) =0forall > 0, where Y" stands for the

n— oo

nth iterate of y.

Clearly, if Y is a comparison function, then T) <t for each
t> 0> 0.

Lemma?7 [6] Let A : (0, 00) —> (0, c0) be a non-decreas-
ing and continuous function with inf,c g o) ¢(t,) =0
and{;k}k be a sequence in (0, ). Then,

kILH;oA(tk) =0 if and only if kilg)l;k =0.

Theorem 8 [8] Let (w,d) be a complete MS and
S : w — CB(w) be a multivalued mapping, where CB(w)
is the family of all non-empty closed and bounded subsets
of w. If 8 is a multivalued contraction, that is, if there exists
A € [0, 1) such that

H(3(2),3(n) < Ad(C.n), all{,n € .

Then S has a fixed point {* € w such that {* € S(C*) .
Definition 9 [9] Let (w,d) be a MS. Let S : @ — CB(w)
be a multivalued mapping. Then § is said to be a generalized
multivalued-F-contraction if there exist -F € F and 9 > 0
such that for all {,n € w,

H(3(0),3m) > 0
= 9+ -F(H(3(),3(m)) < -FUE,m),

where

U(¢,n) = max {Ez@, n),D(¢,50)),D(n,51)).

D(¢,8() +D(n,3(0)) }
- .
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HanCer et al. [7] (see also [5]) extended the concept of
0-contraction to multivalued mappings as follows.

Definition 10 [7] Let (w, a) be a metric space,
S : w—> CB(w) and # € ©. Then S is said to be a mul-
tivalued 6- contraction if there exists a constant k € [0, 1)
such that

0(H(3©),3m)) < [0(dc. m)]",

forall £,n € w, with H(S(¢), S(n)) > 0.

From now on, let (w, d,) be a bMS. Let CB,(w) denote
the family of all bounded and closed sets in @. For { € w
and A, B € CB,(w), we define

D,(¢,A) = infcvlb(é’,l) and D, (A, B) = supD,(I, B).
IeA IeA
Define a mapping H, : CB,(w) X CB,(w) — [0, o) by
H,(A, B) = max {supr(C, B), supD,(n,A) }
ceA neB

for every A, B € CB,(w). Then the mapping H,, is a b-metric,
and it is called a Hausdorff b-metric induced by a b-metric
space (o, Elb).

Lemma 11 [26] Let (a),cvi) be a bMS. For any
A,B,C € CB,(w) and any §,n € w, we have the following.

(1) D,(¢,B) <d,(C.b)foranyb € B;
(2) Dy(¢,B) < Hy(A,B);

(3) D,(¢,A) < s[dy(&.n) + Dy(n.B)];
4 Dy, A =0 €A;

(5) H,(A,B) < s[H,(A,C)+ H,(C,B)|.

Lemma 12 [26] Let A and B be non-empty closed and
bounded subsets of a bMS (o, cvib) and q > 1. Then for all
a € A, there exists b € B such that Zih(a, b) < qH,(A,B).

Definition 13 [18] Let (w, EJ,,) be a bMS, the b-metric—met-
ric d is called x-continuous if for every A € CB,(w), every
¢ € w and every sequence {Cn }neN of elements from w such
that lim ¢, = ¢, we have

1im Dy, 4) = Dy(¢,A).
Now we introduce the following definitions.

Definition 14 Let (a) Zib) be a bMS. Let
ST :0— CB,(w). Then the pair (S’, T) is called a gener-
alized multivalued (Y, A)-contraction if there exist a com-
parison function Y and A € @ such that for all {,n € w,

H,(30), T(m) >0
= A(SH, (3. T(n))) <Y (A(U¢&.m)), (1)

where

U,(¢,n) = max {Elb(c, ), D, (£.8)), Dy (n, T(m)),

. v 2
D,(¢.T(m) + D,(n.5(0)) } @
. .

Definition 15 Let (a) Zib) be a bMS. Let
ST :w0— CB,(w). Then the pair (S’, T) is called a gener-
alized multivalued (Y, A)-Suzuki contraction if there exist a
comparison function Y and A € @ such that for all {,n € w,

with 8(0) # T(n),

- min {D, (6,5)). D (1. T0) } < d,&.m) “
= A(s’H, (3. T(m)) <Y (A(U,(C.m)).

and U, (¢, n) is defined as in (2).

Main results

Theorem 16 Let (a), cvi,,) be a complete bMS and
.7 :w— CB,(w) be a generalized multivalued (Y, A)
-Suzuki contraction. Suppose that

(1) Y is continuous
(2) d, is *-continuous.

Then S and T have a common fixed point {* € w.
Proof Let ¢, € @. Choose ; €5(¢,). Assume that

D, (£6.5(¢)). D, (1. T(&,)) > 0, therefore,

. v ¥ v

55 min {D; (8,5(%)). D€ T(61))} < dy(60:61) 4
By Lemma 18,

0<D,(¢.T(8))) < Hy(3(¢)-T(¢1))
< (S3Hb(s(co)’7vw(é’l)))'

Hence, there exists ¢, € T(C | )

H,(3(&). T(£1))
(S3Hb(‘§<€())’ T(gl)))

Since A is non-decreasing, we have

0<Elb(C1’C2)

IA

&)

IA
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A )
A H,(3(6). 7(6))). ©

’ @)
)

Dy T(E+D(15(&))

o { d,(20:€1)- Dy (8- 5(2))- Do (61 7(21)). }

< max {ab(go’cl)’Db(CI’T(Cl))’ Db(Co,z—z(Cl))}
(c))}-
T(&))} =Dy(60. T

< max {Eib(Co,Cl),Dh(gl’

If max {Zlb(CO,Cl),D;,(Cl,
from (7), we have

(Cl)), then

A(ab(Q»Cz)) < Y(A(ab(QaCz))) < A(ab(‘:l’é’z) ,

)
a contradiction. Thus, max {cvlb(é’o, ¢ ),Db(é’,, T(C,))} =
cvlb(é‘o, Cl). By (7), we get that

A(ah@l’gz)) = Y(A(ab(go,gl)))'
Similarly, for ¢, € 7(¢,) and {5 € $(¢,). We have
A(dy(6:65)) = A(D,(6:5(%)))
(H,(T(£1)-5(%)))
('Hy(T(61)-5(%)))
(A(U,(¢1-22)))
(A(d,(1.6)))-

IA A IA A
<~ <> >

which implies

A(dy(8:65)) <Y (A(dy(1.6)))- ®)

By continuing this manner, we construct a sequence {{, } in
wsuch that{y;,, € 8(&y;)and &y € T(8pigy )i =0,1,2, ...,

% min {D/,(Czi’ S'(Cz,))’D<§2"+l’ 7vw<é:2"+‘ >> }
< dy(&oi Goin )
Hence from (3), we have

0 < A(dy (410 Goira))
< A(s3Hb(§(C2i)’T(‘:2i+l))) ©
<Y (A(U, (& 62is1)))

where

Ub (CZi’ §2i+l)
{ dy(Gais Gair)s Dy (605 8(61) ) Dy (Gairs T (Gainr) ) }
= max

D, (§2i~T(§2i+l ))+Dh(C21+l ’S(CZI))
2s

dy (& ¢2i+vl)’ dy (Saivr Caia)
< max d,(Si6oirn)

2s
< max {ah(gﬂ’ $oivr)s glh(§2i+1’ Soin) }-

If max {gib(gzi’ Czi+1)’ab(fzi+1v Czi+2)} = Zib(c2i+l’C2i+2)’
then from (9) we have

A(ab(C2i+l’§2i+2)) < ( (dh<C2l+1 §21+2)))
< A(dy(Laisrs Goinn) )

which is a contradiction. Thus,

max {317 (Czi’ C2i+1 ), ab(czm 4 §2i+2) } = 0717 (C2i’ é121'+1 )
By (9), we get that

Ady (G Gain)) < Y (A (G0 Gaisr)))-

This implies that

Zimln{Db( S( ))’Db<gn+l’T<§n+l)>}
< dy (S Curr)

Hence,

Ay (Sons1- Gonra)

Y (A(dy (30 Coner)))s forall neN,
which implies

A(cvi,,(é‘zﬁl,é'z”z)) ( ( h(CZn+l §2n+2)))

Q(A(Elb(czn_l &)
Y"(A(dy (& 61)))

Letting n — oo in the above inequality, we get

0 < n@mA(ab(§2n+l’ €2n+2))
< n@wY"(A(ab(éVOs?l))) =

I/\ I/\ I/\

which implies

nh_r,nwA(‘?b (Cone1 Cons2)) = 0.

From (&2) and Lemma (10), we get
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nli—r>nooab(c2n+l’ Sona) = 0. (10)

Now, we will prove that the sequence {Cn} is a Cauchy.
Arguing by contradiction, we assume that there exist
€ >0 and sequence {fzn}:ozl and {jg}:o:l of natu-
ral numbers such that for all n €N, h, >j, > n with
d, (Giny» Gio) 2 & Ay (Gy-1> i) < € Therefore,

e < Zib(Cﬁ(n)’Cf("))
< sldy (Ggays Cicnr-1) + Db (Giy-1+ Giow )| (an
< 5& + 54 (G Ci-1) -

By settingn — ocoin (11) , we get

€< y}LI?oglb(Ciz(I‘L)’ Ci(”)) < SE. (12)

From triangular inequality, we have

dy (Siny> Gim) < 1y (Gigays Gimya)

. (13)
+dy (10 i) -
and
dy (i1 Gin) < 51y (Giays 1) 14

+ dy (i Giomy) -

By taking upper limit as n — oo in (13) and apply-
ing (10), (12),

e < lim supd, (Ejons G
< s( 1im spd, (Goners Gon) )-
Again, by taking the upper limit as n — oo in (14), we get

1im 5up (G- Gion) < 5( Jim sup (G0 ) )

< 5.5 = s’e.

Thus

? r}m SUde(Ch(n)H’CJ(n)) <s’e. (1s)
Similarly

E < r}gg sup ‘Vlb(é’il(n)’ Gir1) < s’e. (16)

By triangular inequality, we have

dy (Simye1-Gin) < $1dy (G Gt )

. )
+dy (&1 Gony) 1

On letting n — oo in (17) and using the inequali-
ties (10), (15), we get

€ . v
2 < ]}LTO sup dy (i1 Gjony1)- (18)
Following the above process, we find

lim supd, (Giguyi1- Gner) < 57 (19)
From (18) and (19), we get

€ . v

= < nlgg sup dh(Cﬁ(n)+1’ ‘:j(n)+1) < se. (20)

N

From (10) and (12), we can choose a positive integer n, > 1
such that

ZLS min {Db (C;l(n), f?(g’mm ) >, D, (gf(n)’ T(%n) )) }

1 v
< gf < db(é‘fl(n)’é’f("))’

for all n > ny, from (3), we get

0< A( dy Gyt G

( (36, 7(¢.)))

W (& (Up (s G ) ) ) for all n > no,
where

Up(Gigay» G

d, (Ch(m’ Cf(n))v Dy, (Ch(ny § (Ch(n))) Db<CM, f(CM ) )
D”<§’3(">’T<§fw))+D"(C(x> S >))

2s

= max+

dy Gy o)+ @ (Giays Syt )+ o (Q(,,,’ Gt )

a”(¢£’<“>’¢mn+1 ) (%, ‘:mnm)
2s

< max 4

Taking the limit as n — oo and using (10), (12), (15)
and (16), we get

E+f
€= max< g, ~—2
2s

< lim sup U, (i G )

s2e + s%e
< max 4 S€, —2 = se.
K
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From (18) , and (®2), we get

A(se) = A(s3(;—2))
< A(S3Y}Lf§o sup d, (Chomys1> Gioe1) )
< imY (A (U (Gjny» G )))
= Y (A(se)) < A(se).

This is a contradiction. Therefore {Cn} is a Cauchy. Since X
is a complete, we can assume that {xn} converges to some
point {* € w, that is, limd,,(,.¢*) = 0 and so

n—oo

limd, (§,,¢*) = limd, (¢, )

n—oo ”' °°V (2])
- ;}Lr?odb(‘:znwc*) =0

Now, we claim that

| R * Pk

7, min {Db(Cn,S(C"))’Db(C T(C ))} (22)

< glb(z:n’ g*)a

or

1 . * Qppk T
5 min {Dy(¢*.8¢"). Dy (Eui1- T(C 1)) }
< ab(§n+l’c*)’ vn €N.

Assume that it does not hold, there exists m € N such that

1 . % A e

gmln {Db<gm,5(é‘m))7Db(€ ’T(g ))} (23)
> dy(,.C").

and

l . % Qy ek

gmln{Db(C 8¢ ))9Db(xm+]’Txm+l>} (24)

> dy (X415 %%)-

Therefore,

ZSEih(Cm, C*) < min {Db(gm’ §(§m))’Db(§*’ T(C*))}
< min {s[d,(¢,.¢*) + Db(g*»§(4m>)]’
D, (¢, T(CM)}
< 5[y (6,0") + Dy (€7,5(¢,))]
<sldy (600 + (€72, )|

which implies

dy(,, %) < Eib(C*sCmH)-

@ Springer

This together with (23) shows that

glb(‘:m’ C*) < ab(C*’ Cm+1 )
< 3 min {D,(£7.3(¢,)). ©3)

ool min {D, (¢,,,3(¢,)). D, (6%, 7€)} < (6,06, )-

m

by (3), we have
)
<A(1,(3(,)-7(¢..))) 26)

where

l]b(é‘m7 §m+l)

-

ay(6n-€,., ) Po(6003(6))- D60 7(6,.,) ).

Db (Cm’T(CmH >>+D’7(C'Yl+l’§(€yn ))
2s

= max 3

L
-

By, )+l (Gt Gua):

Ay (Grnsa)
2s

< max 3

L

< max {cvib(Cm, CmH >, [vib(CmH’ Cm+2) }

If max {cvib<é’m, ¢ ., ),glb(Cm+1, Snsa) } = dy(Si1-Gnsn)s

then from (26) we have

A(ab(cm+l*é’m+2)) < Y(A(ab(§;n+l’cm+2)))
< A(vb(cm+l’§m+2))’

a contradiction. Thus,

max {cvib<é’m, ¢ ),Zib(CmH’ ey } = Lvib<é'm»é'm+l )

By (25), we get that

A(dy (Gt Gra)) SY(A(Elb(Cm"fw)))

< A(Zz,,(gm,gm ))

It follows from conditions (®1)

iy (Gere ) <y (6008, ). @)
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From (24), (25), and (27), we get

ab(é‘m+l’ §m+2) < db<Cm’§m+l>
< S[db(Cm7 é’*) + ab(C*’ Cm+l)]
< % min {D,(¢*,3(2")),

Db<Cm+1’ T<§ml)>}

- %min {D,(¢*,5(")),
)]
= min {Db(C*,
§(C*))’ glb(é’m+l’ Cm+2) }
< dy(Epr1s Enaa)

a contradiction. Hence (22) holds, that is, Vi > 2

35 min {D,(6,,3(6)). Dy (€7, 7€)}
< glb(é:n’ é‘*)’

(28)

holds. By (3), it follows that for every n > 2

0 < A(Dy (G- TE))
< A(sH,(3(¢,). 7)) (29)
<Y (A(U,(5:7)))

where

Ub<cn’c*)
{Zib(cn,é )sdy (6 G )> Dy (67, T(€)), }
= max

Dy(&, T@¢* ))+db(cn+l )
2s

Now, we show that {* € T(C *) . Suppose on the contrary,
Db(é’*, T(C*)) > 0. Since d is #-continuous,

lim D, (&, 7€) = Dy (¢ T¢). (30)

Letting n — oo in (29) and by using (21), (30), (@3), we
obtain

A(D, (€. T(¢")) = lim A(D,(&,11. 7))
< limY (4(U, (¢,.¢7)))

=Y (A(D,(¢*, 7))
<A(D, (¢, 7)),

which is a contradiction. Therefore, D, (¢*, 7((*)) = 0 and
from Lemma 18, we obtain ¢* € T(¢*). Similarly we can

show that {* € S‘(C*). Thus § and T have a common fixed
point. O
Corollary 17 Let (a),cvl) be a complete bMS and
S, T : @ — CBj(w) be a generalized multivalued (Y, A)
-contraction. Suppose that

(1) Y is continuous
(2) dis*-continuous.

Then § and T have a common fixed point {* € w.

Example 18 Let X = [0, 1]. Define d : @ X @ — [0, +00) by

ai,m) =|¢ - C|2, for all {,n € w. Clearly, (w, d) is a com-

plete bMS with s = 2, but (e, d) is not a metric space. For
1

{=0,p=1andv = E,Wehave

v 1 1 .
d¢,n=1> Z+Z =d({,v)+d(v,n).

Define A : (0, 0) — (0, 00) by A(r) = te’, for all t > 0.
Then A € @. Also, define Y : (0,00) — (0,0) by
Y(?) = L8 forallt > 0.Then Y is a continuos comparison

200
function. Define the mappings 3,7 : @ — CB,(w) by

o= lo & ey = lo. &
S(C)—[O,é] andT(C)—[O,4].

Suppose, without any loss of generality, that all {,# are

T,
(i-4)

_ gzl Al
_8‘6
. 198

- 200
198
- 200
198

= 5004 (Us&:m)

Y (A(U,&m)).

A(sSH, (8, Tm))

221¢ — ekl

Soa Un(€.metsen

Hence all the hypotheses of Corollary 17 are satisfied, and
thus, S and T have a common fixed point.

Corollary 19 Let (a), Zi) be a complete bMS such that d is
a continuous function and §,T : @ — @ be a generalized
(Y, A)-type contraction, that is, if there exist a compari-
son function Y and A € @ such that, for all, {,n € ® with

8©) # T,

A(s*d(8@). T(m)) <Y [A(U,E.m)],

where

@ Springer
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U,(&.m) = max {d,(&.n).d,(¢.8()).d,(n. T(m)).

dy (2. T(m) +dy(n.5(0)) }
: :

Ifw is continuous, then S and T have a unique common fixed
point x* € X.

Corollary 20 Let (a),ovl) be a complete bMS and
St w — CB,(w) be a generalized multivalued (Y, A)
-Suzuki contraction, that is, if there exist a comparison
function Y and A € ®@ such that, for all, {,n € w with

8©¢) # S,

LD, (8.50)) < dyCon) = A(SH, (30, 5m)))

2s
<Y[A(ULE )]

where
Uy(&.m)
= max {d, (. m, D, (£.5(0)). Dy (1. 5(m)).
D,(£.3m) + Dy, (n.5(0)) }

2

Suppose that

(1) Y is continuous
(2) dis = -continuous.

Then § has a fixed point £* € o.

Corollary 21 Let (w, cvi) be a complete bMS such that d is a
continuous function and § : @ — w be a generalized (Y, A)
-type Suzuki contraction. If Y is continuous. Then S has a
unique fixed point {* € w.

Corollary 22 [6] Let (a), cvz’) be a complete MS such that d
is a continuous function and S . @ — w be a generalized
(Y, A)-type Suzuki contraction. If Y is continuous. Then S
has a unique fixed point {* € .

Remark 23 Theorem 16 is a generalization of the main
results in Suzuki [10] and the recent result in Liu [6].

Remark 24 Corollary 17 is a generalization of Nadler [8]
and the recent results in Jleli et al. [3, 4], HanCer et al. [7]
and Vetro [5].

Application

In this section, we present an application of our result in solv-
ing functional equations arising in dynamic programming.

@ Springer

Decision space and a state space are two basic components
of dynamic programming problem. State space is a set of states
including initial states, action states and transitional states. So
a state space is set of parameters representing different states.
A decision space is the set of possible actions that can be taken
to solve the problem. We assume that U and V are Banach
spaces, W C U, D C V and

E: WxD— W
g, u: WxD— R
INY: WxDxXR—R,

and for more details on dynamic programming we refer
to ([29-32]). Suppose that W and D are the state and deci-
sion spaces, respectively, and the problem of dynamic pro-
gramming related reduces to the problem of solving the
functional equations

p(&) = sup{g(C.m +T(C.n.pEC. M)}, forE €W 5
neD

q(&) = sup{u(l,n) +¥Y(,n,q&x y)}, for L € W, (32)
neb

We aim to give the existence and uniqueness of common
and bounded solution of functional equations given in (31)
and (32). Let B(W) denote the set of all bounded real-valued
functions on W. For h, k € B(W), define

dhky = ||n = k7| = suplg — k¢ (33)

Suppose that the following conditions hold:
(B1): T, ¥, g, and u are bounded and continuous.

(B2) : For { €W, he B(W) and b >0, define
E,A : B(W) — B(W)by
En&) = sup,ep{g(,n) + (€, n,h(EC. m))}, (34)
Ah() = sup,ep{u(C,m) +¥(C, n, (&L, M)} (35)

Moreover, for every ({,n) € WX D,h,k € B(W)andr € W
we have

U, (h(1), k(1))
$3 (U, (h(t), k(t)) + 1)

|F(é” n, h(t)) - lP(C’ n, k(t))l < \/
(36)

where
U, ((h(2), k(1))
= max {d(h(?), k(t)), d(h(?), Eh(t)), d(k(1), Ak(t)),

d(h(t), Ak(t)) + d(k(2), Eh(t)) }
2s )
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Theorem 25 Assume that the conditions (B1) — (B2) are U, () 1(0))
satisfied. Then the system of functional equations (31) |Eh1(§) —Ahz(g)l < \/ - b6 ), My .
and (32) has a unique common and bounded solution in § (Ub(hl(x)’hZ(x) + 1)
B(W).

Thus,
Proof Note that (B(W), d) is a complete bMS with constant U, (hy (©). 1 (E)
s = 2. By (Bl), E, A are self-maps of B(W). Let Abe an arbi-  |Eh,({) — Ah2(§)|2 <5 brin 2 : 43)
trary positive number and /1, h, € B(W). Choose { € W and s (Ub(hl(x)’ hy(x) + 1)
1,1y € D such that

The inequality (43) implies
Ehl <g(C?’Il)+F(C’n]7h](§(C7”l))+)’ (37)

Uy (h(£), hy(£))
Ahy < gL, m) +W(C, 10, 1y (6L, mp)) + A (38) d(Eh(£),Ahy(©)) < 3 . (44)
53 (Uy(hy(x), hy(x) + 1)
Further from (37) and (38), we have
Ehy > g(&,m) + Ty, by (6, m,) 39y Taking A®) = t.r>0and Y1) = 7.1 > 0, we get
3

Ahy 2 g(Cmy) + (G, my, hyEEm))- @0y AAERD,Am D) <Y (A(Up(n(©). 1)) (45)

Then (37) and (40) together with (36) imply

Ehy(§) — Ahy (&) < T'(C, my, i (E(E,my)))
=W np, iy (8 m))) + 4
< |1“(C,m,h1(§((:,m)))
=Y, 1y hy(E(E, m))| + 4

U, (hy(£), h,(0)) N
~ VSR, (O + 1)

(41)

Then (38) and (39) together with (36) imply

Ahy(©) = ERy(§) ST, hy(EC,m))
— W, 1y Iy (EC 1)) + A
< |0, 13 Iy (G )
Py iy (EC )| + A 42)

. [ 0m©m©)
VR (0010 +1)

where

Uy ((hy(0), 15(0))
= max {d(h,($), hy(0)), d(hy(0),
Ehy()), d(hy(£), Ahy(0)),

d(hy (), Ay(©)) + d(hy(L), ERy(O)) }
2s

From (41), (42), and since 4 > 0 was taken as an arbitrary
number, we obtain

Therefore, all the conditions of Corollary 17 immediately
hold. Thus, E and A have a common fixed point &* € B(W),
that is, #*({) is a unique, bounded and common solution of
the system of functional equations (31) and (32). O
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